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Abstract– The commonly used technique for
ISAR/SAR signal analysis is a two dimen-
sional Fourier transform, which results in an
image of the target’s reflectivity mapped onto a
range and cross-range plane. However, in cases
where the line-of-sight projections of the tar-
get’s point velocities change or there is uncom-
pensated movement within the coherent inte-
gration time, the Fourier transform produces
blurred images. For target recognition appli-
cations, mainly those in military surveillance
and reconnaissance operations, a blurred ISAR
image has to be refocused quickly so that it
can be used for real-time target identification.
Two standard techniques used for improvement
of blurred ISAR images are motion compensa-
tion and the use of quadratic time-frequency
representations. Both are computationally in-
tensive. In this paper, we present an effective
quadratic time-frequency representation, the S-
method. This approach performs better than
the Fourier transform method by drastically
improving images of fast manoeuvring targets
and by increasing the SNR in both low and high
noise environments. These advantages are a re-
sult of the S-method’s ability to automatically
compensate for quadratic and all even higher-
order phase terms. Thus, targets with constant
acceleration will undergo full motion compen-
sation and their point-scatterers will each be
localized. It should be noted that the source of
the quadratic term can come from not only ac-
celeration, but also non-uniform rotational mo-
tion and the cosine term in wide-angle imaging.
The method is also computationally simple, re-
quiring only slight modifications to the exist-
ing Fourier transform based algorithm. The
effectiveness of the S-method is demonstrated
through application to simulated and experi-
mental data sets.
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I. I������	�
��

Inverse synthetic aperture radar (ISAR) is
a powerful signal processing technique that
can provide a two-dimensional image of an
area or target of interest. Being radar based,
this imaging technique can be employed in
all weather and day/night conditions. ISAR
images are obtained by coherently processing
the received radar echoes of the transmitted
pulses. Commonly, the ISAR image is char-
acterized by high resolution along both the
range and cross range dimensions. High res-
olution in the range dimension is achieved by
means of large bandwidth pulses, whereas high
cross-range resolution is obtained by exploit-
ing a synthetic aperture technique. In ISAR,
the synthetic aperture can be generated by
motion of the target as well as by motion of
the radar platform. In contrast, the related
imaging technique of synthetic aperture radar
(SAR) has its synthetic aperture generated by
means of radar platform motion only [1], [2].

The inverse synthetic aperture is formed by
the coherent integration of signals obtained
from the fixed aperture radar as the tar-
get translates and rotates “within the radar’s
beam width”, creating the equivalent of a
large circular aperture focused at the target’s
center-of-rotation [3], [4]. The underlying con-
cept in ISAR imaging is to use the Doppler in-
formation provided by the different velocities,
relative to the radar, of individual scatterers
to obtain high cross range resolution. That is,
we decompose the target (spatially) into a set
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of individual “point” scatterers each of which
has a different Doppler velocity represented by
Doppler frequency shifts. Thus, the distribu-
tion of the target’s reflectivity function can be
measured by the Doppler spectrum. Typically,
the Doppler spectrum is obtained using con-
ventional Fourier transform techniques imple-
mented, computationally, using a fast Fourier
transform (FFT) algorithm with the underly-
ing assumption that the Doppler frequency is
fixed or is time invariant. In ISAR scenar-
ios, where the target is moving smoothly with
respect to the radar and when the coherent
integration time (CIT) is short, the Fourier
transform represents the most effective solu-
tion. Nevertheless, in ISAR scenarios with
fast manoeuvring targets or with sea-driven
ship motion, the effectiveness of the Fourier
approach is limited [1], [5], [6], [7]. For this
reason, several other techniques have been pro-
posed.

One proven approach for achieving ISAR
motion compensation and focused distorted
ISAR images is the adaptive joint time-
frequency (AJTF) algorithm [6], [7]. An
adaptive time-frequency procedure is used to
extract the phases of the prominent point-
scatterers on the target. The extracted phase
information is then used in conjunction with
a prominent point processing (PPP) model to
remove higher-order motion errors in the radar
data. In this procedure, the phase of the
resulting focused image is preserved and the
Doppler resolution offered by the full coher-
ent processing interval can be achieved. How-
ever, this algorithm is not without significant
weaknesses. One of the problems is that the
computational burden of the exhaustive search
used to extract the motion compensation para-
meters, limits its usefulness in an operational
situation.

Another approach is based on the use of
quadratic time-frequency representations [1],
[8], [9], [10]. Time-frequency techniques are
known to be successful in refocusing blurred
ISAR images. This occurs because the im-
ages are obtained at a particular instant in
time when the target’s motion can be con-
sidered uniform. However, the data is not
collected instantaneously. Consequently, a

large number of refocused ISAR images will
be generated, spanning the entire CIT. For
accurate target recognition, it is imperative
to make use of only the best refocused im-
age. It would be very impractical and inef-
ficient to examine all of the images produced
in order to identify which is the best. Such
manual inspection, or even with the aid of
an automated image searching algorithm, only
adds extra complexity to the target recogni-
tion process [11]. The basic quadratic time-
frequency representation is the Wigner-Ville
distribution (WVD). In contrast to the Fourier
transform, the WVD can produce a fully con-
centrated representation only if the signal fre-
quency changes are linear. However, the WVD
suffers from cross-terms if there is more than
one point-scatterer at the same range in ISAR
analysis. These were the reasons for introduc-
ing other quadratic time-frequency represen-
tations, with simplicity, efficiency and reduced
interference as essential conditions.

In this paper we propose that the S-method
based calculation be used [12], [13], [14].
As with the WVD, the S-method can pro-
duce concentrated representations of linear fre-
quency changes and has the added advantage
of being cross-term free (or with significantly
reduced cross-terms). In contrast to other
reduced interference distributions, which are
usually derived under the condition that the
marginal properties are preserved (what in-
herently leads to auto-term degradation with
respect to the WVD [15]), the S-method is
derived with the goal of preserving the same
auto-terms as in the WVD, while avoiding
cross-terms [16], [17], [18]. In other words,
the method automatically compensates for
quadratic and all even higher-order terms in
phase induced by the target’s complex motion,
leading to well-focused images. The S-method
is also numerically very simple and requires
just a few more operations than the stan-
dard Fourier transform based algorithm. This
method works on the whole set of data and it
does not split the ISAR image into a time se-
ries of ISAR images, as in the case of common
time-frequency techniques. These are signif-
icant advantages over other quadratic repre-
sentations and over linear transforms based on
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signal dechirping and multiparameter search
procedures.

