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Effects of Cauchy integral formula
discretization on the precision of IF
estimation; unified approach to
complex-lag distribution and its

counterpart L-form
Srdjan Stanković, Irena Orovíc, Cornel Ioana

Abstract– Effects of Cauchy integral formula
discretization on the concentration of time-
frequency (TF) distribution are analyzed. As
a result of this discretization, new forms of dis-
tributions are produced. In order to increase
the accuracy of instantaneous frequency (IF)
estimation, two solutions are considered: in-
creasing the number of integration points and
multiple successive integrations using the same
number of points (it corresponds to the L-form
of the TF distribution). In practical applica-
tions, the L-form of the fourth order complex-
lag distribution produces very efficient repre-
sentation. In this case, the analysis of noise
influence is also provided.

I. INTRODUCTION

The distribution concentration is very im-
portant for an efficient TF signal representa-
tion [1]-[3]. This is especially emphasized for
the IF estimation of highly non-stationary sig-
nals [4]-[9]. In order to obtain high concentra-
tion in the TF plane, various TF distributions
have been proposed [1]-[10].
In this letter we present an approach that

can produce highly concentrated representa-
tion along a fast varying IF, even when its vari-
ations are significant within only a few sam-
ples. It is based on the concept of Cauchy’s
integral formula discretization. In this con-
text, some specific TF distributions of differ-
ent order are proposed and analyzed. It will be
shown that efficiency of the IF estimation can
be improved either by increasing the number
of discretization points on the circle or by per-
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forming multiple successive integrations over
the circle. The first solution leads to a def-
inition of novel general forms of TF distrib-
utions, whose special cases correspond to the
various existing TF distributions [7]-[9]. The
second one introduces their L-forms. Here, it
is important that multiple successive integra-
tions approach does not significantly influence
the realization complexity, since it can be ob-
tained recursively from the basic distribution
form as in [7].
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A. IF Calculation based on the Cauchy’s inte-

gral formula

According to the Cauchy’s integral formula
from the complex analysis, a holomorphic
function f (z) defined on the closed disc D =
{z : |z − z0| ≤ r} can be completely deter-
mined by its values on the boundary circle C
of the disc:

f(t) =
1

2πj

∮

C

f(z)

z − tdz. (1)

Consequently, derivatives of the function f
are obtained using the integration over C as
follows:

fK(t) =
K!

2πj

∮

C

f(z)

(z − t)K+1 dz. (2)

Let us consider a signal in the form s(t) =
r · ejφ(t), with a constant amplitude r and a
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phase function φ(t). In order to provide an

estimation of the first phase derivativeφ
′

(t) i.e.
IF, we may assume that circle C is centered at
the instant t and z = t+ τejθ, where τ is the
radius of the circle, while θ is the angle (θ ∈
[0, 2π]) [9]. According to (2), when f (t)=φ(t)
and K=1, the IF can be obtained as:

φ
′

(t) =
1

2πj

∮

C

φ(t+ τejθ)

(τejθ)2
d(τejθ)

=
1

2πτ

∫ 2π

0

φ(t+ τejθ)e−jθdθ. (3)

Reducing the circle radius τ by a scaling fac-
tor L results in multiple (L) successive integra-
tions as follows:

φ
′

(t)τ =
L

2π

∫ 2π

0

φ(t+
τ

L
ejθ)e−jθdθ. (4)

In the TF analysis, τ has been introduced
into the definition of the TF distributions as
a lag coordinate. Thus, scaling of the lag co-
ordinate by L provides increasing of accuracy
of the IF estimation. The discretization of (3)
leads to the form [9]:

φ
′

(t)τ =
N−1∑

k=0

φ(t+
τ

N
ej2πk/N)e−j2πk/N . (5)

For large N, almost an ideally concentrated
IF could be obtained. Note that the right side
of (5) represents the phase of the complex-lag
signal’s moment [9]:

M(t, τ) =
N−1∏

k=0

se
−j2πk/N

(t+
τ

N
ej2πk/N). (6)

The corresponding TF distributions are ob-
tained as the Fourier transform of the moment
function.

