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Introduction

Graphs are irregular structures which naturally account for data
integrity

Multisensor and multinode measurements, likely recorded on
irregular or ad-hoc grids

In classic graph signal theory, the graphs are typically given (e.g.,
in various computer, social, road, transportation, and power
networks)

The first step in graph signal processing is to employ background
knowledge of signal generating mechanisms in order to define the
graph as a signal domain

Graph signals benefit from the ability of graphs to incorporate
signal similarity awareness
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Relevance

A number of challenges in graph signal processing:

The data sensing points (graph vertices) are usually well defined in
advance

Vertex connectivity (graph edges) is not often available.

The data domain definition within the graph signal paradigm
represents a part of the problem itself, and has to be determined
based on the properties of the sensing positions or features of the
acquired set of data.

The definition of an appropriate graph structure is a prerequisite for
physically meaningful and computationally efficient graph signal
processing applications.
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History of Graph Theoretic Application

The beginning of graph theory applications in electrical
engineering dates back to the mid-XIX century and the definition of
Kirchoff’s laws.
Graph models have since become a de facto standard for data
analysis across the science and engineering areas, including
chemistry, operational research, social networks, and computer
sciences
Graph theory as an optimization tool can be attributed to the
seminal book by Nicos Christofides of Imperial College London,
published in 1975
The first lecture course to teach graph theory to then emerging
communication networks and channel coding student cohort was
introduced by the author Anthony Constantinides in 1970s.
Current developments in graph theory owe their prominence to the
emergence of modern data sources, such as large-scale and
social networks.
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An Illustrative Example

Consider a multi-sensor setup for measuring a temperature field in a
known geographical region. The temperature sensing locations are
chosen according to the significance of a particular geographic area to
local users, with N = 64 sensing points in total.
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An Illustrative Example

Classical signal processing requires an arrangement of the
quintessentially spatial temperature samples into a linear structure

“Lexicographic" ordering is not amenable to exploiting the spatial
information related to the actual sensor arrangement, dictated by
the terrain.

This exemplifies that even a most routine temperature
measurement setup requires a more complex estimation structure
than the simple linear one corresponding to the classical signal
processing framework

To introduce a “situation-aware" noise reduction scheme for the
temperature field, we proceed to explore a graph-theoretic
framework to this problem, starting from a local signal average
operator.
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Local Signal Average

In classical Signal Processing this can be achieved through a
moving average operator, through averaging across the
neighboring neighboring nodes, in the linear graph.
Since the sensor network measures a set of related temperatures
from irregularly spaced sensors, an effective estimation strategy
should include domain knowledge.
For example, for the sensing points n = 20 and n = 37, the
“domain knowledge aware" local estimation takes the form

y(20)= x(20)+ x(19)+ x(22)+ x(23) (1)

y(37)= x(37)+ x(32)+ x(33)+ x(35)+ x(61). (2)

The full set of relations among the sensing points can be arranged
into the matrix form

y= x+Ax, (3)
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Adjacency Matrix

The matrix A is the connectivity or adjacency matrix of a graph.
It indicates structure of the neighboring sensing locations that
should be involved in each y(n).
The elements of matrix A are either 1 (if the corresponding
vertices are related) or 0 (if they are not related).
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Graph Processing Framework

This simple real-world example can be interpreted within the graph
signal processing framework as follows:

The sensing points where the signal is measured are designated
as the graph vertices,
The vertex-to-vertex lines indicating the connectivity among the
sensing points are called the graph edges,
The vertices and edges form a graph, a new and very structurally
rich signal domain,
The measured temperatures are now interpreted as signal
samples on graph,
Similar to traditional signal processing, this new graph signal may
have many realizations on the same graph and may include noise,
Through relation (3), we have therefore introduced a simple graph
system for physically and spatially aware signal averaging (a linear
first-order graph system).
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Graph Signal

From a multi-sensor measurement to a graph signal
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Weighted Graph

To emphasize our trust in a particular sensor (i.e., to model sensor
relevance), a weighting scheme may be imposed on the edges
(connectivity) between the sensing points,

y(n)= x(n)+ ∑
m 6=n

Wnmx(m). (4)

We have now arrived at a weighted graph, whereby each edge has
an associated weight, Wnm,
A matrix form of a weighted cumulative graph signal

y= x+Wx. (5)

The weighting coefficients within the estimate for each y(n) should
sum up to unity.
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Degree Matrix and Laplacian

A normalized form of (5)

y= 1
2

(x+D−1Wx), (6)

The diagonal normalization matrix, D, is called the degree matrix,
are Dnn =∑

m Wnm.

