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Aliasing detection and resolving in the
estimation of polynomial-phase signal

parameters
Slobodan Djukanović and Igor Djurovíc

Abstract– A novel method for aliasing de-
tection and resolving in the estimation of
polynomial-phase signal (PPS) parameters is
presented. Aliasing is detected using two high-
order ambiguity functions (HAFs) of a uni-
formly sampled PPS embedded in noise. If
aliasing occurred, we propose a way of recov-
ering the true parameters from their aliased
positions. To that end, a closed-form expres-
sion for the true parameter value is derived.
As opposed to the concurrent methods, the
proposed method provides much more robust
results with higher order PPSs and does not
require nonuniform sampling. In addition, it
can be readily extended to the multicomponent
PPS case. Simulations support the theoretical
results.

I. I������	�
��

Polynomial-phase signals (PPSs) are found
in numerous application fields including radar,
sonar, seismology, biomedicine and radio com-
munication. Therefore, a significant attention
has been paid to the estimation of PPS pa-
rameters [1—6]. A particularly popular ap-
proach entails finding the high-order instan-
taneous moment (HIM) of the considered PPS
[2—5]. When the order of the HIM and that of
the PPS coincide, the HIM outputs a complex
sinusoid whose frequency is proportional to the
highest order phase coefficient. The sinusoid
frequency is then estimated from the samples
of the discrete Fourier transform (DFT) of the
HIM, which can be done using well developed
sinusoid frequency estimation techniques [7—9].
The DFT of the HIM is referred to as the
high-order ambiguity function (HAF), origi-
nally known as the polynomial-phase trans-
form (PPT) [2].
Despite the significant interest in PPSs,

aliasing of polynomial-phase parameters has
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not been addressed to any great degree. The
parameter is said to be aliased if the frequency
of the sinusoid output by the HIM violates the
Nyquist criterion. The sinusoid frequency de-
pends on the value of lags used in the HIM
calculation. In some applications, however,
this issue is of crucial importance. In di-
rect sequence spread-spectrum (DS-SS) sys-
tems, for example, an adversary can transmit
a highly nonstationary jammer whose phase
cannot be approximated by a polynomial with
non-aliased parameters within the considered
time interval [10]. As a result, the jammer can-
not be properly modeled and suppressed. In
general, aliasing can occur in any application
where the underlying signal is undersampled.

In [11], the authors presented a way to
recover the true PPS parameters from their
aliased positions by using two coprime lags and
solving linear Diophantine equations. The dy-
namic parameter range obtained in [11] is the
maximal one for monocomponent PPSs [12].
In [13], the author showed that aliasing can
be avoided by a nonuniform sampling, i.e., by
adopting an irrational interval between some
of the samples.

In this paper, we show that the method pro-
posed in [11] works only with low PPS order.
We present a way to detect aliasing from max-
ima positions of two HAFs of a uniformly sam-
pled PPS embedded in noise. If aliasing oc-
curred, we propose how to recover the true
parameters without solving Diophantine equa-
tions.

Paper is organized as follows. Section 2 cov-
ers the HAF-based PPS parameter estimation,
the problem of aliasing and one way to resolve
it [11]. The proposed method is presented in
Section 3. Simulations are presented in Sec-
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tion 4, and conclusions are drawn in Section
5.

II. HAF-����� PPS ���������

���
���
��

Consider a uniformly sampled PPS

x(n) = Aej2π
∑

P

m=0
αm(n∆)

m

, n = 0, · · · ,N−1,
(1)

where A is the amplitude, αm the polynomial
coefficients, ∆ the sampling interval andN the
number of samples. The multilag HIM (ml-
HIM) of x(n) is defined as [5]

x1(n) = x(n)

x2(n; τ 1) = x1(n+ τ1)x
∗

1(n− τ1),

x3(n; τ 2) = x2(n+ τ2; τ 1)x
∗

2(n− τ2; τ 1),

...