B. Analysis of IF estimation precision

In this section an analysis of the IF estimation
accuracy, depending on the number and the
choice of discretization points, is provided.
Consider the general case of two points on

the circle: τ/(2(a + jb)) and τ/(2(−a − jb)),
located symmetrically around an instant t, Fig

1.a. In this case the moment function can be
written as:

M(t, τ) = s(a+jb)
(
t+

τ

2(a+ jb)

)

×s(−a−jb)
(
t+

τ

2(−a− jb)

)
. (7)

The Taylor series expansion for the phase of
M(t, τ) will produce:

φM(t, τ) = φ
′

(t)τ + φ(3)(t)
τ3

223!(a+ jb)2

+φ(5)(t)
τ5

245!(a+ jb)4
+ ... (8)

Observe that all the terms except φ
′

(t) · τ
(terms containing the third φ(3)(t), the fifth

φ(5)(t), and higher order odd phase deriva-
tives) represent the integration error. This er-
ror is reflected as a spread factor that affects
the distribution concentration. The TF repre-
sentation based on the moment function (7) is
defined as:

GCDN=2(t, ω) |a,b =

∞∫

−∞

s(a+jb)
(
t+

τ

2(a+ jb)

)

×s(−a−jb)
(
t+

τ

2(−a− jb)

)
e−jωτdτ. (9)

Obviously, it provides an ideal concentration
for the linear IF. In the sequel, we will present
a few interesting cases.
Case 1: Taking (a,b)=(1,0), the real valued

points τ/2 and −τ/2 are considered (Fig 1.b).
In this case, (9) corresponds to the well-known
Wigner distribution. Note that the power -1
is used instead of a conjugate and it has the
same influence on the IF estimation, although
the marginal properties are not preserved. The
spread factor for the Wigner distribution is
given in Table I.
Case 2: Regarding the IF estimation, al-

most the same results as in the previous case
are obtained for (a,b)=(0,1) (the points ±jτ/2
are used, Fig 1.c). The corresponding signal
moment is: M(t, τ) = s−j(t + jτ/2)sj(t −
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Fig. 1. Illustration of circle points around instant t : a) two points- general case, b) points on real axes, c)
points on imaginary axes, d) two points L-times, e) two points on real axes L-times, f) four points

TABLE I

S�
��� �����
� ��
 ���� TF ����
������
�

Distribution Spread factor

Wigner distribution,(GCDN , N=2) Q(t, τ) = φ(3)(t) τ3

223! + φ
(5)(t) τ5

245! + ...

L-Wigner distribution GCDLN=2 Q(t, τ) = φ(3)(t) τ3

223!L2 + φ
(5)(t) τ5

245!L4 + ...

GCDN=4 Q(t, τ) = φ(5)(t) τ5

445! + φ
(9)(t) τ9

489! + ...

GCDL=2N=4 Q(t, τ) = φ(5)(t) τ5

465! + φ
(9)(t) τ9

4129! + ...

GCDLN=s Q(t, τ) = φs+1(t) τs+1

ss(s+1)!Ls + φ
2s+1(t) τ2s+1

s2s(2s+1)!L2s + ...

jτ/2). Its phase contains the same derivatives
as in the Wigner distribution.

Case 3: An interesting case that eliminates
the 3rd, 7th, 11th and higher order derivatives
can be obtained for a=b=

√
2/2. The Tay-

lor series expansion of the phase function is:

φM(t, τ) = φ
′

(t)τ − jφ(3)(t) τ3

223! −φ
(5)(t) τ5

245! +
.... Apparently, the derivatives of order 4n-
1 (n=1,2,. . . ) produce amplitude modulation
terms. Thus, to avoid these terms for the
IF estimation, a slight modification of M(t, τ)
should be used:ej·angle(M(t,τ)).

The spread factor might be significant for a
non-linear IF law and the inner interferences
appear. Therefore, in order to improve concen-

tration for non-linear phase, a more accurate
integration should be considered. It can be re-
alized as the integration over L circles with L
times smaller radius, as it is given by (4). An
illustration for two arbitrary points is shown
in Fig 1.d. The L-form of the distribution, de-
fined by (9), is:

GCDLN=2(t, ω) |a,b =

=

∞∫

−∞

sL(a+jb)
(
t+

τ

2L(a+ jb)

)

×sL(−a−jb)
(
t+

τ

2L(−a− jb)

)
e−jωτdτ.

