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Instantaneous Frequency Rate
Estimation for High-Order
Polynomial-Phase Signals

Pu Wang, Hongbin Li, Igor Djurovié¢, and Braham Himed

Abstract—Instantaneous frequency rate (IFR)
estimation for high-order polynomial phase sig-
nals (PPSs) is considered. Specifically, an IFR
estimator with only a second-order nonlinear-
ity is proposed. The asymptotic mean-squared
error (MSE) of the proposed IFR estimator
is obtained via a multivariate first-order per-
turbation analysis. Our results show that the
proposed estimator yields a smaller MSE and
a lower signal-to-noise ratio (SNR) threshold
than a popular IFR estimator involving higher
nonlinearity. The proposed IFR estimator is
also extended to estimate the phase parame-
ters of a PPS. Numerical studies are presented
to illustrate the performance of the proposed
estimator.

I. INTRODUCTION

Instantaneous frequency rate (IFR) reveals
the rate-of-change of the frequency, which is
proportional to the acceleration of a moving
target [1]. Consider a polynomial-phase signal
(PPS):

s(n) = A7) = Ae? T iZo ain’ (1)
where P is the order of the PPS, A is the am-
plitude, ¢(n) the instantaneous phase (IP) and
{ai}f;o the phase parameters, respectively.
The TFR Q(n) is defined as the second deriva-
tive of the IP [2]:

o) = T4

P .
= Zi(z‘ — a2 (2)

=2

The problem of interest is to estimate the IFR
from noisy observations of s(n). Three cases
are of interest:

1. P = 2 (linear frequency-modulated (FM)
signals): the IFR is often referred to as the
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chirp-rate, which can be estimated by well-
established methods (e.g., [3] and references
therein);

2. P = 3 (quadratic FM signals): the IFR is
linearly proportional to the time n (cf. (2)),
and can be estimated using the cubic phase
function (CPF) [2];

3. P > 3 (high-order PPSs): the IFR is a non-
linear function of n, and can be estimated us-
ing the high-order phase function (HPF) [4].
For the high-order PPS, a gth-order HPF is
defined as [4]

Hy(n,w) =

M q/2

- Z H[S(TL + dlm)S(TL — dlm)]("‘l) e—jw'mz7

m=—M [=1

where 2M + 1 is the length of a lag window,
d & {dl,dg,"' ,dq/z} denotes a set of lag-
coefficients, r £ {rl,rz, e ,rq/z} is used to
impose complex conjugation if r; = —1 or none
if r; = 1, and w denotes the index in the IFR
domain. The HPF order g and coefficient sets
d and r are chosen such that the HPF is cen-
tered along the IFR of the signal [5, Proposi-
tion 1]. Note that the HPF with ¢ =2, d; =1
and 7, = 1 reduces to the CPF [2].

For high-order PPSs, the HPF often in-
volves high-order nonlinearity. For example,
a fourth-order PPS requires ¢ > 6. Such
high-order nonlinearity results in a large mean-
squared error (MSE) and a high SNR thresh-
old in IFR estimation. We herein propose an
IFR estimator with only a second-order non-
linearity. Analytical results via a multivariate
first-order perturbation analysis show that the
proposed IFR estimator is asymptotically un-
biased and provides a smaller MSE and a lower
SNR threshold than the HPF-based approach.
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II. ProrPOSED IFR ESTIMATOR
A. IFR Estimation for High-Order PPSs

Consider the phase of a bilinear transforma-
tion s(n 4+ m)s(n —m) for a Pth order PPS:

arg{s(n+m) s(n—m)} =

L (21) n)m?2l
=26(n) + ) 207 (n)m~ (2(l)!)m

=1

L ) () m2!
=2¢(n) + Q(n)m2 + Z %7
=2 ’

where L = |P/2]|. Note that the resulting
phase is a polynomial in m with even orders
only, and each even order term is associated
with a corresponding even-order derivative of
the IP. In particular, the coefficient of the
second-order term m? is the IFR (n) of the
signal.

In order to obtain these phase derivatives,
a multidimensional matched filter can be ap-
plied:

AL,M (’I’L, ‘Il) =

L
M iy wym?!