xP (n;τP−1) = xP−1(n+ τP−1;τP−2)

× x∗P−1(n− τP−1; τP−2), (2)

where τ i = [τ1, τ2, · · · , τ i], i = 1, ..., P − 1,
are sets of used time lags. In xk (n; τ k−1), k =
1, 2, · · · , P , index n goes from

∑k−1
i=1 τ i to N−∑k−1

i=1 τ i − 1. The multilag HAF (ml-HAF) is
defined as the DFT of the ml-HIM,

XP (f ; τP−1) =

N−2
∑

P−1

k=1
τk−1∑

n=0

xP (n;τP−1)e
−j2πfn. (3)

When x (n) is a P th order PPS, xP (n;τP−1)
is a complex sinusoid with normalized fre-
quency [5]

f = 2P−1∆PP !αP

P−1∏

k=1

τk. (4)

The coefficient αP can therefore be estimated
by searching for the position of maximum in
the ml-HAF. Once the estimation of αP , de-
noted as α̂P , is obtained, we can demodu-
late x (n) by exp(−j2πα̂P (n∆)P ) to reduce
the PPS order by one. The procedure is re-
peated until all remaining coefficients are esti-
mated [2].

In order to avoid aliasing in estimating αP ,
the following relation must hold:

|αP | ≤ α
τ

P max =
1

2PP !∆P
∏P−1
k=1 τk

, (5)

since f is limited to [−1
2 ,

1
2).

In [11], the authors proposed a method to
recover the true PPS parameters if aliasing
occurred. To that end, two HAFs are cal-
culated, using coprime lags τ1 and τ2, from
which two (possibly aliased) peak locations f1
and f2, where f1, f2 ∈ [−1

2 ,
1
2), are obtained.

Therefore, two integers k1 and k2 exist such
that1

k1 + f1 = 2
P−1∆PP !αP τ

P−1
1

k2 + f2 = 2
P−1∆PP !αP τ

P−1
2 .

(6)

Combining the equations in (6) yields the
linear Diophantine equation

k2τ
P−1
1 − k1τ

P−1
2 = f1τ

P−1
2 − f2τ

P−1
1 �M.

(7)
In the following step, two integers, n1 and n2,
such that n2τ

P−1
1 − n1τ

P−1
2 = 1 are found.

The solutions k1 and k2 of (7) are completely
characterized by [11]

k1 = n1M + qτP−11

k2 = n2M − qτP−12 ,
(8)

where q ∈ Z. By changing q we find a value
of k1, denoted as k∗1 , such that k1 + f1 falls

within [− τP−1
1

2 ,
τP−1
1

2 ). Finally, the parameter
αP is estimated as

αP =
k∗1 + f1

2P−1∆PP !τP−11

. (9)

In the rest of the paper, we will refer to the
method proposed in [11] as the ZW method.
The problem with the ZW method is the es-

timation of numberM in (7). Due to the errors
in estimation of f1 and f2, M will not be an
integer and it has to be rounded to the near-
est integer [11]. If we assume that the errors in

1Note that, comparing to (4) and (5) in [11], in (6)
we have an additional term 2P−1 which is due to the
symmetric definition of the HIM that we use. In ad-
dition, in [11], ∆ = 1 and, in the HIM calculation, all
lags coincide.
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estimation of f1 and f2 are uncorrelated and
characterized by zero mean and same variance
σ2f , the variance of estimation of M equals

σ2M =
(
τ
2(P−1)
1 + τ

2(P−1)
2

)
σ2f . (10)

Clearly, σ2M can take significant values with
higher values of P , which, in turn, can lead to
false rounded value of M used in (8). This is
illustrated in Figs. 1b) and 2b) in the Simula-
tions section.
In addition, in the ZW method, we can-

not conclude whether aliasing occurred or not
based only on the peak locations f1 and f2.
The resolving procedure is performed anyway
and the obtained value k∗1 indicates aliasing,
i.e., aliasing occurred if k∗1 �= 0.
In the following section, we first propose how

to detect parameter aliasing, and, if aliasing
occurred, how to recover the true parameter
value without solving Diophantine equations.