The objective of this paper is to demon-
strate the effectiveness of the S-method for
real-time image refocusing using both simu-
lated and experimental targets exhibiting two
and three-dimensional motion. Three numeri-
cal models were developed to simulate targets
with complex rotational motion. This motion
is that of in-flight aircraft in that it incorpo-
rates changes in pitch, roll and yaw. Exper-
iments were conducted to gather data from
a delta-wing shaped apparatus with six cor-
ner reflectors. These experiments were car-
ried out in order to study severe distortions in
ISAR images. The experimental data are then
used for comparing and validating the simu-
lated results. Statistical study of the results
and achieved improvements are discussed.

II. A��
��
	 CW R���� S
���
 M���


For the analytic derivation of the model,
consider a continuous wave (CW) radar that
transmits a signal in the form of a coherent
series of chirps [1]:

vp(t) =

{
e(jπBfrt

2) for 0 ≤ t ≤ Tr
0 otherwise

(1)

where Tr is the repetition time, fr = 1/Tr is
the repetition frequency, and B is the emitted
waveform bandwidth.

In one revisit, the transmitted signal con-
sists of M such chirps:

v(t) = e(−jω0t)
M−1∑

m=0

vp(t−mTr) (2)

where ω0 is the radar operating frequency.
The total signal duration is Tc = MTr and
represents the CIT.

Consider a signal of form (2) transmitted
toward a target. If the target distance from
the radar is d (referred to as range), then the
received signal is delayed with respect to the
transmitted signal for td = 2d/c, where c is
the velocity of propagation, equal to the speed
of light. The phase of the received signal is
changed as φ = 2kd = 4πd/λ = 4πdf0/c =
2ω0d/c.

Thus, the form of the received signal is

u(t) = σe(j[−ω0(t−
2d
c
)])
M−1∑

m=0

vp(t−
2d

c
−mTr)

where σ is the reflection coefficient. The re-
ceived signal is mixed (multiplied) with the
complex-conjugate of the transmitted signal
and shifted in time with a minimal delay T0.
We will assume that a constant distance is
properly compensated and that T0 = 0. With-
out loss of generality, we can consider only one
component of the received signal:

q(m, t) = σe(jω0
2d
c
)e(−j2πBfr(t−mTr)

2d
c
).

A two-dimensional discrete signal is ob-
tained by sampling in time with t−mTr = nTs

q(m,n) = σe(jω0
2d
c
)e(−j2πBfrnTs

2d
c
).

III. ISAR B��
	 D��
�
�
��� ��� M���


Inverse synthetic aperture radar (ISAR) is a
method for obtaining high resolution of a tar-
get based on the change in viewing angle of
the target with respect to a fixed radar. An
illustration of a target and relevant quantities
is shown in Figure 1. Suppose that a target
consists of P point scatterers whose locations
are (xp, yp), p = 1, 2, ..., P , in the coordinate
system whose center is the center of target ro-
tation. The coordinate in the direction of the
radar-target line (range coordinate) is denoted
by xp, while yp is the coordinate in the normal
direction to this line (cross-range coordinate).
The target’s total movement can be considered
as a superposition of both translation and ro-
tation.

Assume that the target moves along a
straight line parallel to the ground at a height
h, and that its ground distance from radar is
z,meaning the range d =

√
h2 + z2. From the

radar position the target is seen at an angle
α, meaning sin(α) = h/d. In the next instant,
t+∆t, the target is moved to the new position
corresponding to the ground distance z +∆z,
meaning the range d =

√
h2 + (z +∆z)2, and

it is seen from the radar at an angle α+∆α.
Thus, this movement can be considered as a
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Fig. 1. Illustration of the ISAR principle.

translation for ∆d and rotation for ∆α. If the
target speed is vt then ∆z = vt∆t. Since

α = tan−1(
h

z
) and

∂α

∂z
=

−h
z2 + h2

we get

∆α ∼= −h
z2 + h2

∆z

or

∆α ∼= −(∆z)h/d2 = −vt(∆t)h/d2.

During the considered time interval t the
point scatterer rotates for θR(t) = ωRt. The
new coordinates of the scatterer are
[
x′p
y′p

]
=

[
cos(θR(t) sin(θR(t))
− sin(θR(t) cos(θR(t))

] [
xp
yp

]

(3)
The total range position, for small θR(t)→

0, is

d(t) =
√
(R+ x′p)

2 + y′2p
∼= R+ x′p

= R+ xp cos(θR(t)) + yp sin(θR(t))

∼= R+ xp (4)

The range contains information about coor-
dinate xp, since for θR(t) = ωRt → 0 we

get, cos(θR(t)) → 1, sin(θR(t)) → θR(t) and
d(t) ∼= R+ xp + ypωRt.

The Doppler shift is proportional to the
velocity in the direction of the line-of-sight
(LOS):

∆ωd ∼=
2ω0
c

d

dt
[d(t)] =

=
2ω0
c

d

dt
[R+ xp cos(θR(t)) + yp sin(θR(t))]

For θR(t) = ωRt → 0 again d(t) ∼= R + xp +
ypωRt. Note that here we must not neglect
the term ypωRt since it is multiplied by a
large number 2ω0/c in defining the phase of
exp(j2ω0d/c). Thus,

∆ωd =
2ω0
c
ypωR ∼ yp

assuming, in addition to the above approxima-
tions, that the translation is compensated, i.e.,
R(t) = R.

A. Non-uniform Motion

In general, target motion over M chirps in
one revisit cannot be considered as linear with
velocity v = ypωR. Even in the simplest case
when the target rotates with a constant an-
gular velocity ωR, for a longer period of time,
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the line-of-sight projection of the point scat-
terer velocity is

vs(t) = ωRrp sin(ωRt)

where rp =
√
x2p + y

2
p. Obviously, from the

same figure we have

yp = rp sin(ωRt)

xp = rp cos(ωRt).

Thus, for the interval [t, t+∆t] , the cross-
range coordinate moves within

[yp, yp +∆yp] =

= [rp sin(ωRt), rp sin(ωR(t+∆t))]

where

yp +∆yp = rp sin(ωR(t+∆t))

= rp sin(ωRt) cos(ωR∆t)

+rp cos(ωRt) sin(ωR∆t)

= yp cos(ωR∆t) + xp sin(ωR∆t)

For small ωR∆t we can write:

yp +∆yp ∼= yp + xpωR∆t− yp
(ωR∆t)2

2

−xp
(ωR∆t)

3

6
+ ...

∼= yp + xpωR∆t (5)

Then, the LOS projection of the velocity
changes within

[vs(t), vs(t) +∆vs(t)] =

= [ωRyp, ωRyp + xpωR∆t] (6)

meaning that for intervals, such that xpωR∆t
can not be neglected with respect to yp, the
Doppler shift is a linear function of time with
rate xpωR. Thus, instead of the delta pulse
concentrated at one frequency, corresponding
to ωRyp we will obtain a function correspond-
ing to a LFM signal whose instantaneous fre-
quency changes according to equation (6). The
same holds for the range coordinate xp.

