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based detector discussed in this paper, will perform better than any
other detector, since it uses all available prior information. When
only the time-bandwidth product and the relative bandwidth of the
signal are known, then the detector of [13] should be used. Use
of that detector in our case is also possible at some performance
degradation resulting from not using prior information concerning
exact waveshape. The amount of performance loss resulting from
disregarding prior information in the detector of [13], as well as
comparison of the performance of the two detectors when the assumed
waveshape is actually distorted, are still open questions.
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On the Wigner Distribution of Discrete-Time Noisy Signals
with Application to the Study of Quantization Effects

LJubi$a Stankovi¢ and Srdjan Stankovi¢

Abstract— The influence of noise to the Wigner distribution (WD)
of discrete-time signals is analyzed. The signals contaminated by white
noise are considered. The expr for the mean and variance of WD
estimator are derived. It is then shown that the application of only one
window is sufficient to make the variance of estimator finite. That is
a significant difference from the analog case, where two windows are
needed. The expression for the optimal window width is derived. The
results are illustrated by several numerical examples. Using the derived
expressions, the effects of finite register length to the WD are analyzed.
Fixed and floating point arithmetics are considered.

I. INTRODUCTION

The Wigner distribution, as a tool for signal analysis and syn-
thesis of time-varying systems, has attracted the attention of many
researches during the last decade. A great number of papers have
addressed the theoretical problems as well as the application of this
type of distribution. We refer the readers to the review papers [1], [2].

The influence of noise to the WD of analog signals is treated in
[1], [3]. This paper extends the analysis to the case of discrete-time
signals. We show that the difference from the analog case is not only
formal. In the discrete-time domain case one truncation window is
sufficient, whereas in the analog case it was not. The expression
for optimal window width is derived. The obtained results are
demonstrated on the numerical examples with frequency modulated
(FM) signals. The expressions describing the effects of finite register
length are given. Fixed and floating point arithmetics are considered.

II. THEORY
The Wigner distribution of a discrete-time signal f(n) is defined as

L

Wip(n,0) =a Z Fn + k) f (n = k)e™ 2% )

k=—~L

where a = 2. Without loss of generality, we will simplify the
presentation by taking a = 1. Taking L — oo, one may include the
case of long signals. If the signal is contaminated by additive noise,
then f(n) from (1) should be replaced by x(n) = f(n) + v(n),
where the noise is represented by v(n).

We will consider the case when signal f(n) is deterministic and
the noise falls into one of the following categories: real, complex or
analytic. The modifications for random Gaussian signals are given.

A. The Real Noise Case

We will consider a deterministic signal f(n) with white Gaussian
noise v(n). The variance of the noise is assumed to be af,. The mean
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of WD of the signal z(n) = f(n) + v(n) is

L
E{W..(n.6)} = Wip(n.0)+ 3 Ruu(2k)e™

k=—L
=W;p(n,60) 402 2)
where R,.(k) is the autocorrelation of noise v(n). We see that

W (n,0) is biased.

The variance of WD estimator W, (n, 8) is
02, = E{W,:(n,8)W,(n,0)} = E{Waz(n, 6)}E{W,.(n,6)}.
After some straightforward manipulations we get two components
of variance o2, = a},, +02,, one (a?v) depending on both signal
and noise, and the other (o2, ) depending on the noise only (see the
Appendix). For the white Gaussian noise we get

L
ot =02 S (Ifn+ B +1f(n = B

k=—L

+ 2Real{f2(n + k)e 7%} 3)

L
o2, =at Z 1+ eﬂk‘w]
k=—L
. sin(20N) .
=oiN ﬂ—— N = .
ol [1+ N2 | N=2L+1 @)

If the noise is white, but not Gaussian, the results are slightly
different'(see the Appendix). Therefore, we will not pursue here those
differences.

For the finite power signals, |f (k)|* < Py, we have

o2, < oIN(4P; + 207). (5)

For FM signals, f(k) = e??) |f(k)|? = Py = 1, so the previous
expression is close to the exact one.

From the above expressions we see that the variance of the
estimator W, (n.#) approaches infinity, as L — oc. The truncation
window is necessary and, as it is clear from (5), is also sufficient to
make the variance finite. Let us consider the window w(n) whose
width is N = 2L + 1. The WD of the truncated signal (the Pseudo
Wigner distribution) is

W, (n.6)= Z w(k)w(=k)x(n + k)z™(n

k=—oc

_ k)e-,kzs ®)

whose mean, after same modifications, becomes
E{W,.(n.0)} = Wys(n.0) %g Fu(260) + o7 %6 Fu(26) (7

where F..(8) = FT[w(k)w(—Fk)] is the Fourier transform (FT) of
the product w(k)w(—Fk).

