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Instantaneous Frequency Rate
Estimation for High-Order
Polynomial-Phase Signals

Pu Wang, Hongbin Li, Igor Djurović, and Braham Himed

Abstract–Instantaneous frequency rate (IFR)
estimation for high-order polynomial phase sig-
nals (PPSs) is considered. Specifically, an IFR
estimator with only a second-order nonlinear-
ity is proposed. The asymptotic mean-squared
error (MSE) of the proposed IFR estimator
is obtained via a multivariate first-order per-
turbation analysis. Our results show that the
proposed estimator yields a smaller MSE and
a lower signal-to-noise ratio (SNR) threshold
than a popular IFR estimator involving higher
nonlinearity. The proposed IFR estimator is
also extended to estimate the phase parame-
ters of a PPS. Numerical studies are presented
to illustrate the performance of the proposed
estimator.

I. I������	�
��

Instantaneous frequency rate (IFR) reveals
the rate-of-change of the frequency, which is
proportional to the acceleration of a moving
target [1]. Consider a polynomial-phase signal
(PPS):

s(n) = Aejφ(n) = Aej
∑P

i=0 ain
i

, (1)

where P is the order of the PPS, A is the am-
plitude, φ(n) the instantaneous phase (IP) and

{ai}
P
i=0 the phase parameters, respectively.

The IFR Ω(n) is defined as the second deriva-
tive of the IP [2]:

Ω(n) =
d2φ(n)

dt2
=

P∑

i=2

i(i− 1)ain
i−2. (2)

The problem of interest is to estimate the IFR
from noisy observations of s(n). Three cases
are of interest:
1. P = 2 (linear frequency-modulated (FM)
signals): the IFR is often referred to as the
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chirp-rate, which can be estimated by well-
established methods (e.g., [3] and references
therein);
2. P = 3 (quadratic FM signals): the IFR is
linearly proportional to the time n (cf. (2)),
and can be estimated using the cubic phase
function (CPF) [2];
3. P > 3 (high-order PPSs): the IFR is a non-
linear function of n, and can be estimated us-
ing the high-order phase function (HPF) [4].
For the high-order PPS, a qth-order HPF is
defined as [4]

Hq(n, ω) =

=
M∑

m=−M

q/2∏

l=1

[s(n+ dlm)s(n− dlm)]
(rl) e−jωm

2

,

where 2M + 1 is the length of a lag window,
d �

{
d1,d2, · · · ,dq/2

}
denotes a set of lag-

coefficients, r �
{
r1, r2, · · · , rq/2

}
is used to

impose complex conjugation if rl = −1 or none
if rl = 1, and ω denotes the index in the IFR
domain. The HPF order q and coefficient sets
d and r are chosen such that the HPF is cen-
tered along the IFR of the signal [5, Proposi-
tion 1]. Note that the HPF with q = 2, d1 = 1
and r1 = 1 reduces to the CPF [2].

For high-order PPSs, the HPF often in-
volves high-order nonlinearity. For example,
a fourth-order PPS requires q ≥ 6. Such
high-order nonlinearity results in a large mean-
squared error (MSE) and a high SNR thresh-
old in IFR estimation. We herein propose an
IFR estimator with only a second-order non-
linearity. Analytical results via a multivariate
first-order perturbation analysis show that the
proposed IFR estimator is asymptotically un-
biased and provides a smaller MSE and a lower
SNR threshold than the HPF-based approach.
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II. P����
�� IFR E
�
�����

A. IFR Estimation for High-Order PPSs

Consider the phase of a bilinear transforma-
tion s(n+m)s(n−m) for a P th order PPS:

arg {s(n+m) s(n−m)} =

= 2φ(n) +
L∑

l=1

2φ(2l)(n)m2l

(2l)!

= 2φ(n) + Ω(n)m2 +
L∑

l=2

2φ(2l)(n)m2l

(2l)!
,

where L = �P/2�. Note that the resulting
phase is a polynomial in m with even orders
only, and each even order term is associated
with a corresponding even-order derivative of
the IP. In particular, the coefficient of the
second-order term m2 is the IFR Ω(n) of the
signal.