If the assumption about small enough ωR∆t
does not hold then the changes of instanta-
neous frequency are not linear. In addition,

if ωR is not constant, then high nonlinear-
ity in the instantaneous frequency can be ex-
pected, (5). The result is that, instead of hav-
ing a 2D Fourier transform concentrated at the
point corresponding to (xp, yp), we will obtain
a spread Fourier transform, meaning a blurred
radar image.

IV. F���
�� T�������� 
� ISAR

The two-dimensional (2D) Fourier trans-
form of the received signal is

Q(m′, n′) =

=
M−1∑

m=0

N−1∑

n=0

q(m,n)e(−j[2πmm
′/M+2πnn′/N])

where time is discretized such that t−mTr =
nTs. The periodogram

P (m′, n′) = |Q(m′, n′)|2

represents an ISAR image.
In order to analyze cross-range nonstation-

arities in the Fourier transform, we consider
only the Doppler component part of the re-
ceived signal (the p-th point scatterer), as it is
usually done in the literature on ISAR,

ep(t) = σpe
(j

2ω0
c
dp(t)) (7)

= σpe
(j

2ω0
c
(xp cos(θR(t))+yp sin(θR(t)))).

The Fourier transform of ep(t) produces

Ep(ω) =

Tc/2∫

−Tc/2

ep(t)e
(−jωt)dt

=

∞∫

−∞

w(t)ep(t)e
(−jωt)dt,

where w(t) is the window defining the consid-
ered time interval (CIT). In order to simplify
the notation we will just omit the index p.

For time-varying d(t) we can write a Taylor
series expansion of d(t) around t = 0:

d(t) = d0 + d
′(0)t+

1

2
d
′′

(0)t2 + .... (8)

=
∞∑

n=0

1

n!
d(n)(0)tn,
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where d(n)(0) is the n−th derivative of the dis-
tance at t = 0 and 2ω0d

′(0)/c = ∆ωd.
Fourier transform (FT ) of (7) with (8) is of

the form
E(ω) =

=

∞∫

−∞

w(t)e(j
2ω0
c

∑
∞

n=0
1
n!d

(n)(0)tn)e(−jωt)dt

=

∞∫

−∞

w(t)e

(
j
2ω0
c

{
[d(0)+d

′

(0)t+
∑

∞

n=2
1
n!d

(n)(0)tn
})

×e(−jωt)dt (9)

Now, by omitting the constant term d(0) and
shifting 2ω0d′(0)/c = ∆ωd into the second ex-
ponential term we get

E(ω) =

∞∫

−∞

w(t)e(j
2ω0
c

∑
∞

n=2
1
n!d

(n)(0)tn)

×e(−j[ω−2ω0d′(0)/c]t)dt. (10)

This is a Fourier transform of a product of
the window w(t) and the first exponential
function, calculated at the frequency ω −
2ω0d

′(0)/c = ω − ∆ωd. The Fourier trans-
form of a product of two functions is equal to
the convolution of their Fourier transforms, re-
sulting in

E(ω) =

=W (ω−∆ωd)∗ωFT
[
e(j

2ω0
c

∑
∞

n=2
1
n!d

(n)(0)tn)
]
,

where ∗ω denotes convolution in frequency.
Thus, the Fourier transform is located at and
around the Doppler shift ω = ∆ωd. It is spread
by the factor

Sspread(ω) = FT
[
e(j

2ω0
c

∑
∞

n=2
1
n!d

(n)(0)tn)
]
.

This factor depends on the derivatives of the
distance, starting from the second order (first
order derivative of the Doppler shift), i.e., the
spread factor depends on

sf (t) =
1

2
d
′′

(0)t2 +
1

6
d′′′(0)t3 + .....

It can significantly degrade the periodogram
image:

P (ω) = |E(ω)|2 .

V. S-������ B���� I� ��!����� ��

��� R���� I�����

In this section we will present a method for
improvement of images blurred due to the long
CIT and/or nonuniform movement. Instead of
using the Fourier transform (periodogram), we
use the S-method defined by [16], [18]

SM(ω) =
1

π

∞∫

−∞

E(ω + θ)E∗(ω − θ)dθ. (11)

This method can improve the image concen-
tration in a numerically very simple and ef-
ficient way. Namely, by replacing E(ω) from
(IV) into (11) we get

SM(ω) =
1

π

∞∫

−∞

∞∫

−∞

∞∫

−∞

w(t1)w
∗(t2)

×e(j
2ω0
c

∑
∞

n=0
1
n!d

(n)(0)tn1 )e(−j
2ω0
c

∑
∞

n=0
1
n!d

(n)(0)tn2 )

×e(−j(ω+θ)t1)e(j(ω−θ)t2)dt1dt2dθ.
The part of integrand depending on θ is
exp(−jθ(t1 + t2)). Integration over θ results
in 2πδ(t1 + t2). Integration of a function
g(t1)g(t2)δ(t1 + t2) over t1 results in the func-
tion g(t)g(−t) for t1 = −t2 = t. From the
previous equation it means that we obtain

SM(ω) = 2

∞∫

−∞

w(t)w∗(−t)

×e(j
2ω0
c

∑
∞

n=0
1
n!d

(n)(0)(tn−(−t)n))e(−j2ωt)dt

=We(ω −∆ωd) ∗ω FT
[
e(j

2ω0
c

1
3!d

′′′

(0)t3+...)
]

where similar calculations as in (IV)-(10) are
performed.

The S-method based image is located at the
same position in Doppler space as the Fourier
transform image, ω = ∆ωd, but with the
spreading term

Sspread(ω) = FT
[
e(j

2ω0
c
( 13!d

′′′

(0)t3+...)
]

Its exponent starts from the third derivative
d
′′′

(0),

sf (t) =
1

6
d′′′(0)t3 +

1

120
d(5)(0)t5 + .....
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This means that the S-method has the ability
to automatically compensate for quadratic and
all even higher-order terms in phase. Recall
that in the Fourier transform based image the
spreading terms started from the second deriv-
ative d

′′

(0). It means that in the S-method,
the points with linear Doppler changes,

2ω0
c
d′(t) = ∆ωd(t) = ∆ωd + at

will be fully concentrated without any spread,
since here sf (t) = 0. Thus, targets with
constant acceleration will undergo full motion
compensation and their point-scatterers will
each be localized. Note that We(ω) is the
Fourier transform of window w(t/2)w∗(−t/2)
while ∆ωd without argument denotes the con-
stant part of ∆ωd(t), i.e., ∆ωd = ∆ωd(0). It
should also be noted that the source of the
quadratic term can come from not only accel-
eration, but also non-uniform rotational mo-
tion and the cosine term in wide-angle imag-
ing.