= Z s(n+m)s(n—m)e =t ,
m=—M
(3)

where ¥ £ [wy,wa, - ,wr]” denotes the in-
dices of the L even-order phase derivatives.
Note that w; is the IFR index for the pro-
posed function in (3). When L = 1, the pro-
posed function reduces to the CPF. In the ab-
sence of noise, the squared-magnitude of Az, ps
is maximized along the L phase derivatives,

. (@) (n L) ()1 T
e, Wo = [@(n), 265 . 20 2m]

Now consider a noisy PPS x(n) = s(n) +
v(n), where v(n) is a complex white Gaussian

noise with zero mean and variance o2. The
proposed estimator is given by
~(4) ~(2L) T
o4 T(2n)!
= argm‘lellx |Br,a (n, ¥) |2, (4)
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where By a (n,¥) is defined similarly as
Ap v (n, ®) in (3) with s(n) replaced by z(n).

Remark 1: The multidimensional matched
filter in (3) is related to the local polyno-
mial Fourier transform (LPFT) and the lo-
cal polynomial Wigner distribution (LPWD)
[6,7], but there are several notable differences.
First, the LPFT and the LPWD were used
to estimate the instantaneous frequency (IF)
while our focus is IFR estimation. Second,
the LPFT uses a P-dimensional matched filter
while the proposed function (3) involves only a
| P/2]-dimensional matched filter. Third, the
LPWD estimates the odd-order phase deriv-
atives, while the proposed function estimates
the even-order phase derivatives.

The proposed function (3) is similar to the
CPF [4] in that both use the same second-
order moment of the observed signal. As
shown in Section II-C, the proposed function
reduces to the CPF for a PPS with order less
than 4. For higher-order PPSs, however, the
CPF becomes inapplicable, whereas the pro-
posed function can still offer statistically con-
sistent IFR estimation.

B. Asymptotic Bias and MSE

The asymptotic bias and MSE of the esti-
mator (4) are obtained. The detailed analysis
is presented in the Appendix, which leads to
the following result.

Proposition 1: For a Pth-order noisy PPS,
the L phase-derivative estimates obtained in
(4) are all asymptotically unbiased and their
asymptotic MSEs are given by:

E {(ml)z} -

1
_ (O +m)
AMA+1 . SNR
where A is an L x L matrix with the lk-th
element

(A1, i=1,--,L, (5)

i’

Ik
D@z meny @

[A]lk- =

and the SNR is defined as A%/o?.

From Proposition 1, the MSEs of the L
estimates are independent of the phase pa-
rameters {a;}_, of the PPS. At high SNR,
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the MSEs are all approximately proportional
to SNR™!, while at low SNR they are pro-
portional to SNR™2. Moreover, the ith es-
timate, i.e., w;, has an MSE inversely pro-
portional to M**!  Hence, the larger the
window length, the lower the MSE. As such,
for a given SNR and time n, the asymptotic
MSEs of the estimates are minimized by us-
ing the maximum window length given by 1)
M = % — |% —n/ in the asymmetric sam-
pling case with n € {0,--- ,N —1}; and 2)
M = % — |n| in the symmetric sampling
case with n € {—&=L ... N1l where N is
the number of samples and we assume N is
odd.

C. Illustrative Examples of L=1 and L = 2
C.1 The PPS with order P=2and P =3

Since L = |P/2| = 1, B p(n, ®) reduces
to
Biy(n,wi) = Zw(n +m)x(n — m)e_j“’””Q7
which is the CPF in [2]. In this case, the ma-
trix A reduces to a scalar 1/45. According to
Proposition 1 in the symmetric sampling case,
the minimum MSE of the IFR estimate for a
given SNR and time n is

ey 4514 k)
B {(0w) }‘4<¥_|n|)5.sm (7)

which agrees with the result derived in (40) of
[4].
C.2 The PPS with order P =4 and P =5

In this case, B p(n, ¥) with L =2 is

B p(n,wi,we) =

= Z 2(n +m)z(n — m)ed(@im*twam?)
m

The estimates based on | By j/|? are &y = Q(n)
~ (4

and wy = qS( )(n)/12. According to Proposi-

tion 1, the MSEs of both w; and wy estimates

are

E {(5w1)2} :137.8(;41_'725_11\\}%, (8)

E {(5w2)2} :172.26(;;.7@%). 9)
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For comparison, the MSEs of the HPF-based
IFR estimator are proportional to SNR™¢ due
to a sixth-order nonlinearity (¢ = 6) [4, Section
ITI], whereas the MSEs of the proposed IFR es-
timator are proportional to SNR™2 (cf. (8)) at
low SNR. This implies that the proposed IFR
estimator exhibits a much lower SNR thresh-
old than the HPF-based method, which will be
numerically verified in Section IV.