The window causes an increase in the WD bias. The second term on
the right-hand side in (7) is constant, so one may assume it does not
introduce any distortion to the WD. Using a Taylor series expansion
of Wyg(n.#), the first term can be approximated by
/2

Wy (n.68) % Fu(20) = %/ Wip(n.8 = w)Fu(2w)dw

—7/2
Py—
> Wip(n, )+ %E)—Léf)ggn—‘e)mz. ®)
The bias is
19°W;s(n,0) 1
b= g—a—(p—mg = gbfmg 9)

IFor white uniformly distributed noise, the variance is

6 sin[26 N] 4n
B G B A
v T ;\'siu(26)} S R

o2 = 033\'{1 -

vy

sin[20.N]
N sin(26) }
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where mo = 2% ffw w?Fy(w)dw is the amplitude moment of the
window w(k)w(—k). If w(k)w(—Fk) is the Hanning window, then
mae = 0.5(x/L)%

The optimal window width can be obtained by minimizing the error
defined as: €2 = b% + ¢2,,. If the window is not rectangular then the
values of variance (5) should be modified as: o2, < o2E,(4P; +
202), where E, = zlk‘:_L[ur(k)w(—k)]2 is the energy of the
w(k)w(—k) window. For the Hanning window (Ew =3N/8)

> = b2(n/L)*/256 + 3(2L + 1)a(4Py + 207)/8. 10)
From 8e?/dL = 0, the optimal window width follows
2L = {'/b"}7r4/[305(2Pf+0'3)]. an

The bias is minimal for the minimum amplitude moment windows.
If the energy E.. is constant then the error is minimal if a window
is parabolic [4].

B. Complex Noise With Independent Real and Imaginary Parts

Assuming that the variances of the real and imaginary parts are
equal to o2 /2, the total noise variance is o2. The components of the
variance are

L
ot =2 Y (Ifn+ R +1f (= b))

k=—L
L
o, =0} Y 1=aLN. (12)
k=—L

For the FM signals (f(k) = e’*®) |f(k)]> = Py = 1) we have
o2, = e2N(2P; + o2).

C. The Noise in the Form of an Analytic Signal
Recall that the analytic part of a signal v(n) is defined by

va(n) = v(n) + jvr(n) (13)

where vy, (n) is the Hilbert transform of the signal v(n). The analytic
signal is commonly used in the calculation of the WD. In that case
the noise has real and imaginary parts which are related via a Hilbert
transform, thus being correlated. If the spectral power density of the
input noise is o2 /2, the spectral power density of analytic noise is
Spava(8) = 202U(8) for |8] < =, where U(f) is the unit step
function.

Using Parseval theorem?and the results from the Appendix, we get

ot = % [” |F(e”) Svava(20 = w)dw

1 of [PIF(e™)Pdw  0<6< /2 )
= Je = < 4FEj0,.
zn‘”{fmp |F(e™)Pdw —n/2<8<0 =77
(14)
The component of variance, depending on the noise only, is
L L
02 = S Suava(20) % Svava(28) = 4oy Y 16/7]
ky=—L ky=—L
=40:N|8/x|,|0] < 7/2. (15)

We can see that both components are strongly dependent on 6
and equal to zero for # = 0. Besides, a;,, is a nondecreasing

2Parseval theorem:

e - ‘
Z .r(k)y*(l.-):27 X (7)Y * (/) duw.

k=—oc
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TABLE 1
THE VARIANCE OF THE WIGNER DISTRIBUTION
ESTIMATOR FOR RANDOM WHITE SIGNALS

Real signal and noise o2, = (o2 + 0?)2]\7[1 + %%%\%]
Complex signal and 02, = (o2 +03)°N

noise )
Analytic part of the 02, =4(o2 + 0’})21\10/7‘-‘

signal and noise 5%, = (6% 4 0%)%N; mean value over 8

(b)

Fig. 1. (a) Wigner distribution of a linear frequency modulated signal with
Gaussian noise. (b) Analytic signal and noise; Hanning window w(k)w(—k)
is used with L = 32.

function, where 4 ranges from 0 to #/2 and from 0 to —x /2. The
variance reaches maximum for [¢| = /2, the maximum values being
02, = 4Es02 4+ 2No}, where E; is the energy of analytic signal
f(n).