(10)
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For instance, in the case L=2, the precision
of IF estimation is improved by using dou-
ble integration over the points on the twice
smaller radius. Hence, for the points τ/4 and
−τ/4 (Fig 1.e), the L-Wigner distribution is
obtained as [7]:

GCDL=2N=2(t, ω) =

=

∞∫

−∞

s2(t+
τ

4
)s−2(t− τ

4
)e−jωτdτ. (11)

The L-Wigner distribution reduces the
spread factor better than the Wigner distri-
bution (Table I), providing higher distribution
concentration. The precision of integration
(i.e. IF estimation) can be further improved
by increasing the number of points, instead
of performing multiple successive integrations
within only two points. For two pairs of sym-
metrical points [±τ/(4(ai+jbi))], i = 1, 2, the
moment’s phase expansion is given by:

φM(t, τ) = φ
′

(t)τ+

+2φ(3)(t)
τ3

433!

(
1

(a1 + jb1)2
+

1

(a2 + jb2)2

)
+

+2φ(5)(t)
τ5

455!

(
1

(a1 + jb1)4
+

1

(a2 + jb2)4

)
+...

By suitable selection of a1, b1, a2, and b2,
some odd derivatives may disappear or be sig-
nificantly reduced. For example, it is easy to
see that for a1=-a2=b1=b2 all the derivatives
of order 4n-1, n=1,2,. . . , will vanish.
The corresponding TF distribution is de-

fined as:

GCDN=4(t, ω) |ai,bi =

=

∞∫

−∞

2∏

i=1

s±(ai+jbi)
(
t± τ

4(ai + jbi)

)
e−jωτdτ.

(12)
Observe that in the case (a1,b1,a2,b2) =

(1,0,0,1) (Fig 1.d), a form of the complex-lag
distribution (N=4) [8] is obtained:

GCDN=4(t, ω) =

=

∞∫

−∞

s(t+
τ

4
)s−1(t− τ

4
)

×s−j(t+ j τ
4
)sj(t− j τ

4
)e−jωτdτ. (13)

Its spread factor is given in Table I (3rd

row). In addition, it is interesting to observe:
(a1,b1,a2,b2)=(1/2,

√
3/2,

√
3/2, 1/2). By us-

ing the previous modification ej·angle(M(t,τ)),
we will obtain the spread factor of (13) divided
by 2. Also, an additional advantage of using
the points with smaller imaginary part is in
reducing the miscalculations that may appear
in the numerical realization of a signal with
complex-lag argument [8].
For signals with higher non-stationary vari-

ations of IF, the precision can be additionally
improved by using the multiple successive inte-
grations approach. Thus, similarly as in (10),
the L-form of (12) can be used. For instance,
the L-form of GCDN=4(t, ω) is defined as:

GCDLN=4(t, ω) =

=

∞∫

−∞

sL(t+
τ

4L
)s−L(t− τ

4L
)

×s−jL(t+ j τ
4L

)sjL(t− j τ
4L

)e−jωτdτ. (14)

The terms within the spread factor for
GCDL=2N=4(t, ω) are reduced with respect to
GCDN=4(t, ω) (Table I). Regarding the real-
ization complexity, the L-form of complex-lag
distribution (for even L) can be easily obtained
by performing the recursive realization as fol-
lows:

GCDLN=4(t, ω) =

=
1

π

∞∫

−∞

GCD
L/2
N=4(t, ω+θ)GCD

L/2
N=4(t, ω−θ)dθ.

(15)
This form is very suitable for practical

applications. The influence of noise on
GCDLN=4(t, ω) is analyzed in the next section.
By considering more points on the circle, the

accuracy of IF estimation increases. However,
the realization complexity also increases. Ide-
ally, for an arbitrarily high number of points N
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and number of integrations L, the spread fac-
tor tends to zero. The corresponding L-form
of the N -th order complex-lag distribution can
be defined as follows:

GCDLN(t, ω) =

=

∞∫

−∞

N/2−1∏

i=1

s±L(ai+jbi)
(
t± τ

N · L(ai + jbi)

)
e−jωτdτ.