An important operator for graph signal processing is the graph
Laplacian, L, which is defined as

L=D−W

is a combination of the degree matrix and weighting matrix.
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Graph Specification

A graph is fully specified by the set of its vertices and their connectivity
scheme (designated by edges).
The edges may be defined by:

The adjacency matrix, A, with Amn ∈ {0,1}, for unweighted graphs
or

The “connectivity strength" weighting matrix, W, with Wmn ∈R+, for
weighted graphs.

The degree matrix, D, and the Laplacian matrix, L, with Lmn ∈R,
are defined using the adjacency/weighting matrix.

When the relations between all pairs of vertices are mutually
symmetric, then all the matrices involved are also symmetric, and
such graphs are called undirected.

If that is not the case, then the adjacency/weighting matrix is not
symmetric and such graphs are called directed graphs.
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Graph Topology (Edges and Weights) I

There are three possible classes of problems which dictate the
definition of graph edges:

Geometry of the vertex positions: The distances between
vertex positions play a crucial role in establishing relations
between the sensed data. In many physical processes, the
presence of edges and their associated connecting weights is
defined based on the vertex distances. An exponential function of
the Euclidean distance between vertices, rmn, may be used,
where for a given distance threshold, τ,

Wmn = e−r2
mn/α or Wmn = e−rmn/α

if rmn < τ and Wmn = 0 for rmn ≥ τ. This form has been used in
the graph in Fig. 2, whereby the altitude difference, hmn, was
accounted for as Wmn = e−rmn/αe−hmn/β.
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Graph Topology (Edges and Weights) II

Physically well defined relations among the sensing
positions: Examples include electric circuits, linear heat transfer
systems, spring-mass systems, and various forms of networks like
social, computer or power networks. In these cases, the edge
weights are defined as a part of problem definition.

Data similarity dictates the underlying graph topology: This
scenario is the most common in image and biomedical signal
processing. Various approaches can be used to define data
similarity, including the correlation matrix between the signals at
various sensors or the corresponding inverse covariance
(precision) matrix. Learning a graph (its edges) based on the set of
the available data is an interesting and currently extensively
studied research area.
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System on a Graph - Graph Shift

The signal shift on a graph can be viewed as the movement of a
signal sample from the considered vertex along all edges
connected to this vertex. The signal shift operator can then be
compactly defined using the graph adjacency matrix as

xshi f ted =Ax.

The energy of the shifted signal is not the same as the energy of
the original signal (graph shit is not isometric).
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System on a Graph I

A system on a graph can be implemented as a linear combination
of a graph signal and its graph shifted versions

y= h0W0 x+h1W1 x+·· ·+hM−1WM−1 x=
M−1∑
m=0

hmWm x, (7)

where, by definition W0 = I, while h0, h1, . . . , hM−1 are the
system coefficients to be found.

Corresponding classic system is a standard FIR filter,

y(n)= h0x(n)+h1x(n−1)+·· ·+hM−1x(n−M+1). (8)
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System on a Graph II

The Laplacian operator applied on a signal, Lx, can be considered
as a combination of the scaled original signal, Dx, and its
weighted shifted version, Wx, since Lx=Dx−Wx.

A system defined using the Laplacian

y=L0 x+h1L1 x+·· ·+hM−1LM−1 x (9)

therefore allows us to always produce an unbiased estimate of a
constant c, that is, if x= c then y= c.

simple first order system based on the graph Laplacian can be
written as

y= x+h1Lx (10)
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Properties of a System on a Graph

A system on a graph is conveniently defined by the “graph transfer
function", H(W), as

y= H(W)x. (11)

For an unweighted graph, W=A
We can also use the Laplacian matrix, L=D−W.
Linear, if

H(W)(a1x1 +a2x2)= a1y1 +a2y2.

Shift invariant, if
H(W)(Wx)=W(H(W)x).