In order to obtain these phase derivatives,
a multidimensional matched filter can be ap-
plied:

AL,M (n,Ψ) =

=
M∑

m=−M

s (n+m) s (n−m) e
−j

L∑

l=1

ωlm
2l

,

(3)

where Ψ � [ω1,ω2, · · · ,ωL]
T denotes the in-

dices of the L even-order phase derivatives.
Note that ω1 is the IFR index for the pro-
posed function in (3). When L = 1, the pro-
posed function reduces to the CPF. In the ab-
sence of noise, the squared-magnitude of AL,M
is maximized along the L phase derivatives,

i.e., Ψ0 =
[
Ω(n), 2φ

(4)(n)
4! , · · · , 2φ

(2L)(n)
(2L)!

]T
.

Now consider a noisy PPS x(n) = s(n) +
v(n), where v(n) is a complex white Gaussian
noise with zero mean and variance σ2. The
proposed estimator is given by

[

Ω̂(n),
2φ̂

(4)
(n)

4!
, · · · ,

2φ̂
(2L)

(n)

(2L)!

]T

=

= argmax
Ψ
|BL,M (n,Ψ) |

2, (4)

where BL,M (n,Ψ) is defined similarly as
AL,M (n,Ψ) in (3) with s(n) replaced by x(n).

Remark 1: The multidimensional matched
filter in (3) is related to the local polyno-
mial Fourier transform (LPFT) and the lo-
cal polynomial Wigner distribution (LPWD)
[6,7], but there are several notable differences.
First, the LPFT and the LPWD were used
to estimate the instantaneous frequency (IF)
while our focus is IFR estimation. Second,
the LPFT uses a P -dimensional matched filter
while the proposed function (3) involves only a
�P/2�-dimensional matched filter. Third, the
LPWD estimates the odd-order phase deriv-
atives, while the proposed function estimates
the even-order phase derivatives.

The proposed function (3) is similar to the
CPF [4] in that both use the same second-
order moment of the observed signal. As
shown in Section II-C, the proposed function
reduces to the CPF for a PPS with order less
than 4. For higher-order PPSs, however, the
CPF becomes inapplicable, whereas the pro-
posed function can still offer statistically con-
sistent IFR estimation.

B. Asymptotic Bias and MSE

The asymptotic bias and MSE of the esti-
mator (4) are obtained. The detailed analysis
is presented in the Appendix, which leads to
the following result.

Proposition 1 : For a P th-order noisy PPS,
the L phase-derivative estimates obtained in
(4) are all asymptotically unbiased and their
asymptotic MSEs are given by:

E
{
(δωl)

2
}
=

=

(
1 + 1

2SNR

)

4M4l+1 · SNR

[
∆
−1
]
ll
, l = 1, · · · , L, (5)

where ∆ is an L × L matrix with the lk-th
element

[∆]lk =
lk

(2l + 1) (2k + 1) (2l + 2k + 1)
, (6)

and the SNR is defined as A2/σ2.
From Proposition 1, the MSEs of the L

estimates are independent of the phase pa-
rameters {ai}

P
i=0 of the PPS. At high SNR,
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the MSEs are all approximately proportional
to SNR−1, while at low SNR they are pro-
portional to SNR−2. Moreover, the ith es-
timate, i.e., ωi, has an MSE inversely pro-
portional to M4i+1. Hence, the larger the
window length, the lower the MSE. As such,
for a given SNR and time n, the asymptotic
MSEs of the estimates are minimized by us-
ing the maximum window length given by 1)
M = N−1

2 −|N−12 −n| in the asymmetric sam-
pling case with n ∈ {0, · · · , N − 1}; and 2)
M = N−1

2 − |n| in the symmetric sampling

case with n ∈
{
−N−1

2 , · · · , N−12
}

, where N is
the number of samples and we assume N is
odd.