III. A�
��
�� ����	�
�� ��� ������
��

Let us assume that restriction (5) does not
apply to αP . Then αP can be written as

αP = 2Qα
τ

P max +∆αP , (11)

where Q = 0,±1,±2,±3, ... and ∆αP is resid-
ual that satisfies |∆αP | < ατP max. The case
of no aliasing corresponds to Q = 0, whereas
all other Qs imply aliasing. After calculating
the P th order ml-HAF (3), a spectral peak will
appear at frequency

f = 2P−1∆PP !∆αP

P−1∏

k=1

τk. (12)

The estimation of ∆αP does not suffice for de-
termining αP since Q remains unknown.
Consider first the case of no aliasing. If

we use the other set of time lags, τ ′P−1 =
[τ ′1, τ

′
2, · · · , τ

′
P−1], in calculating the P th

order ml-HIM, and calculate the ml-HAF
XP (S(τ

′
P−1, τP−1)f ; τ

′
P−1), where the scal-

ing coefficient S(τ ′P−1, τP−1) satisfies

S(τ ′P−1, τP−1) =
P−1∏

k=1

τ ′k
τk
, (13)

a spectral peak will appear at frequency [5]

f
′

= 2P−1∆PP !∆α′P

P−1∏

k=1

τk, (14)

which coincides with (12) since ∆αP = ∆α′P
and all other terms are the same. This is the
well-known product HAF (PHAF) principle of
aligning the autoterms in frequency [5]. There-
fore, when no aliasing occurs, XP (f ; τP−1)
and XP (S(τ ′P−1, τP−1)f ; τ ′P−1) will have a
spectral peak at the same frequency.
Consider now the case of aliasing. Accord-

ing to (5) and (11), using a different set of time
lags τ ′P−1 yields ατ

′

P max and ∆α
′
P that differ

from ατP max and ∆αP obtained when τP−1
is used. In addition, the corresponding value
of Q′ is possibly different from Q. However,
ατ

′

P max, ∆α
′
P and Q′ satisfy

αP = 2Q
′ατ

′

P max +∆α
′

P . (15)

The difference between τP−1 and τ ′P−1 gives
rise to different positions of spectral peaks in
XP (f ; τP−1) and
XP (S(τ ′P−1, τP−1)f ; τ ′P−1), since the peak
frequency depends on residual ∆αP .
Therefore, the aliasing detection is per-

formed by comparing the peak frequencies of
HAFs XP (f ; τP−1) and
XP (S(τ ′P−1, τP−1)f ; τ ′P−1), namely f and
f
′

, respectively. If the peak frequencies co-
incide, aliasing has not occurred. Otherwise,
it has occurred.
In addition to detection, the values of f and

f
′

can serve in recovering the true value of
αP if aliasing occurred. Assume, for the mo-
ment, that

∏P−1
k=1 τk and

∏P−1
k=1 τ

′
k do not dif-

fer much, so that Q = Q′ holds. In that case,
combining (11) and (15) gives

Q =
∆αP −∆α

′
P

2(ατ
′

P max − α
τ

P max)
,

which combined with (5), (12) and (14) gives
the final value of Q as

Q =
f − f ′

∏P−1
k=1

τk
τ ′k
− 1

. (16)

The estimatedQ has to be rounded to the clos-
est integer and the true value of αP can now
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be estimated either from (11) or (15). Using
(11) gives the final expression for αP as

αP =
f − f ′

∏P−1
k=1

τ ′k
τk

2P−1∆PP !
(∏P−1

k=1 τk −
∏P−1
k=1 τ

′
k

) .