(16)
This form offers new possibilities related to

the selection of parameters ai and bi, which
could be further explored in some future work.
An interesting case is obtained for the equidis-
tant points: {±(ai+jbi) |i = 1, ..., N/2− 1} =
{ej2πk/N |k = 1, ..., N − 1}. Note that for
L=1, it corresponds to the generalized
complex-lag TF distribution [9]. It can be seen
from Table I (last row) that the distribution
spread factor can be arbitrarily reduced by the
suitable selection of parameters L and N (dis-
tribution order).

III. I
����
�� �� 
���� �
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���������


Consider a discrete signal s(n) = rejφ(n)(r is
a signal amplitude, while φ(n) is a phase) cor-
rupted by a Gaussian white noise ν(n). With-
out loss of generality, the discrete complex-lag
distribution N=4, can be written as [8]:

GCDN=4(n, ω) =

=

Ns/2−1∑

m=−Ns/2

w(m)(s(n+m) + ν(n+m))

×(s∗(n−m) + ν∗(n−m))

×e−j2 ln|
s(n+jm)+ν(n+jm)
s(n−jm)+ν(n−jm) |e−j4mω, (17)

where m is a discrete lag coordinate, Ns is
the number of signal samples, while w(m) is
a window. If the small noise is assumed, the
following approximation can be used:

ln |s(n+ jm) + ν(n+ jm)| =
= ln |s(n+ jm)|+∆θν(n,m), (18)

where ∆θν = Re{ν(n + jm)/s(n + jm)} is a
phase deviation of the terms with complex-lag

argument. The values of signal with complex-
lag argument are calculated using the analyt-
ical extension as follows [8]:

s(n+ jm) =

=

k=k(n)+Nk∑

k=k(n)−Nk

STFTs(n, k)e
2π/N(n+jm)k, (19)

where STFT denotes the short time Fourier
transform, k(n) is the position of transform
STFTs(n,k) maximum at a given instant n,
while the width of the signal component in the
TF plane is 2Nk+1. The same relation holds
for the noise ν(n + jm). The bias and the
variance of IF estimate forGCDN=4(n, ω)are
derived as [8]:

bias{∆ω} = 1

M2

(
φ(5)

M6

5!
+ φ(9)

M10

9!
+ ...

)
,

var{∆ω} ∼

∼ σ2νN
3
w

24r2M2
2

(
1

4
+

3

8πNw
e2πNwNk/Ns

)
, (20)

where the rectangular window w(m) of width

Nw is used, while Mk =
∑Ns/2−1
m=−Ns/2

mkw(m),

k = 2, 3, 4, .... Although GCDN=4(n, ω) is of
higher order N, comparing to the Wigner dis-
tribution, for the values: Ns=128, Nw=16, Nk
=8, the variance in GCDN=4 is of the same
order as the variance in the Wigner distribu-
tion, while the bias is lower for several orders,
providing a significant improvement of the IF
estimation [8]. For the window length Nw that
is approximately higher than 40, the represen-
tation starts to be sensitive to additive noise
(the exponential term in (20) starts to be dom-
inant). Observe that the variance decreases by
decreasing the value of Nk. It is important to
note that the value Nk will not influence bias
as long as the signal component fits within the
interval [k(n)-Nk,k(n)+Nk]. Thus, the opti-
mal value Nk is determined by the signal com-
ponent width. This interval can be automat-
ically determined for each signal component
(more details could be found in [8], pp. 482,
483).
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In the sequel we provide analysis of noise
influence in the case of L-complex-lag distrib-
ution (N=4). For a noisy signal x (n), under
the low-noise assumption, we can use the fol-
lowing model with additive noise:

xL(n) = (s(n) + ν(n))L ∼=
∼= sL(n)+LsL−1(n)ν(n) = sL(n)+ξ(n), (21)
where the autocorrelation function of ξ(n) is
defined as: Rξξ(n) = r2L−2σ2νL

2δ(n), while
σν is the variance of noise ν(n). Therefore, the
discrete form of L-complex-lag distribution for
noisy signal can be defined as:

GCDLN=4 =

Ns/2−1∑

m=−Ns/2

w(m)(sL(n+
m

L
) + ξ(n+

m

L
))

×((s∗L(n− m
L
) + ξ∗(n− m

L
)) (22)

where: θ(n,m) = ln
∣∣s(n+ jmL ) + ν(n+ j

m
L )
∣∣.