C. Illustrative Examples of L = 1 and L = 2

C.1 The PPS with order P = 2 and P = 3

Since L = �P/2� = 1, BL,M(n,Ψ) reduces
to

B1,M(n, ω1) =
∑

m

x(n+m)x(n−m)e−jω1m
2

,

which is the CPF in [2]. In this case, the ma-
trix ∆ reduces to a scalar 1/45. According to
Proposition 1 in the symmetric sampling case,
the minimum MSE of the IFR estimate for a
given SNR and time n is

E
{
(δω1)

2
}
=

45
(
1 + 1

2SNR

)

4
(
N−1
2 − |n|

)5
· SNR

. (7)

which agrees with the result derived in (40) of
[4].

C.2 The PPS with order P = 4 and P = 5

In this case, BL,M(n,Ψ) with L = 2 is

B2,M(n, ω1, ω2) =

=
∑

m

x(n+m)x(n−m)e−j(ω1m
2+ω2m

4).

The estimates based on |B2,M |
2 are ω̂1 = Ω̂(n)

and ω̂2 = φ̂
(4)
(n)/12. According to Proposi-

tion 1, the MSEs of both ω1 and ω2 estimates
are

E
{
(δω1)

2
}
=137.8

(
1 + 1

2SNR

)

M5 · SNR
, (8)

E
{
(δω2)

2
}
=172.26

(
1 + 1

2SNR

)

M9 · SNR
. (9)

For comparison, the MSEs of the HPF-based
IFR estimator are proportional to SNR−6 due
to a sixth-order nonlinearity (q = 6) [4, Section
III], whereas the MSEs of the proposed IFR es-
timator are proportional to SNR−2 (cf. (8)) at
low SNR. This implies that the proposed IFR
estimator exhibits a much lower SNR thresh-
old than the HPF-based method, which will be
numerically verified in Section IV.

III. E
�
���
�� �� O���� P��
�

P��������


As a by-product, the proposed estimator (4)
can be utilized to estimate some phase pa-
rameters of a PPS. For example, consider a
fourth-order PPS with phase φ(n) = a0+a1n+
a2n

2 + a3n
3 + a4n

4. The B2,M(n, ω1, ω2) in
Section II-C.2 can be used to obtain two es-
timates, namely Ω̂(n) in the ω1 domain and

ω̂2 = φ̂
(4)
(n)/12 = 2â4 in the ω2 domain. The

latter can be used to estimate a4. The MSE
of the a4 estimate can easily be derived from
(9):

E
{
(δa4)

2
}
=

=
E
{
(δω2)

2
}

4

∣∣∣M=N−1
2
≈

22050

N9SNR
, (10)

at high SNR. Meanwhile, the frequently used
technique for a4 estimation employs the high-
order ambiguity function (HAF) [8]. The MSE
of the HAF-based a4 estimator is

E
{
(δa4)

2
}

HAF
≈

54351

N9SNR
, (11)

at high SNR [8]. A comparison between (10)
and (11) shows that our estimator provides
a much lower MSE at high SNR. Moreover,
since the Cramér-Rao bound (CRB) for a4
is CRB{a4} = 22050/(N9SNR) [9], the pro-
posed a4 estimator is asymptotically efficient
at high SNR.

IV. N����
	�� E������


Consider a fourth-order PPS with pa-
rameters A = 1, (a0, a1, a2, a3, a4) =(
2, 0.02, 10−4, 10−6, 10−8

)
, and N = 129. The

IFR is estimated at n = 64, which is the mid-
dle point of the observations. Fig. 1(a) shows
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Fig. 1. MSEs of parameter estimates for a fourth-order PPS, (a) IFR estimate; (b) Phase parameter a4 estimate.

the MSEs obtained by analysis and simulation
as a function of SNR for the proposed and,
respectively, the HPF-based IFR estimators
with two window sizes M = 32 and M = 64
(i.e., the maximum length at n = 64). We
have the following observations: 1) At high
SNR, the simulation agrees with the analysis
for the MSE of the proposed estimator for both
M = 32 and M = 64; 2) The MSE of the
proposed estimator with M = 64 attains the
CRB at high SNR; 3) With either window size,
the MSE of the proposed estimator is gener-
ally lower than that of the HPF-based method
at high SNR; 4) The proposed estimator gives
a lower SNR threshold (of about 6 dB lower)
than the HPF-based estimator.