A. Numerical Implementation

The discrete version of (11) is

SM(k) =
L∑

i=−L

E(k + i)E∗(k − i)

= |E(k)|2 + 2 real{
L∑

i=1

E(k + i)E∗(k − i)}

In theory, L should be such as to provide
calculation over the whole frequency range.
However since the first term is |E(k)|2, i.e.,
the periodogram, while the terms 2 real{E(k+
i)E∗(k − i)}, for i = 1, 2, ..., are used to im-
prove the periodogram concentration in the
case of time-varying Doppler shift, only a few
terms are enough to provide complete integra-
tion over the one target point and achieve high
resolution. The S-method can be realized in a
recursive form, as well. If we denote

SML(k) =
L∑

i=−L

E(k + i)E∗(k − i)

then
SML(k) = SML−1(k)+

+2 real{E(k + L)E∗(k − L)}, (12)

with SM0(k) = |E(k)|2 being the standard
Fourier transform based representation.

Therefore, the S-method improvement can
be achieved starting with the radar image,
with additional simple matrix calculation ac-
cording to (12). It is obvious that the total
calculation complexity, for adding one more
term to the existing Fourier transform image
or to the existing S-method image, is one ad-
dition and one multiplication, for each point.
For each next L+1, just one more multiplica-
tion and addition is needed. In theory, when
L is equal to the width of auto-term (width
of the blurred point in the radar image) the
radar image is completely focused and there is
no need to further increase L. In practice, it
means just to take 2 to 6 terms for L. Note
that it is also possible to use S-method with
self-adaptive number of samples. A very de-
tailed analysis of calculation complexity may
be also found in [16].

Here, we applied a window w(m), and cal-
culated

Q(m′, n′) =
M−1∑

m=0

N−1∑

n=0

w(m)q(m,n)

×e(−j[2πmm′/M+2πnn′/N]).

In examples provided, we used such a window
that w2(m) is the Hanning window (w(m) is
then close to the rectangular window form).

B. Analysis of the Proposed Improvement

B.1 Multipoint Target in the Same Range Bin

If the target contains more than one point-
scatterer at a given range bin then the signal
is of the form

e(t) =

Q∑

p=1

ep(t) =

Q∑

p=1

σpe
(j

2ω0
c
dp(t)).

The S-method is then

SM(ω) =

Q∑

p=1

Q∑

q=1

∞∫

−∞

Ep(ω+ θ)E∗q (ω− θ)dθ =

=

Q∑

p=1

∞∫

−∞

Ep(ω + θ)E∗p(ω − θ)dθ
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+

Q∑

p=1

Q∑

q=1

p �=q

∞∫

−∞

Ep(ω + θ)E∗q (ω − θ)dθ.

The first sum represents target points, indi-
vidually, i.e., auto-terms. Assume that the
width of the Fourier transform Ep(ω) around
∆ωdp is 2WP (for Doppler shift ∆ωd(t) =
∆ωd + at and CIT Tc the width is approxi-
mately 2WP = aTc). The value of (11) over θ
within −WP ≤ θ ≤WP will be the same with
respect to these terms as integration from −∞
to ∞. Thus, the S-method can be calculated
as

SM(ω) =

∞∫

−∞

P (θ)E(ω + θ)E∗(ω − θ)dθ

where P (θ) is the rectangular window of the
width defined by −WP ≤ θ ≤WP .

The second sum in SM(ω) represents
”cross-terms”. Since Ep(ω + θ) is located
around ω + θ = ∆ωdp and Eq(ω + θ) is lo-
cated around ω − θ = ∆ωdq, if we restrict the
integration over θ to |θ| < WP then Ep(ω +
θ)E∗q (ω − θ) = 0 if |∆ωdp −∆ωdq| > 2WP .

It means that we will be able to obtain
fully concentrated point-scatterer locations as
in the WVD, without cross-terms, if the above
conditions are satisfied. If the conditions are
not satisfied for some components and range
bins, the cross-terms will start appearing, but
only for those components and range bins.
Still, cross-terms will be reduced with respect
to the WVD.

In radar images, L samples in P (θ) on each
side of the θ origin, is equivalent to taking 2L
cross-range bins and focusing on a cross-range
value of 2LRcross−range = 2Lπc/(ω0TcωR).
For example, if Rcross−range = 0.1m, by tak-
ing L = 3 in the S-method the cross-terms
would start appearing only when the distance
in cross-range is smaller than 0.6m for the
same range. Another way to deal with cases
where components are too close or partially
overlap in cross-range is by using varying val-
ues of L, as presented in [17]. Then, the cross-
terms will be completely avoided in the cases
of nonoverlapping auto-terms.

B.2 Accuracy Analysis of Noisy Signals

Consider a reflected signal with additive
noise ε(t)

ep(t) = σpe
(j

2ω0
c
dp(t)) + ε(t)

1. Case with stationary Doppler shift.
When time variations of the Doppler shift

within the CIT are very small they can be

neglected, d′p(0) = ∆ωd and d
(n)
p (0) ≈ 0 for

n > 1, and we can write:

Ep(ω) =

= σpW (ω−∆ωd)∗ωFT
[
e(j

2ω0
c

∑
∞

n=2
1
n!d

(n)
p (0)tn)

]

∼= σpW (ω −∆ωd) (13)

Here, there is no need for any improvement.
The Fourier transform and corresponding pe-
riodogram is the maximum likelihood (ML) es-
timate for Gaussian additive noise.
2. Time-varying case when d

(n)
p (0) for

n > 1 can not be neglected.
The Fourier transform of non-noisy signal

can be approximated by using the stationary
phase method [19], [20] so that

Ep(ω) =

∞∫

−∞

w(t)σpe
(j

2ω0
c
dp(t))e(−jωt)dt

∼= σpe(j
2ω0
c
dp(t0)−jωt0)w(t0)

√
2πj∣∣2ω0

c d
′′
p(t0)

∣∣ ,

with
2ω0
c
d′p(t0) = ω.

where w(t) is the time window whose width is
defined by the CIT. Therefore,

|Ep(ω)|2 = σ2pw2(t0)
2π∣∣2ω0

c d
′′
p(t0)

∣∣ . (14)