D. Random White Signal

If the signal f(n) is random, then the real advantage of the WD
is realized only when the signal is nonstationary [6]. The aim of
this section is to provide background for a study of the influence
of quantization effects to the WD. Only this simple stationary case
allows one to obtain closed form results [5].

If a; is the variance of the signal f(n), then the values of 02, may
be obtained from the expression for o2, in all three considered cases
(4), (12), (15), replacing o2 by ¢% + o2. The results are presented
in Table I.

III. NUMERICAL EXAMPLE
Consider linearly modulated signals
frln) = OO0 )
f2(n) = cos[dn(n/64 + 2)2] + v(n). (16)
The noise is assumed to be white, Gaussian with 02 = 1 /4. The
Wigner distributions of the noisy signal fi(n) and of the analytic

version of the noisy signal f2(n) are shown in Fig. 1(a) and 1(b),
respectively.
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The above graphics exhibit complete agreement with the previously
derived results. We can see that for the analytic signal the variance
of WD is zero for § = 0 and increases as |#| increases. Noise is
present at the negative frequencies, as expected from eqns. (14) and
(15). From Fig. 1(a) and 1(b) we see that the distribution of noise is
quite different depending on the way of the WD calculation.

IV. QUANTIZATION—THE EFFECTS OF FINITE LENGTH REGISTER

An interesting kind of noise is the one resulting from the quanti-
zation of a signal or the results of certain mathematical operation.

For the ensuing analysis we will make the following usual as-
sumptions: 1) The length of registers is b+ 1 bits (b bits for absolute
value and one sign bit); 2) Each of the noises is white with uniform
distribution in the interval from —27°/2 to 27%/2; 3) The mean
of such a noise is zero and the variance is 05 = 272°/12; 4)
The quantization noises are mutually uncorrelated, and they are not
correlated with the signals.

A. Fixed-Point Arithmetic

Initially suppose that the values of the signal are such that no
overflow will occur. The discrete Wigner distribution, by definition,
is

L .
Wipnom)= 3 f(n+k)f (n = k)e ™ FEm,
k=—L

an

The effects of quantization of the signal f(n) can be modeled by the
noise €(n), so the WD is calculated for the signal z(n) = f(n)+e(n).
The WD model for analysis is
L
Wnm)= Y {lz(n+K)z"(n— k) +e(n.k)]e ™ Frm
k=_1L
+ u(n, k,m)}

L
=W,e(n,m)+ Z [e(n, k)e"j%k"' + n(n, k,m)]
k=—L

where e(n,k) and p(n,k,m) are noises due to the quantization
of z(n + k)x*(n — k), and its product with the basis functions
e7/4m&m/N 1n the last expression we have taken into account all
the quantization errors except the one of the basis functions. This
error has some deterministic properties, although it can be modeled
as white noise [5].

The mean and variance of the Wigner distribution are

E{W,.(n.m)} = Wys(n,m) +0?, o’ =0}, + Nol+No,,
(18)
where o2, is the variance when only the input noise €(n) exists,
and the arithmetic is ideal (Table I with 6 = 27m/N), a2, =
N(a‘? + 02)?, with 202 = ¢? = crﬁ = 40%.
The noise to signal ratio (NSR) will be defined as

2 2
0% = O ;
NSR = 5 fwithout any noise . (19)
T without any noise
For the white complex signal with the variance a;, we have
NSR = (20’30?+0?+0’?+03)/0?. (20)

The direct calculation of DFT, by its definition, is not used in practice,
but for fixed-point arithmetics, the same results are valid for the FFT
algorithms. For example, for decimation-in-time FFT algorithm the
variance term No. in (18) becomes (N — 1)o7, [S].