We now consider the phase parameter a4 es-
timation for the fourth-order PPS as explained
in Section III. The MSE of the a4 estimate is
obtained at n = 64. The proposed estimator
uses B2,M(n,ω1, ω2) with M = 64. The MSEs
obtained by analysis and simulation are shown
in Fig. 1(b). It is seen that, for SNR above 1
dB, the MSE obtained by simulation for the
proposed a4 estimator agrees with its theoret-
ical result in (10). The MSE of the proposed
estimator also reaches the CRB at high SNR.
In addition, the SNR threshold is 11 dB for
the HAF-based a4 estimator, whereas it is 1
dB for the proposed a4 estimator.

V. C��	��

��

We have proposed an IFR estimator with
a second-order nonlinearity. The asymptotic
bias and MSE of the proposed estimator for
a PPS with an arbitrary order have been ob-
tained by using a multivariate first-order per-
turbation analysis. We have also discussed
how to use the proposed estimator for the esti-
mation of other phase parameters of a PPS. In
particular, we showed that the a4 estimator for
a fourth-order PPS is asymptotically efficient
at high SNR.

A�����
�

[Asymptotic Bias and Variance] The asymp-
totic bias and variance of the estimator (4) are
obtained using a multivariate first-order per-
turbation analysis which extends the univari-
ate first-order perturbation analysis in [10].
For a noisy PPS x(n) = s(n) + v(n), the
BL,M(n,Ψ) can be decomposed into a noise-
free component Cs(n,Ψ) and a noisy compo-
nent Cvs(n,Ψ):

Cs(n,Ψ) =

=
M∑

m=−M

s(n+ n)s(n−m)e
−j

L∑

l=1

ωlm
2l

,
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Cvs(n,Ψ) =
M∑

m=−M

zvs (n,m)e
−j

L∑

l=1

ω lm
2l

,

where zvs (n,m) = s(n + m)v (n−m) +
s(n−m)v (n+m) + v (n+m) v (n−m). Let

fL,M (n,Ψ) denote |BL,M(n,Ψ)|
2, i.e., the

objective function in (4). The fL,M (n,Ψ)
can further be decomposed into fs (n,Ψ) and
fvs (n,Ψ) within a first-order approximation
[10]:

fs (n,Ψ) = Cs(n,Ψ)C
∗

s(n,Ψ) (12)

fvs (n,Ψ) ≈ 2�{Cs(n,Ψ)C
∗

vs(n,Ψ)} , (13)

where �{·} denotes the real part of {·}.
On one hand, from (3), the noise-free
term fs (n,Ψ) is maximized at Ψ0 =
[
Ω(n), 2φ

(4)(n)
4! , · · · , 2φ

(2L)(n)
(2L)!

]T
. On the other

hand, the noisy term fvs (n,Ψ), acting like a
random perturbation, moves the global max-
imum from Ψ0 to Ψ0 + δΨ, where δΨ �

[δω1, · · · , δωL]
T is assumed to be small in an

asymptotic sense. Our purpose here is to ob-
tain the bias and variance of the L estimates.

Noting that Ψ0 and Ψ0 + δΨ are, respec-
tively, the maxima of fs (n,Ψ) and fs (n,Ψ)+
fvs (n,Ψ), we have

∂fs (n,Ψ0)

∂ωl

= 2�

{
∂Cs (n,Ψ0)

∂ωl
C∗

s (n,Ψ0)

}
= 0, (14)

∂fs (n,Ψ0 + δΨ)

∂ωl
+

∂fvs (n,Ψ0 + δΨ)

∂ωl
= 0,

(15)

where l = 1, · · · , L. A first-order Taylor series
expansion of (15) around Ψ0 leads to

∂fs (n,Ψ0)

∂ωl
+

∂fvs (n,Ψ0)

∂ωl
+

L∑

k=1

∂2fs (n,Ψ0)