(17)
If the values of

∏P−1
k=1 τk and

∏P−1
k=1 τ

′
k differ

so much that Q = Q′ does not hold, relation
(16) will not be correct and the values of αP
obtained from (11) and (15) will not coincide.
In that case, we have to decrease the difference
between these two products. Specifically, we
can choose lags τk close to the optimal values2

[5], and lags τ ′k to satisfy τ ′k = τk−L, where
L is a predefined integer. If Q = Q′ does not
hold, we can reduce L by one. If, however, L =
1, we can decrease τk, set L to the predefined
value and repeat the procedure. Decreasing τk
provides wider dynamic range of αP (5).
The estimation procedure can be summa-

rized as follows.

Step 1. Calculate the HAFs XP (f ;τP−1)
andXP (S(τ ′P−1, τP−1)f ;τ ′P−1) and find the
corresponding peak frequencies f and f

′

, re-
spectively. If f = f

′

aliasing has not occurred.
Estimate αP according to (4) and exit. Oth-
erwise, go to Step 2.

Step 2. Determine Q according to (16) and
estimate αP using (11) and (15), where ∆αP
and ∆α′P are obtained from (12) and (14), re-
spectively. If the obtained αP values coincide
(Q = Q′ holds), the estimation is correct and
exit the procedure. Otherwise, go to Step 3.

Step 3. Decrease the difference between∏P−1
k=1 τk and

∏P−1
k=1 τ

′
k and go to Step 1.

In case of multicomponent PPSs, the exten-
sion of the proposed algorithm is straightfor-
ward. We can use the approach proposed in
[3, Section II], where two steps, namely 1) the

2The optimal lags for the P th order ml-HAF are all
equal to each other and to

τopt =
N

2P
. (18)

The optimality criterion is the resolution capability.
Relation (18) is equivalent to the one suggested in [1]
for the special cases P = 2, 3 and τ1 = τ2 = · · · τP−1,
where the optimality criterion is the variance of the
estimates.
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Fig. 1. The α2 estimation. a) MSE versus SNR (Prop.
stands for proposed method). b) False M percent-
age (FMP) versus SNR for the ZW method.

estimation of parameters of the strongest com-
ponent and 2) filtering that component out,
are iterated Nc times, where Nc is the number
of components. In the current iteration, the
parameters of the current strongest compo-
nent are estimated, starting from the highest
one, using the procedure summarized above.
Therefore, the check for aliasing and alias re-
solving if it occurred are performed for each
parameter of each component of multicompo-
nent PPS.

IV. S
�����
���

In this section, we will estimate the parame-
ters of a PPS x(n) from

y(n) = x(n)+ν(n), n = 0, · · · , N − 1, (19)

where ν(n) is zero-mean complex Gaussian
noise with i.i.d. real and imaginary parts, and
variance σ2ν . The signal-to-noise ratio (SNR)
is defined as SNR = 10 log10(A

2/σ2ν). In ad-
dition, N = 512 and ∆ = 1. We compared
our method to the ZW method in terms of
the mean squared error (MSE), calculated over
500 trials.

Example 1. Let us first consider the pa-
rameter estimation of a single chirp x(n) =
A exp(j2πα2(n∆)

2), where α2 = 9.73 × 10−3.
Note that this chirp is undersampled; its band-
width exceeds the sampling rate around ten
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Fig. 2. The α3 estimation. a) MSE versus SNR (Prop.
stands for proposed method). b) False M percent-
age (FMP) versus SNR for the ZW method.

times. In the proposed method, we used lags
τ1 = 128 and τ ′1 = 126. On the other
hand, in the ZWmethod, we used coprime lags
τ1 = 128 and τ2 = 121. With these lags, we
have M = Q = 5 (see (7) and (11)). The ob-
tained MSE versus SNR curves are depicted in
Fig. 1a), where the SNR is varied from −5 dB
to 2 dB in increments of 0.5 dB. Our method
has a bit lower SNR threshold, approximately
0.5 dB. The Cramér-Rao lower bound (CRLB)
is also given in Fig. 1a). In addition to the
MSE curves, in Fig. 1b), we depicted the
false M percentage (FMP), where M is ob-
tained from (7) and used in (8). Clearly, the
SNR threshold coincides with the appearance
of false Ms, which is around SNR = −3 dB.