If the values of a signal are not small we have to ensure that no
overflow occurs during the calculation of the FT. When the signal is
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fn, f(n)/N+¢&(n) X(k) w1111 oFT e Ma(n
H(k) without 1/N
X(k)=F(K)/N+E(K)+Q(K)
Ya (N)=0.5(f, (n)+Ne,(n)+Ng, (n)]
Ideat
¥(n) Anaytic Ya(m) ® Vli WD Win,m)
Transformer
q(m
Fig. 2. Analytic signal calculation flow graph.

uniformly distributed over [0, 1), we can be sure that the overflow is
avoided if we use one of the following procedures: 1) division of the
input signal by v/N, 2) use of the FFT algorithms with factors 1/2,
[5], or 3) use of the floating-point arithmetics.
1) When the product in Wigner distribution is divided by N, the
signal f(n) is divided by VN, so the overflow will not occur
in any case. The NSR is

NSR = (2020% 4+ o} + N%6¢2 + N?02)/0}. @n

2) An alternative way to avoid the overflow is the use of the
factors 1/2 in FFT butterflies. Using those algorithms, [5], and

(20), we get
NSR = (20207 + ot + 02 +4Nol)/a]. 22)

We see that the dominant term is of order IV, unlike N2 in (21).

B. Analytic Signals and Fixed-Point Arithmetic

An often used procedure to obtain analytic part of a real signal is
shown in Fig. 2. The variance of Wigner distribution estimator can
be obtained using previous expressions. For white signals we get
o’ =02, + ”:iql + NU? + ]\in
with

o2, = N|0/4x|[o}/N? +20F(a2 + 05) + N2 (02 + 05)]
§ =2xm/N.

The mean of the NSR for |6] < 7/2 is
NSR = [2N%(02 4+ 02)oF + N* (a7 + 2)* + 16N g,
+16N% (02 + a2)/0}  (23)

with: 402 = 0% = 02 = ¢} = 02, = 40%. We emphasize that (23)
is the mean of the NSR, and that NSR is dependent on frequency.
The frequency dependence is in accordance with Fig. 1(b).

C. Floating-Point Arithmetic

When floating-point arithmetics is used, the influence of finite
length register can be represented by multiplicative noise [5], i.e.,
Qlr1r2]) = x122(1 + €), where € is an error uniformly distributed
over the interval —=27° < € < 27 (a3 = 272%2/3), for which earlier
made assumptions (in the introductionary part of section 4.) are valid.
In this case additions also produce noise which can be represented
by multiplicative noise.

A model for the mean and variance calculation is

L-1
Winom) = 3 {eln+ k)" (n = b1+ e(n.k)e ™ ¥
k=—1L
LP
><[1+;1(n.k.m)]H[l+g(n.k.m.p)]} 24)
p=1
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SNR(dB)

SNR(dB)

60

40

20

IogzN

Fig. 3. The SNR = 1/NSR for various: (a) register lengths b; (b) lengths
of signal N. “1”: Fixed-point arithmetics with DFT or FFT. “2”: Fixed point
arithmetics with FFT and factors 1/2. “3": Floating-point arithmetics.

where Lp = log2(2L). The additions are performed by adding
adjacent elements in the first step, then the adjacent sums in the
next steps. This corresponds to the butterflies in the FFT algorithm.

Since the errors are small, we will neglect all higher order error
terms, so we get

Ly Lp
[10+gtnkomp] =14 glnkomp). (25
p=1 p=1

After relatively straightforward transformations, for white signals, we
get

NSR = 202 /0% + (Lp+2)a2, 202 =0l =40%.  (26)
We can see that the NSR depends on log 2 (N'), which is a much better
result than the one obtained with fixed-point arithmetics (20)~(23).

The SNR=1/NSR for various cases is shown in Fig. 3(a) and 3(b).

V. CONCLUSION

The analysis of the influence of noise on the Wigner distribution of
discrete-time signals is performed. Simple expressions for the mean
and variance are derived. It is shown that, in the case of discrete-
time signals, only one window is sufficient to make the variance
finite. The optimal window width is derived. Complex and analytic
noises are considered. The obtained results are used in the analysis
of quantization effects.

APPENDIX

The variance components are

L L
oho= S N {f+ kDS (A ka)Ruu(ky = k)
ky=—L kp=—L
+ f(n+ k) f(n—ka)Ru-u(—ky — k2)
+ £ (n = k) f(n = k2)Ruu (k1 — ko)
+ (= k) f (0 + k2)Ruus (k1 + k2)}

—28(ky —k:
e J20(ky1—kz)

X (A1)
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L L

ol,= Y. Y, Eun+k)r (n—k)r(n+ k)

ky=—L kg=—L

X v(n - kg)}e—jze(k‘_k2)—
L

L
_ Z Z E{v(n+ki)v"(n —k1)}
ky=—L ko=—L
x E{v*(n + ko)v(n — ka)}

—720(k1—k2)

X e (A2)

For the Gaussian noise ¥(n) we have [4]

E{v(n+k)v" (n — k1 )v™(n + k2)v(n — k2)}
= Ruo(2k1)Ruu(—2k2) + RZ, (k1 — k2) + Ruue (k1 + k2)
Ru+u(—k1 — k2).