∂ωl∂ωk
δωk = 0. (16)

Due to (14), the first term of (16) is zero and,
as a result, we can represent the above equa-
tions in a matrix form

fvs +FsδΨ = 0L×1 (17)

where

[Fs]lk =2�

{
∂2Cs (n,Ψ0)

∂ωl∂ωk
C∗s (n,Ψ0)

+
∂Cs (n,Ψ0)

∂ωl

∂C∗s (n,Ψ0)

∂ωk

}

(a)
= −

32A4M (2l+2k+2)lk

(2l + 1) (2k + 1) (2l + 2k + 1)
,

(18)

and (a) here follows from the following result

C∗s (n,Ψ0) ≈ζA22M,

∂Cs (n,Ψ0)

∂ωl
=− jζ∗A2

M∑

m=−M

m2l

≈− jζ∗A2
2M(2l+1)

(2l + 1)
,

∂2Cs (n,Ψ0)

∂ωl∂ωk
=− ζ∗A2

∑

m

m2l+2k

≈− ζ∗A2
2M(2l+2k+1)

(2l + 2k + 1)
,

with ζ � e−j2φ(n), and the approximation∑M
m=−M m2k ≈ 2M (2k+1)/2k + 1 if M 
 2k.

Furthermore,

[fvs]l =2�

{
∂Cs (n,Ψ0)

∂ωl
C∗vs (n,Ψ0)

+Cs (n,Ψ0)
∂C∗vs (n,Ψ0)

∂ωl

}

(a)
= − 4A2M�{Γ(l)} , (19)

where �{·} denotes the imaginary part of {·},

Γ(l) �

� ζ∗
∑

m

(
m2l −

M2l

(2l + 1)

)
z∗vse

j
L∑

i=1

2φ(2i)(n)
(2i)! m2i

,
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and (a) here follows from the following result

C∗vs (n,Ψ0) =
∑

m

z∗vse
j

L∑

i=1

2φ(2i)(n)
(2i)!

m2i

,

∂C∗vs (n,Ψ0)

∂ωl
=j
∑

m

m2lz∗vse
j

L∑

i=1

2φ(2i)(n)
(2i)! m2i

.

As a result, the error vector can be expressed
as

δΨ = −F−1s fvs. (20)

Taking the expectation on both sides of (20)
yields

E {δΨ} = −F−1s E {fvs} = 0L×1, (21)

since E {z∗vs} = s(n+m)E {v (n−m)}+s(n−
m)E {v (n+m)}+E {v (n+m) v (n−m)} =
0 for any n and m [8] which results in
E {Γ(l)} = 0. Therefore, from (21), all L esti-
mates are asymptotically unbiased.

The covariance matrix of the estimate from
(20) is

E
{
δΨδΨT

}
= F−1s ΞF

−1
s , (22)

where the diagonal elements give the variance
of the L estimates, and the lk-th element of Ξ
is

Ξlk = E {[fvs]l [fvs]k}

(a)
=8A4M2�{E [Γ(l)Γ∗(k)]−E [Γ(l)Γ(k)]} ,

(b)
=
128A4

(
2A2σ2 + σ4

)
M2l+2k+3lk

(2l + 1) (2k + 1) (2l + 2k + 1)
, (23)

where (a) follows from the fact that
E {� [x]� [y]} = 0.5� [E {xy∗} −E {xy}],
and (b) is due to

E {Γ(l)Γ∗(k)} =

=
(
4A2σ2 + 2σ4

)∑

m

(
m2l −

M2l

(2l + 1)

)

×

(
m2k −

M2k

(2k + 1)

)
, (24)

E {Γ(l)Γ(k)} = 0. (25)

Eqn. (24) can be verified by using

E {z∗vs (n,m1) zvs (n,m2)} =

=
(
2A2σ2 + σ4

)
δ (m1 +m2)

+
(
2A2σ2 − σ4

)
δ (m1 −m2)

where δ(·) denotes the Kronecker delta func-
tion. Finally, combining (18), (22) and (23)
yields (5).
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