The following system on a graph is linear and shift invariant,

H(W)= h0W0 +h1W1 +·· ·+hM−1WM−1. (12)
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Graph Fourier Transform

Spectral representations of graph signals employ either the
adjacency/weighting matrix or the graph Laplacian eigenvalue
decomposition. For the latter case we have

L=UΛU−1,

where U is an orthonormal matrix of the eigenvectors, uk, of L, and Λ
is a diagonal matrix of the corresponding eigenvalues, λk.

The eigenvectors, uk, are used as a set of bases for spectral
segmentation of graphs.
The graph Fourier transform, X, of a graph signal, x, is defined as

X=U−1x. (13)

The element X (k) of X is a projection of x onto uk,

X (k)=
N∑

n=1
x(n)uk(n). (14)
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Inverse Graph Fourier Transform

The inverse graph Fourier transform is obtained as

x=UX (15)

or

x(n)=
N∑

k=1
X (k)uk(n). (16)

In analogy to the classic Fourier transform where the signal is projected
onto a set of harmonic orthogonal bases, X=U−1x, where U is the
matrix of harmonic bases uk = [1, e j2πk/N , . . . , e jπ(N−1)k/N]T /

p
N, the

graph Fourier transform can be understood as a signal decomposition
onto the set of eigenvectors of the graph Laplacian (or the adjacency
matrix) that serve as orthonormal basis functions.
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Classical Fourier Analysis as a Special Case

Classic spectral analysis can considered as a special case of
graph signal spectral analysis, with the adjacency matrix defined
on an unweighted circular directed graph (a line graph with the
circularly connected last and first vertex), when
uk = [1, e j2πk/N , . . . , e jπ(N−1)k/N]T /

p
N.

The eigenvalues of a directed unweighted circular graph,
λk = e− j2πk/N , are easily obtained as a solution of the
eigenvalue/eigenvector relation Auk =λkuk. For a vertex n, this
relation is of the form uk(n−1)=λkuk(n). The previous vector
elements uk(n) and eigenvalues λk are the solutions of this
difference equation.
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Graph Segmentation Based on the Eigenvectors

The Laplacian quadratic form of an eigenvector (its smoothness
index) is equal to the corresponding eigenvalue,

uT
k (Luk)=uT

k (λkuk)=λk.

The eigenvector corresponding to λ1 = 0 is a constant (maximally
smooth for any vertex ordering).

Spectral similarity of vertices is defined using eigenvectors, if the
eigenvector elements uk(n), k = 1,2, . . . ,P are assigned to the
vertex n. If u1 is omitted, then a (P −1)-dimensional spectral
vector becomes qn = [u2(n), . . . ,uP (n)]T .

The spectral similarity between vertices n and m is defined as the
two-norm ‖qn −qm‖2.
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Graph Segmentation

Keep the original vertex positions and color them according to the
spectral vectors qn.

Coloring is performed using the eigenvector elements u2(n),
u3(n), and u4(n) as color coordinates for the vertex n.

Graph segmentation, by grouping
vertices with similar colors.

The graph segmentation is a
signal-independent operation. It
roughly indicates the data
connectivity between sensor data
values on this graph, and suggests
that the data processing will
predominantly be localized within
these regions.
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Spectral Domain of System on Graphs

A system on a graph, defined by its Laplacian matrix,

y=
M−1∑
m=0

hmLm x. (17)

Employing the graph spectral representation, L=UΛU−1,

y=
M−1∑
m=0

hmUΛmU−1 x=UH(Λ)U−1 x, (18)

where

H(Λ)=
M−1∑
m=0

hmΛ
m (19)

is the transfer function of the graph system.
With U−1y= H(Λ)U−1 x, the input and output signal graph Fourier
transforms are related by

Y= H(Λ)X. (20)
Ljubiša Stanković, Danilo Mandic, Miloš Daković, Ilya Kisil, Ervin Sejdić, Anthony G. ConstantinidesUnderstanding the Basis of Graph Signal Processing via an Intuitive Example-Driven ApproachJune 8, 2019 26 / 37



Spectral Domain Filtering

The spectral domain implementation is straightforward and can be
performed in the following three steps:

1 Calculate the GDFT of the input graph signal X=U−1x,
2 Multiply the GDFT of the input graph signal with transfer function

G(Λ) to obtain Y=G(Λ)X, and
3 Calculate the output graph signal as the inverse graph Fourier

transform of Y to yield y=UY.