So, it is

L L
YD Rk = k)

ky=—L kp=—L

+ Ruu+ (k1 + k2)Ryeu(—k1 — k2)}
—526(k1 k)

2 _
Tyy =

X e (A3)

For any other, real non-Gaussian, white noise

E{v(n+ ki)v(n — k1)v(n + k2)v(n — k2)}
= 028(ky — ko) + 026(ky + k2)
+ [E{v*(n)} - 203]6(2k1)6(—2k2). (A4)

For the Gaussian white noise E{v*(n)} = 3¢, and for the uniform
white noise E{v*(n)} = 903/5.

For the analytic signal the variance components can be written in
a modified version

L L
o}, = Z Z [f(n+ k1) f*(n+ k2) Ruava(k1 = k2)

ki=—L kg=—L

+ £ (n— k1) f(n = k2)Ruava(ks — k2)]

o o—i200k1—k2)_

For L — oo the previous expression can be understood as

L
oh= 3 {fn+ k) (n+ k1) %k, Ruavalki)e™*]

ki=—L
+ i (n —k)[f(n — k1) *x, Ruava(k1)
x e~ 92017

where i, denotes convolution along k.
The variance component, depending on the noise only, for analytic
signal is given by

L L
ol,= 3 Y Rlia(ky = kp)e IR

ky=—L kg=—L

(A5)

which may be interpreted, for L — oo, as the sum of FT of the
product Roava(k)Ruava(k), kB = k1 — ka.

1867

REFERENCES

[1] L. Cohen: “Time-frequency distributions—A review,” Proc. IEEE, vol.
77 pp. 941-981, July 1989.

[2] Y. M. Zhu, F. et Peyrin, and R. Goutte, “Transformation de Wigner-
Ville: description d’ un nouvel outil de traitement du signal et des
images,” Annales des telecomm, vol. 42, no. 34, 1987, pp. 105-117.

[3] LJ. Stankovi¢ and S. Stankovi¢, “Wigner distribution of noisy signals,”
IEEE Trans. Signal Processing, vol. 41, no. 2, pp. 956-960, Feb. 1993.

[4] A. Papoulis, Signal Analysis. New York: McGraw-Hill, 1977.

[5S] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. En-
glewood Cliffs, NJ: Prentice-Hall, 1975, pp. 404-464.

[6] W. Martin and P. Flandrin, “Wigner-Ville spectral analysis of nonsta-
tionary processes,” IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-33, no. 6, pp. 1461-1470, Dec. 1985.

A Reduced Parameter Bilinear Time Series Model

Yongqing Zhang and Martin T. Hagan

Abstract— A new bilinear time series structure is proposed and is
tested on three sample time series to demonstrate its effectiveness. It is
found that the proposed bilinear model can represent both nonlinearity
and multiperiodicity, and it therefore provides a useful model class for
general applications. In addition, the proposed bilinear model uses fewer
parameters than conventional bilinear models with the same structure.

‘'I. INTRODUCTION

The bilinear time series model, which is a special class of nonlinear
model, has been proposed and studied extensively by Granger and
Anderson [1], Priestly [2], Subba Rao and Gabr [3], and Mohler [4].
When compared with general nonlinear models (e.g., the Volterra
series expansions), the bilinear model is nearly linear and therefore
may be identified without excessive computational requirements. In
addition, it can be shown [2] that the bilinear model can approximate
to an arbitrary degree of accuracy any “well behaved” Volterra series
relationship over a finite time interval. In view of this, the bilinear
models represent a powerful class of nonlinear models that has been
successfully applied to many real problems [3].

One of the disadvantages of the conventional bilinear model is
that the number of parameters to be estimated is typically large.
In this correspondence, a new form of bilinear model that can
significantly reduce the number of parameters while maintaining a
structure similar to the conventional bilinear model is considered.
Another improvement over the conventional bilinear model is the
ability to conveniently create a periodic or seasonal variation of the
model.

Section II presents the reduced parameter bilinear model. Sec-
tion III discusses identification and estimation techniques. Section
IV presents some experimental results, and Section V provides a
summary and conclusions.
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