For linear changes of the Doppler frequency
shift, i.e., for 2ω0

c d
′
p(t) = ∆ωd(t) = ∆ωd + at,

we have ∆ωd + at0 = ω, and

|Ep(ω)|2 = σ2pw2(
ω −∆ωd

a
)
2π

|a| . (15)
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Thus, the amplitude of |Ep(ω)|2 does not in-
crease with the window length, as in the case
of a stationary Doppler shift, but it is defined
by the window’s time domain maximal value,
usually w(0) = 1. The width of |Ep(ω)|2 , de-
noted by Wp, represent’s a measure of blur-
ring, and is defined by the window (CIT) width
−Tc/2 ≤ (ω − ∆ωd)/a ≤ Tc/2 or Wp = aTc.
Note that not only the radar image will be
blurred, but also strong noise can degrade its
performance. Doppler shift (cross-range) de-
tection is directly related to the maximum of
|Ep(ω)|2 detection.
Small noise analysis: The bias of the

Doppler shift is defined as a difference of
its true value and the position of maxima
in the Fourier transform.. Maxima are de-
fined by the auto-term functions (14). For
example, w2(t0) with 2ω0

c d
′
p(t0) = ω reaches

its maximum at the solution of d′−1p ( cω2ω0 ) =

0, where d′−1p (ω) denotes inverse function of

d′p(t), d
′
p(d

′−1
p (ω)) = ω. Doppler shift is un-

biased for 2ω0
c d

′
p(t) = ∆ωd(t) = ∆ωd + at,

as it can be seen from (15). If the third order
derivative cannot be neglected, i.e., 2ω0c d

′
p(t) =

∆ωd(t) = ∆ωd + at + bt2/2, then the bias is
proportional to b, [21]

bias(∆ωd) = bTcKw

where Kw is window shape defined constant,
Kw =Mw

4 /(6Mw
2 ) with

Mw
k =

∫ Tc/2

−Tc/2

w(t)tkdt.

For example, for a rectangular window Mw
2 =

T 3c /12.
A small noise component will also cause ran-

dom variations of maxima around the non-
noisy maxima positions. These variations are
described by the variance. For a periodogram
(15) of a nonstationary signal it reads [21]:

var(∆ωd) =
σ2ε
σ2p

Mw2

2

4π(w(2)(0))2
TrT

7
c a

5.

The S-method for component with 2ω0
c d

′
p(t) =

∆ωd(t) = ∆ωd + at produces a fully concen-
trated representation

SMp(ω) = σ
2
pWe(ω −∆ωd).

Obviously, in contrast to the Fourier trans-
form based analysis (15), its “concentration"
increases with the window length (CIT) value,
meaning that it can outperform the Fourier
transform based analysis in noisy cases. Vari-
ance for the small noise case and a signal of
this form is [22]

var(∆ωd) =
σ2ε
2σ2p

(1 +
σ2ε
2σ2p

)
Mw2

2

(Mw
2 )
2 .

High noise analysis: When the noise is high
then the dominant source of error is in the
incorrect detection of maxima, which occurs
when some noise values in the radar image are
higher than the component values along the
auto-terms. A measure of this error is the ra-
tio of the distribution maximum with no noise
present to the variance of noise in the peri-
odogram’s noisy regions. This SNR ratio for
the periodogram [23], [24] is:

SNRperiod =

∣∣∣max{|Ep(m′)|2}without_noise
∣∣∣
2

var{|Ep(m′)|2}only_noise
.

The above expression is a measure of correct
and incorrect detection of the target’s point-
scatterers’ positions. If
var{|Ep(m′)|2}only_noise is high then there is
a large possibility that the detector will detect
any arbitrarily positioned point instead of the
true signal’s non-noisy maximum. For a signal
with ∆ωd(t) = ∆ωd + at it reads [23]

SNRperiod =
4π2N2σ4p
(aT 2c )

2σ4ε
.

For the S-method, the same analysis leads to
[23]

SNRSM =
N2σ4pC

2
w

T 2c (2L+ 1)σ4ε
The maximal ratio of these SNRs for the value
of L, such that complete concentration of an
auto-term is achieved, is equal to

SNRSM
SNRperiod

=
a

2π
C2w

where Cw =
∫ Tc/2
−Tc/2

w2(t)dt. For the Hanning

window w2(t) we get Cw = Tc/2 and

SNRSM
SNRperiod

=
a

8π
T 2c . (16)
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Fig. 2. The two-dimensional radar target model.

Note that in the case of the periodogram, due
to its spread, there are several candidates for
the maximum at the same auto-term. It means
that a high noise level in the periodogram will
cause two kinds of errors: 1) A complete miss
of the component, when all auto-term values
are surpassed by noise, resulting in a higher
percentage of missed points, and 2) Variations
within the auto-term values, when instead of
the correct term, one of the neighboring auto-
term values is picked as the maximum, caus-
ing higher mean square error (MSE) in the de-
tection of ”correct” points. In the S-method,
auto-terms are highly concentrated, meaning
only one auto-term value exists and that the
first kind of error will dominate. It also means
that in a comparison, both of these kinds of
errors should be taken into account when ana-
lyzing statistical data. The described improve-
ment corresponds to the statistical analysis of
results presented earlier.

B.3 Application to a Two-Dimensional Target
Model

The ”setup" in [25], [7] assumes: a high
resolution radar operating at the frequency
f0 = 10.1 GHz, a bandwidth of linear FM
chirps of B = 300 MHz, and a pulse repeti-
tion frequency fr = 1/Tr = 2 kHz with 2048
pulses in one revisit (Tc ∼= 2 sec, cases with
Tc ∼= 1 sec and Tc ∼= 4 sec are also consid-
ered). The pulse repetition time is Tr = 0.5
ms. The target is at a 2 km distance from
the radar, and rotates at ωR = 40/ sec . The

nonlinear rotation with frequency Ω = 0.5 Hz
is superimposed, ωR(t) = ωR + A sin(2πΩt),
and amplitude A = 1.250/ sec corresponds to
the total change in angular frequency ωR for
2.50/ sec. Note that here range and cross-
range resolutions are Rrange = c/(2B) = 0.5
m, and Rcross−range = πc/(ω0TcωR) = 0.106
m. Since no translation in the experiment ex-
ists, there is no need for translation compen-
sation.

We assume that at t = 0 the line connect-
ing points 1, 2 and 3 is parallel to the line-of-
sight, as shown in Figure 2. Then at t = 0
we have (x1, y1) = (−2.5, 1.44), (x2, y2) =
(0, 1.44), (x3, y3) = (2.5, 1.44), (x4, y4) =
(1.25,−0.72), (x5, y5) = (−1.25,−0.72) and
(x6, y6) = (0,−2.89). All dimensions are in
meters. Note again that resolutions in both
directions depend on Tc, c and B, but not on
Tr, N and M .