The bias and variance of the IF estimate are
obtained as follows:

bias{∆ω}= 1

M2

(
φ(5)

M6

5!L4
+ φ(9)

M10

9!L8
+ ...

)
,

var{∆ω} = L2σ2ν
8r2M2

2








Ns/2∑

m=−Ns/2

m2w2(m)



+

+
1

Nr2L−2

Nk/L∑

k=−Nk/L




Ns/2∑

m=−Ns/2

mw(m)e−2πkm/N





2





(23)
In the case of rectangular window w(m) of
length Nw, we have:

var{∆ω} ∼ L
2σ2νN

3
w

24r2M2
2

×

×
(
1

4
+

3

8πr2L−2Nw
e2πNwNk/Ns/L

)
. (24)

If the second term within the brackets
is small enough, the variance in the L-
complex-lag distribution (N=4) is of the
same order as the variance in the L-
Wigner distribution (N=2). For example,

3 exp(2πNwNk/Ns/L)/8πr
2L−2Nw = 0.17

holds for Ns=128, Nw=16, Nk=8, r=1, L=2.
Therefore, the variance of the IF estima-
tion based on the L-complex-lag distribution
(N=4) is preserved at the same level as in the
case of L-Wigner distribution [11], while the
bias is significantly reduced.

IV. E!������

Consider the signal with fast varying IF:

x(t) = exp(j · (2 cos(2 · π · t) + 1/2 cos(6 · π · t)

+1/2 · cos(4 · π · t))) + ν(t),
where ν(t) is complex white Gaussian noise
(SNR=30dB). The time interval t ∈ [−1, 1],
with ∆t = 2/128 is used. The results
for Wigner distribution, L-Wigner distribu-
tion, Smoothed pseudo Wigner distribution
(SPWD), GCDN=4, GCD

L=2
N=4, and GCDN=6

are given in Fig 2. Observe that the Wigner
distribution, the L-Wigner distribution and
the SPWD are useless for the IF estimation
in this case. Namely, since the Wigner dis-
tribution is not able to follow the variations of
IF, smoothing with respect to the frequency or
both the time and frequency axes (in the cases
of the L-Wigner and the SPWD, respectively)
cannot produce satisfying results. Note that
for the considered signal, GCDN=4 follows the
variations of IF (Fig 2.d), but the resolution is
still not satisfactory. Thus, without affecting
the complexity of realization, GCDL=2N=4 (Fig
2.e) improves the concentration of GCDN=4
by reducing the inner-interferences. In com-
parison with GCDN=6, GCD

L=2
N=4 is less sensi-

tive to noise. Additionally, a multicomponent
signal with fast varying IF is considered:

y(t) =

= exp(j·(4.5·cos(π·t)+3/4 cos(6·π·t)+8·π·t))+
+exp

(
j · (2 · cos(π · t) + 2/3 cos(6 · π · t)+
+cos(2 · π · t)− 8 · π · t)

)
.

Time-frequency representations obtained by
using the Wigner distribution, GCDN=4 and
its L-form are shown in Fig 2. f, g, and i,
respectively. Again, the Wigner distribution
is useless, while the GCDN=4 can follow the
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Fig. 2. Monocomponents signal x(t): a) Wigner distribution, b) L-Wigner distribution, c) SPWD, d) GCDN=4
, e) GCDL=2

N=4
, f) GCDN=6, Multicomponent signal y(t): g) Wigner distribution, h) GCDN=4, i) GCD

L=2

N=4

variations of IF, but the concentration should
be improved. It is done by using its L-form i.e.
GCDL=2N=4 (Fig 2.i). The cross-terms free real-
ization for multicomponent signals is straight-
forward, according to the procedure given in
[8].
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