III. ESTIMATION OF OTHER PHASE
PARAMETERS

As a by-product, the proposed estimator (4)
can be utilized to estimate some phase pa-
rameters of a PPS. For example, consider a
fourth-order PPS with phase ¢(n) = ap+ain+
asn® + azn® 4+ agn*. The By p(n,wi,ws) in
Section II-C.2 can be used to obtain two es-

timates, namely (n) in the w; domain and

Wy = é(@ (n)/12 = 244 in the wy domain. The
latter can be used to estimate as. The MSE
of the a4 estimate can easily be derived from

(9):
E {(5a4)2} =

22050
~ 1
N9SNR’ (10)

at high SNR. Meanwhile, the frequently used
technique for a4 estimation employs the high-
order ambiguity function (HAF) [8]. The MSE
of the HAF-based a4 estimator is

2 54351
E{(&M) }HAF ~ N9SNR’ (11)

at high SNR [8]. A comparison between (10)
and (11) shows that our estimator provides
a much lower MSE at high SNR. Moreover,
since the Cramér-Rao bound (CRB) for a4
is CRB{a4} = 22050/(N°SNR) [9], the pro-
posed a4 estimator is asymptotically efficient
at high SNR.

)

IV. NUMERICAL EXAMPLES

Consider a fourth-order PPS with pa-
rameters A = 1, (ag,a1,a2,a3,a4) =
(2,0.02,1074,1076,1078), and N = 129. The
IFR is estimated at n = 64, which is the mid-
dle point of the observations. Fig. 1(a) shows
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Fig. 1. MSEs of parameter estimates for a fourth-order PPS, (a) IFR estimate; (b) Phase parameter a4 estimate.

the MSEs obtained by analysis and simulation
as a function of SNR for the proposed and,
respectively, the HPF-based IFR estimators
with two window sizes M = 32 and M = 64
(i.e., the maximum length at n = 64). We
have the following observations: 1) At high
SNR, the simulation agrees with the analysis
for the MSSE of the proposed estimator for both
M = 32 and M = 64; 2) The MSE of the
proposed estimator with M = 64 attains the
CRB at high SNR; 3) With either window size,
the MSE of the proposed estimator is gener-
ally lower than that of the HPF-based method
at high SNR; 4) The proposed estimator gives
a lower SNR threshold (of about 6 dB lower)
than the HPF-based estimator.

We now consider the phase parameter a4 es-
timation for the fourth-order PPS as explained
in Section III. The MSE of the a4 estimate is
obtained at n = 64. The proposed estimator
uses Bz pr(n,wi,ws) with M = 64. The MSEs
obtained by analysis and simulation are shown
in Fig. 1(b). It is seen that, for SNR above 1
dB, the MSE obtained by simulation for the
proposed a4 estimator agrees with its theoret-
ical result in (10). The MSE of the proposed
estimator also reaches the CRB at high SNR.
In addition, the SNR threshold is 11 dB for
the HAF-based a4 estimator, whereas it is 1
dB for the proposed a4 estimator.

V. CONCLUSION

We have proposed an IFR estimator with
a second-order nonlinearity. The asymptotic
bias and MSE of the proposed estimator for
a PPS with an arbitrary order have been ob-
tained by using a multivariate first-order per-
turbation analysis. We have also discussed
how to use the proposed estimator for the esti-
mation of other phase parameters of a PPS. In
particular, we showed that the a4 estimator for
a fourth-order PPS is asymptotically efficient
at high SNR.

APPENDIX

[Asymptotic Bias and Variance] The asymp-
totic bias and variance of the estimator (4) are
obtained using a multivariate first-order per-
turbation analysis which extends the univari-
ate first-order perturbation analysis in [10].
For a noisy PPS z(n) = s(n) + v(n), the
Br m(n, ¥) can be decomposed into a noise-
free component Cy(n, ¥) and a noisy compo-
nent Cys(n, ¥):
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M L&

gy wm?2!
E Zvs (N, m)e =1 ,
m=—M

Cps(n, ¥) =

where z,5 (n,m) = s(n + m)v(n—m) +
s(n—=m)v(n+m)+v(n+m)v(n—m). Let
fr,m (n, ¥) denote |Br m(n, U)|°, ie., the
objective function in (4). The fr a (n,¥®)
can further be decomposed into fs (n, ¥) and
fvs (n, ¥) within a first-order approximation
[10]:

fs (n, ®) =
fos (n, ®) =~ 2R {C,(n, ¥)C;,

O, (n, ®)C(n, ¥)
s(n, W)},

where ${-} denotes the real part of {-}.
On one hand, from (3), the noise-free
term  fs(n, ¥) is maximized at ¥q =