The signal model corresponding to one of 6
rotating parts is

dp(t) = R+ xp cos(θR(t)) + yp sin(θR(t))

or after distance compensation dp(t) =
xp cos(θR(t)) + yp sin(θR(t)) we have

∆ωd ∼=
2ω0
c

d

dt
[dp(t)]

=
2ω0
c

(−xpθ′R(t) sin(θR(t))

+ypθ
′
R(t) cos(θR(t))) (17)
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Fig. 3. ISAR images of a two-dimensional target model. Periodogram (left column), S-method (middle column),
Wigner distribution (right column). Images are presented at three time instants: t = 0 (first row), t = 4 sec
(second row) and t = 9 sec (third row).

with

θ′R(t) = ωR(t) = ωR +A sin(2πΩt),

θR(t) = ωRt−A/(2πΩ) cos(2πΩt) + φ0

Thus, the signal model is of the form:

q(m, t) =
6∑

p=1

qp(m, t)

=
6∑

p=1

σpe
(jω0

2dp(t)

c
)e(−j2πBfr(t−mTr)

2dp(t)

c
) (18)

Assuming that T0 = 0 and neglecting the con-
stant phase terms with t − mTr = nTs, the
model is completely defined.

The results obtained for several target po-
sitions are presented in Figure 3. The radar
images presented in the range/cross-range do-
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Fig. 4. Time-frequency representation of the bin at range x = 1.5 m and position at t = 9 sec.

main obtained using the Fourier transform
(periodogram), the S-method and the WVD
at time instants t = 0, 4 and 9 sec are given in
this figure. In order to keep the same scale for
presentation we have presented only the non-
negative part of the WVD. It is known that the
negative values are present in the cross-terms
that do not contain information about the tar-
get, but can only degrade the image. There-
fore, removing negative parts will not lose any
useful information.

In order to illustrate where the cross-range
spread comes from in the previous ISAR im-
ages, as an example, we considered the case
at t = 9 sec and the range bin at x = 1.5 m.
Distribution of the cross-range values over the
considered CIT is shown in Figure 4. We can
see that the middle point-scatterer is station-
ary in Doppler, meaning that it will be highly
concentrated in the corresponding ISAR image
in Figure 3 at a range value of 1.5 m. How-
ever, the remaining two point-scatterers at this
range move over the cross-range, resulting in
a spread in the ISAR image.

We also calculate the number of ”correct
points” by finding 6 largest values in the pe-
riodogram and checking if they correspond
to the true target point-scatterer positions,

within the margin ±1m (the region ±1m
around the detected point is deleted by assign-
ing zero values). The percent of correct points
found in this way is given in Table 1. Note
that even in the cases of very low noise and
no noise, due to very high nonstationarities,
target points are missed.

For the ”correct points” we also calculated
the MSE from the true positions. We can
see that image blurring and nonstationarities
caused a high deviation of ”correct points”
from the true ones, resulting in high MSE,
which is summarized in Table 2.

For the example, a ∼ |∆ω′d(t)|. According
to (17) we conclude that the maximal value

of a can be estimated as 2ω0
c

√
x2p + y

2
pθ
′′
R(t).

By using the coordinates of the point with
maximal distance from the center of rota-
tion

√
x2p + y

2
p = 3.74 m and the maximal

value of θ′′R(t) = max{[ωR + A sin(2πΩt)]′} =
2πAΩ = 0.0685 we get a ∼ 100. Thus, ac-
cording to (16), we can expect a total MSE
improvement (percent of correct points and
MSE of correct points) for a point up to
SNRSM/SNRperiod = 15.9 corresponding to
the total maximal improvement σ4p/σ

4
ε = 15.9

or 20 log10(σp/σε) = 6 dB.
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TABLE I

P��	��� �� "	����	�  �
���" ��� !��
��� ������� �� ��
��, σ/Ap, SNR = 20log10(Ap/σ).

σ/Ap Periodogram (FT) S-method Wigner distribution
0 95.57 100 92.74
1 96.13 100 92.62
2 95.82 100 91.39
3 95.95 99.95 87.35
4 95.28 99.57 78.67
5 90.31 95.12 65.82
6 77.58 85.65 50.98
7 64.32 71.90 38.51
8 50.98 57.57 30.78

TABLE II

MSE ��� ��� "	����	�  �
���" ��� !��
��� ������� �� ��
��, σ/Ap, SNR = 20log10(Ap/σ).

R���
��
�� MSE 
� 0.0218.

σ/Ap Periodogram (FT) S-method Wigner distribution
0 0.1705 0.0259 0.0293
1 0.1708 0.0262 0.0276
2 0.1717 0.0264 0.0342
3 0.1707 0.0265 0.0449
4 0.1681 0.0297 0.0920
5 0.1543 0.0367 0.1713
6 0.1382 0.0457 0.2501
7 0.1365 0.0614 0.3447
8 0.1262 0.0815 0.3968

Note that the MSE in the Fourier trans-
form based periodogram is due to the high
nonstationarities and large estimation bias. It
can be reduced by taking a narrower window,
i.e., smaller CIT. For example, taking a 4
times smaller CIT we get MSE = 0.0265 and
100% of correct points in the periodogram for
σ/Ap = 0. However for at greater noise levels,
for example σ/Ap = 6, we get MSE = 0.0414,
but only 65.68% of correct points, which is a
significantly smaller percentage than in the pe-
riodogram with the wider window, which was
77.58%.

B.4 Application to a Three-Dimensional Tar-
get Model

Consider now the case where the tar-
get point-scatterer at a position 7r rotates
with an arbitrarily oriented angular veloc-
ity 7ω, as shown in Figure 5. The angu-

lar velocity is decomposed into three axes
representing oriented rotations defined by
(ωrot, ωpitch, ωyaw). The corresponding an-
gles of the target point are (θr(t), θpc(t), θy(t)),

where θi(t) =
∫ t
0 ωi(τ)dτ + θi(0).

If 7r = (xp, yp, zp) is the target position at
t = 0 then at any other instant the position
7r′ = (x′p, y

′
p, z

′
p) can be determined by using

the rotation three-dimensional space matrix
that reads [1]

7r′ = Rrot(RpitchRyaw)7r

where

Rpitch =




cos(θpc(t)) 0 − sin(θpc(t))
0 1 0
sin(θpc(t)) 0 cos(θpc(t))





Ryaw =




cos(θy(t)) sin(θy(t)) 0
− sin(θy(t)) cos(θy(t)) 0
0 0 1




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Fig. 5. The three-dimensional radar target model.