Notice that this procedure may be computationally very demanding for
large graphs where it may be easier to implement the desired filter (or
its close approximation) in the vertex domain

Ljubiša Stanković, Danilo Mandic, Miloš Daković, Ilya Kisil, Ervin Sejdić, Anthony G. ConstantinidesUnderstanding the Basis of Graph Signal Processing via an Intuitive Example-Driven ApproachJune 8, 2019 27 / 37



Vertex Domain Filtering

Physically, the minimum of xLxT implies the smoothest possible signal
and to arrive at this solution we may employ steepest descent.

The signal value at an iteration p is adjusted in the opposite
direction of the gradient, ∂Ex/∂xT = 2Lx
This yields the iterative procedure

xp+1 = xp −αLxp = (I−αL)xp.

The signal xp+1 is as an output of the first order system.
The minimum of the quadratic form xLxT corresponds to a
constant signal. To avoid obtaining only constant steady state, the
above iteration process can be used in alternation with

xp+2 = (I+βL)xp+1

This two-step iterative processes is known as Taubin’s α−β
algorithm.
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Vertex Domain Filtering Results

For appropriate values of α and β, this system can give a good and
very simple approximation of a graph low-pass filter.
The original noisy signal was filtered using Taubin’s algorithm, with
α= 0.2 and β= 0.1. After 50 iterations, the signal-to-noise ratio
improved from the original SNR0 = 14.2 dB to 26.8 dB.
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Optimal Denoising

Consider a measurement which is composed of a slow-varying desired
signal, s, and a superimposed fast changing disturbance, ε, to give

x= s+ε.

The aim is to design a graph filter for disturbance suppression
(denoising), the output of which is denoted by y.

The optimal denoising task can then be defined through a
minimization of the cost function

J = 1
2
‖y−x‖2

2 +αyTLy. (21)

The minimization of the first term, 1
2‖y−x‖2

2, enforces the output
signal, y, to be as close as possible, in terms of the minimum
residual disturbance power, to the available observations, x.
The second term, yTLy, represents a measure of smoothness of
the graph filter output, y.
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Solution for the Optimal Denoising

The solution to this minimization problem follows from

∂J
∂yT = y−x+2αLy= 0.

It results in a denoiser

y= (I+2αL)−1x.

The Laplacian spectral domain form of this relation is

Y= (I+2αΛ)−1X,

The corresponding graph filter transfer function

H(λk)= 1
1+2αλk

.

Using α= 4, the obtained output signal-to-noise ratio for the
previous graph signa was SNR = 26 dB, a 11.8 dB improvement
over the original SNR0 = 14.2 dB.
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Graph Topology Based on Signal Similarity

In some application signal values themselves (or appropriate
correlations) are used as an indicator of signal similarity.

In image processing, for the image intensity values at pixels
indexed by n and m, denoted by x(n) and x(m), the difference of
intensities is defined using an exponential kernel, as

Intensity distance(m,n)= snm = |x(n)− x(m)|.

The corresponding weights may be defined as

Wnm = e−(x(n)−x(m))2/τ2

for rnm ≤ κ, and Wnm = 0 for rnm > κ, where rnm is a geometric
distance of the considered pixels/vertices.
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Image Graph Filtering

Consider the problem of denoising a 50×50 pixel, 8-bit grayscale,
image. The vertices of the graph are the pixel locations. The edge
weights for the graph representation of this image are calculated with
κ=p

2 and τ= 20. Low-pass filtering is performed on the
corresponding image graph using iterative filtering (Taubin’s algorithm)
over 200 iterations, with α= 0.1 and β= 0.15.

Originaln, noise corrupted, and filtered image using Taubin’s
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What We Have Learned

Natural signals (speech, biomedical, video) reside over irregular
domains and are, unlike the signals in communications, not
adequately processed using, e.g., standard harmonic analyses.

It is our hope that this lecture note has helped to demystify graph
signal processing for students and educators, together with
empowering practitioners with enhanced intuition in
graph-theoretic design and optimization.

The generic and physically meaningful nature of this
example-driven Lecture Note is also likely to promote intellectual
curiosity and serve as a platform to explore the numerous
opportunities in manifold applications in our ever-growing
interconnected world, facilitated by the Internet of Things.
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