T
|:Q(n)7 2¢(:?(n) )Ty 2¢((;;>)$n) . On the other

hand, the noisy term f,s (n, ¥), acting like a
random perturbation, moves the global max-
imum from ¥ to ¥y 4+ 6%, where 0¥ =
[dw1,- - ,0wyr]” is assumed to be small in an
asymptotic sense. Our purpose here is to ob-
tain the bias and variance of the L estimates.

Noting that ¥o and ¥g + ¥ are, respec-
tively, the maxima of fs (n, ¥) and f, (n, ¥)+
fos (n, ®), we have

afs (nv ‘IIO)
(‘%Jl

— o {—805 (0 20) ¢ (,

Do ‘I’O)} =0, (14)

8fs (’I’L, W, + 5‘1’)

(‘9fvs (’I’L, W, + 5‘1’)
+
Ow;

Ow;

=0,
(15)

where [ = 1,---, L. A first-order Taylor series
expansion of (15) around Wq leads to

afs (n7 ‘IIO) + 8f'us (n7 ‘IJO)_i_
Ow; Oow;
8 fs n, ‘I/() o
Z (‘%Jl@wk we =0. (16)
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Due to (14), the first term of (16) is zero and,
as a result, we can represent the above equa-
tions in a matrix form

f,s +F 00 =074 (17)
where
8203 (’I’L, ‘I’Q) «
[Fsk —QR{WCS (n, ®o)
805 (n, ‘I’()) 80; (’I’L7 ‘I’())
+
8&)1 &uk
() 32A4M(2l+2k+2)lk
@A+ D)+ 2+ 2k+1)
(18)

and (a) here follows from the following result

C* (n, ®o) ~CA*2M,

9Cy (n, W
éwl 0 _ m; 2!
82;’;5;;:’0) — (A Zm21+2k-
(2042k+1)
- C*AQM,
with ¢ £ ¢772¢(") and the approximation

Z%:—M m2k ~ 2M @D 9k 41 if M > 2k.
Furthermore,

0Cs (n, ¥y)

[fVS]l =2R { awl Cvs (n7 ‘I]O)
9C7, (n, W)
+Cs (nv ‘IIO) aWI }

W M)},

(19)
where &{-} denotes the imaginary part of {-},
NOE

2 C*Z m? — M z, ej ,;Z ¢(( ;,” "
(2l _|_ 1) vSs )




1074

and (a) here follows from the following result

. L ¢(21)§ 2m2i
@0
Cro(n,®y) = E z e i= 1 ,
m
L (21) ]
(‘90 (n, \IJO y 2sm?

j 231
Emzell @0

m

As a result, the error vector can be expressed
as
oW = —F'f,,. (20)

Taking the expectation on both sides of (20)
yields

E{6¥} = -F'E{f,s} =0rLy1, (21)
since E{z¥,} = s(n+m)E{v(n —m)}+s(n—
m)E{v(n+m)}+E{v(n+m)v(n—m)} =

0 for any » and m [8] which results in
E{T'()} = 0. Therefore, from (21), all L esti-
mates are asymptotically unbiased.

The covariance matrix of the estimate from

(20) is

E{§®s®T} =F;'EF;", (22)

where the diagonal elements give the variance
of the L estimates, and the [k-th element of =
is
'—'lk = E{[ vs] [ vs]k}
CSANPR (B () ()] - B DO}
() 128A4% (24202 + o) M1 T2 3k

@I+ k1) (2 +F2k+1) (23)
where (a) follows from the fact that
E{S[S)} = 05R[E{zy"} - E{ay}],

and (b) is due to

E{TOT(k)} =

st 5 (- M)
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E{T()I(k)} = 0.

Eqn. (24) can be verified by using

(25)

FE {Z:;S (n, ml) Zus (nv m2)} =
- (2A202 + 04) d (my +my)
+ (2A202 —

where §(-) denotes the Kronecker delta func-
tion. Finally, combining (18), (22) and (23)
yields (5).

04) d (my —my)
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