Rrot =




1 0 0
0 cos(θr(t)) sin(θr(t))
0 − sin(θr(t)) cos(θr(t))





or




x′p
y′p
z′p



 =




a11 a12 a13
a21 a22 a23
a31 a32 a33








xp
yp
zp



 (19)

with

a11 = cos(θpc(t)) cos(θy(t))

a12 = cos(θpc(t)) sin(θy(t))

a13 = − sin(θpc(t))

a21 = sin(θr(t)) sin(θpc(t)) cos(θy(t)) −
cos(θr(t)) sin(θy(t))

a22 = sin(θr(t)) sin(θpc(t)) sin(θy(t)) +
cos(θr(t)) cos(θy(t))

a23 = sin(θr(t)) cos(θpc(t))

a31 = cos(θr(t)) sin(θpc(t)) cos(θy(t)) +
sin(θr(t)) sin(θy(t))

a32 = cos(θr(t)) sin(θpc(t)) sin(θy(t)) −
sin(θr(t)) cos(θy(t))

a33 = cos(θr(t)) cos(θpc(t))

Thus, in this case distance from the radar

at an instant t is

d(t) =
√
(R(t) + x′p)

2 + y′2p + z′2p

∼= R(t) + x′p
= R(t) + cos(θpc(t)) cos(θy(t))xp

+cos(θpc(t)) sin(θy(t))yp

− sin(θpc(t))zp

With θpc(t) = 0 and θy(t) ≡ θR(t) this model
reduces to the two-dimensional model (3),(4).
In general, Doppler shift and ISAR image here
assume much more complex form than in the
2D case.

For small θpc(t) and θy(t), with θr(t) = 0
and R(t) = 0, we get

dp(t) ∼= xp + θy(t)yp − θpc(t)zp

∆ωd =
2ω0
c

d

dt
[dp(t)] ∼= θ′y(t)

(

yp −
θ′pc(t)

θ′y(t)
zp

)

.

Example: Consider the radar setup as in [25],
[7]. Here we assume that the same dimensions
and parameters are used, but with a three di-
mensional rotation, instead of a 2D geometry,
with

ωyaw(t) = ωR(t) = ωR +A sin(2πΩt)
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ωR = 60/ sec, Ω = 0.5 and A = 20/ sec and
B = 600MHz. Assume also

ωpitch(t) = Apc cos(2πΩpct)

with Apc = 30/ sec, Ωp = 0.25 and the initial
positions:
(x1, y1, z1) = (−2.17, 1.44, 1.25),
(x2, y2, z2) = (0, 1.44, 0),
(x3, y3, z3) = (2.17, 1.44,−1.25),
(x4, y4, z4) = (1.08,−0.72,−0.625),
(x5, y5, z5) = (−1.08,−0.72, 0.625) and
(x6, y6, z6) = (0,−2.89, 0).
All coordinates are in meters. The angle

changes are:

θy(t) = θR(t)

= ωRt−A/(2πΩ) cos(2πΩt) +A/(2πΩ)
θpc(t) = Apc/(2πΩpc) sin(2πΩpct)

and distance compensated range is

dp(t) = cos(θpc(t)) cos(θy(t))xp

+cos(θpc(t)) sin(θy(t))yp − sin(θpc(t))zp.

The received signal is of form (18).
Results are as in the first example, including

the same comments, and they are shown in
Figure 6.

VI. R���
�� ��� D
�	���
��

In this section we demonstrate the applica-
tion and effectiveness of the S-method as an
ISAR image refocusing technique with simu-
lated and experimental ISAR data.

A. Simulated Data:

Three numerical models were developed to
simulate targets in an ISAR system.
Boeing-727 aircraft:
The first model is a Boeing 727 aircraft [1].

The simulation uses a stepped frequency X-
band radar operating at a center frequency of
9 GHz. With a total of 64 stepped frequencies,
the waveform has a bandwidth of 150 MHz and
a range resolution of 1 m. The PRF is 20 kHz
and the CIT is 0.82 seconds. A total of 64
range cells and 256 cross-range cells are used
in the imaging.

This simulation makes use of a simple vir-
tual instrument realization of the S-method,
done according to (15). For L = 0, the stan-
dard Fourier transform based representation is
obtained, as shown in Figure 7a. The general
shape of the aircraft can be made out, but it
is not possible to locate the range/cross-range
cells of individual point-scatterers as they are
too smeared in the cross-range dimension. By
changing the number of terms, L, we get the S-
method based representations with quadratic
and higher-order phase errors eliminated. Fig-
ure 7b shows the refocused image with L = 3
and Figure 7c with L = 6. Compared to Figure
7a, both images show a substantial decrease
in the amount of smearing in the cross-range.
However, the higher L value of 6 seems to make
further improvements in refocusing the nose
and tail point-scatterers of the aircraft. Fig-
ure 7c is thus chosen as the best image for this
data set.

MiG-25 aircraft:

The second model is a MiG-25 aircraft with
120 point-scatterers distributed along the edge
of the 2D shape of the aircraft [1]. The simu-
lation uses a stepped frequency X-band radar
operating at a center frequency of 9 GHz.
With a total of 64 stepped frequencies, it has a
bandwidth of 512 MHz and a range resolution
of 0.293 m. The PRF is 20 kHz and the CIT is
1.64 seconds. A total of 64 range cells and 512
cross-range cells are used for the imaging. The
aircraft is at a range of 3,500 m and is rotating
at 10 degrees/second, thus giving a cross-range
resolution of about 0.058 m. The rotation rate
is much higher than the normal rotation rate
needed to produce a clear image of the target.
We assume that target’s translational motion
can be perfectly compensated. However, due
to the fast rotation and relatively longer image
observation time, even after standard motion
compensation, the uncompensated phase error
is still large.

The same virtual instrument is used for
MIG-25 simulation. The standard Fourier
transform based representation is shown in
Figure 8a. As with the Boeing-727, the gen-
eral shape of the aircraft can be made out,
but it is not possible to locate the range/cross-
range cell of individual point-scatterers as they
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Fig. 6. ISAR images of a three-dimensional target model. Periodogram (left column), S-method (middle
column), Wigner distribution (right column). Images are presented at three time instants: t = 0 (first row),
t = 4 (second row) and t = 9 (third row).

are, once again, smeared in the cross-range di-
mension. The S-method representations with
quadratic and higher-order phase terms elimi-
nated are shown in Figure 8b with L = 3 and
Figure 8c with L = 6. As expected, both im-
ages show a substantial improvement in the de-
gree of smearing in the cross-range when com-
pared to Figure 8a. The greatest improvement
lies in the nose of the aircraft as it now con-

verges to a point. However, the higher L value
of 6 refocuses the nose substantially more and
so Figure 8c is chosen as the best image for
this data set.