Example 2. Now we consider a cubic phase
signal x(n) = A exp(j2π(α1(n∆)+α2(n∆)2+
α3(n∆)

3)), where α1 = 0.491, α2 = −3.79 ×
10−3 and α3 = 4.91 × 10−6, and the estima-
tion of the coefficient α3. In the proposed
method, we used lag sets τ 2 = [86, 86] and
τ
′
2 = [86, 82]. In the ZW method, we used

coprime lags τ1 = 85 and τ2 = 81. With
these lags, we have M = Q = 1. Note that
x(n) is not undersampled, although its coef-
ficients α2 and α3 are aliased. The obtained
MSE versus SNR curves are depicted in Fig.
2a), where the SNR is varied from −2 dB to 24
dB in increments of 1 dB. Now, the difference
in performance is tremendous. Our method

TABLE I

MSE �� ��������� ���
���
�� �� �

���-	�������� PPS

Proposed method ZW method

α12 -119.12 dB -22.75 dB
α13 -176.89 dB -39.96 dB

α22 -121.83 dB -23.04 dB
α23 -179.36 dB -39.38 dB

has the SNR threshold that is around 14 dB
lower than that of the ZW method. Again,
the FMP curve, given in Fig. 2b), proves that
ZW method’s poor performance is due to the
bad estimation of M used in (8). False Ms
begin to appear around SNR = 17 dB, which
corresponds to the SNR threshold for the ZW
method.
Note that in both the second- and third-

order parameter estimation, our method re-
tains the SNR threshold determined for the
HAF when PPS with non-aliased parameters
is considered [14]. Specifically, for the second-
order, the threshold is −3 dB, whereas for the
third-order it is 3.77 dB (see Table II in [14]).

Example 3. Finally, we consider a two-
component signal

x(n) = A1e
(j2π(α12(n∆)

2+α13(n∆)
3))

+A2e
(j2π(α22(n∆)

2+α23(n∆)
3)),

where (α12, α13) = (2.59 × 10−4, 4.71 × 10−5)
and (α22, α23) = (9.73 × 10−3, 2.19 × 10−6).
In addition, 10 log10(A

2
1/σ

2
ν) = 13 dB and

10 log10(A
2
2/σ

2
ν) = 10 dB. In the proposed

method, we used τ 2 = [86, 86], and τ ′2 =
[86, 82] for the third-order HIM, and τ1 = 128
and τ ′1 = 126 for the second-order HIM. In
the ZW method, we used τ1 = 85 and τ2 = 81
for the third-order HIM and τ1 = 128 and
τ2 = 121 for the second order HIM. With these
lag values, parameters α12 and α23 are not
aliased, whereas α13 and α22 are aliased with
M = Q = 5 and M = Q = 8, respectively.
The obtained MSE values in the estimation of
both components’ parameters are given in Ta-
ble I.
As opposed to the ZW method, our method

successfully resolved aliasing of both compo-
nents’ parameters. The ZW method fails to
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resolve aliasing when components are PPSs of
third or higher order. The influence of compo-
nents on each other increases the variance of
the frequency estimation σ2f , thus making the
estimation of M less accurate.

V. C��	���
���

In this paper, we proposed the method for
aliasing detection and resolving in the estima-
tion of PPS parameters. Both detection and
resolving of aliasing are performed using max-
ima positions of two HAFs of the PPS embed-
ded in noise. We derived the expression for cal-
culating the true value of the aliased PPS pa-
rameter. The proposed method provides much
more robust results than the one proposed in
[11] when higher order PPSs are considered.
Furthermore, it retains the SNR threshold de-
rived for the case when no aliasing occurs and
it does not require a nonuniform sampling as
the one proposed in [13]. The method can be
readily extended to deal with multicomponent
PPSs.
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