F-16 aircraft:

The third and last simulation is an F-16 air-
craft and was developed using a CAD model
(see Acknowledgments). In this simulation,
the stepped-frequency Ku-band radar is oper-
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Fig. 7. ISAR images from simulated Boeing-727 data. (a) Image using conventional Fourier transform, (b)
Image using the S-method with L = 3, (c) Image using the S-method with L = 6.
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Fig. 8. ISAR images from simulated MiG-25 data. (a) Image using the conventional Fourier transform, (b)
Image using the S-method with L = 3, (c) Image using the S-method with L = 6.

ating at a center frequency of 16 GHz. There
are a total of 128 stepped frequencies with
each step equal to 6.25 MHz, thus giving a
800 MHz bandwidth and a range resolution of
about 0.188 m. A total of 91 range cells and
81 cross-range cells are used for the imaging.

Figure 9a shows the Fourier transform based
representation of the F-16. The figure clearly
shows that the image is severely blurred, mak-
ing it impossible to identify any part of the
aircraft. This means that the target’s motion
contains a substantial amount of rotational er-
ror. The S-method based representation, with
L = 3, was selected as a suitable refocused im-
age and is shown in Figure 9b. The S-method
was able to remove most of the blurring caused
by the quadratic and higher-order phase ef-

fects. However, the reflector on the wing is
smeared across the entire cross-range. This is
due to strong specular reflections from a few
scatterers on the wing, a phenomenon caused
by the CAD (computer-aided design) model
rather than by jet engine modulation (JEM).
Since the CAD model is composed of a large
number of polygons, one such polygon’s ori-
entation in such a manner that radar returns
contain specular reflection.

B. Experimental Data:

Experimental trials were conducted in an
ISAR system. The data was collected from a
delta-wing shaped apparatus. The delta-wing
is similar to the simulated six-reflector model.

An ISAR experiment is set up to examine
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Fig. 9. ISAR images from simulated F-16 data. (a) Image using conventional Fourier transform, (b) Image
using the S-method with L = 3.

Fig. 10. Picture of the delta-wing target motion simulator apparatus.

the distortion of ISAR images due to a time-
varying rotational motion. A 2-dimensional
delta-wing shaped target, the target motion
simulator (TMS), is built for the ISAR dis-
tortion experiments. A picture of the TMS is
shown in Figure 10. The target has a length
of 5 m on each of its three sides. Six trihedral
reflectors are mounted on the TMS as scatter-
ing centres of the target; all the scatterers are
located on the x-y plane. They are designed
to always face towards the radar as the TMS
rotates. The TMS target is set up so that it
rotates perpendicular to the radar line of sight.
This simplified target geometry is identical to
the one used in the numerical model given in
the previous section. Note that one corner re-

flector is placed asymmetrically to provide a
relative geometric reference of the TMS tar-
get. A time-varying rotational motion is in-
troduced by a programmable motor drive.

The delta-wing data was collected using an
X-band radar operating at a center frequency
of 10.1 GHz with 300 MHz bandwidth and a
range resolution of 0.5 m. The PRF is 2 kHz.
Each HRR profile is generated in 0.5 ms and
each profile has 41 range bins. The total data
set contains 60,000 HRR profiles. The delta-
wing is at a range of 2 km and is rotating at 2
degrees/second.

Since the entire data set consists of 60,000
pulses in the cross-range, it can be "cut" into
different size imaging intervals with each of the
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Fig. 11. ISAR images from experimental delta-wing data. First column contains Fourier transform based
images and second column contains S-method based ISAR images. Each image is zoomed in on the target
for clear presentation.

intervals displaying a different amount of mo-
tion error. This is the approach used in this
paper. Figures 11-13 show ISAR images from
three different imaging intervals. The smallest
interval consists of 1024 pulses in the cross-
range, which corresponds to a CIT of 0.512
seconds (Figure 11) and the largest interval
consists of 4096 pulses, which corresponds to
2.048 seconds (Figure 13). Figure 12 shows
the ISAR image from 2048 pulses, which cor-
responds to a CIT of 1.024 seconds. The Fig-
ures’ leftmost columns show the Fourier trans-
form based representations and their right-
most columns show the S-method based repre-
sentations. Since significant phase errors due
to nonuniform motion exist in the data, the

Fourier transform based images are blurred in
the cross-range dimension. This is most evi-
dent in Figures 13a, 13c, 13e and 12a where
it is not possible to locate individual reflectors
as some are severely blurred. In each of the S-
method based images, the cross-range smear-
ing is significantly reduced resulting in a dra-
matic improvement in image quality. The im-
ages are now focused and the six reflectors are
visible.

When compared to the simulated six reflec-
tor images, it is clear that the experimental
images in Figures 11-13 are less focused. This
is mainly due to angular dependencies between
radar and target, and shadowing effects that
corrupt the radar return.
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Fig. 12. ISAR images from experimental delta-wing data. First column contains Fourier transform based
images and second column contains S-method based ISAR images. Each image is zoomed in on the target
for clear presentation.

The amount of time it took the Fourier
transform and S-method program codes to be
executed was measured for each of the above
data sets. The program codes were executed
in Matlab using a Pentium-IV 2.66 GHz with
2.1 Gbyte of RAM. In relation to the Fourier
transform, the S-method ran 1.5 to 5.5 times
more slowly correspond to L values of 1 and
7, respectively. Each L value in the range
1 to 7 was used in producing refocused im-
ages of the above data sets. When compared
to other transforms, the S-method performs
faster. The WVD was applied to the above
data sets. This gave an average processing
time that is 592 times slower than the Fourier
transform, and significantly slower than the
S-method. The results indicate that the S-
method is able to produce well focused images
in real-time. For this reason, it is a useful tech-
nique for detecting targets.

VII. C��	
��
��

In this paper, we present the S-method
based approach to real-time motion compensa-
tion, image formation and image enhancement
of moving targets in ISAR and SAR. This
approach performs better than the Fourier
transform by drastically improving images of
fast, maneuvering targets by increasing the
SNR in both low and high noise environ-
ments. These advantages are a result of the S-
method’s ability to automatically compensate
for quadratic and all even higher-order terms
in phase. Thus, targets with constant accel-
eration will undergo full motion compensation
and their point-scatterers will each be local-
ized. It should be noted that the source of the
quadratic term can come from not only accel-
eration, but also non-uniform rotational mo-
tion and the cosine term in wide-angle imag-
ing. The method is also computationally sim-
ple, requiring only slight modifications to the
existing Fourier transform based algorithm.
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Fig. 13. ISAR images from experimental delta-wing data. First column contains Fourier transform based
images and second column contains S-method based ISAR images. Each image is zoomed in on the target
for clear presentation.

The effectiveness and robustness of the S-
method is made evident through an analysis of
its performance with noisy signals. It is shown
to increase the SNR in both low and high noise
environments, thereby improving images in es-
sentially all situations. A formula is derived for
the ratio of the S-method SNR to the Fourier
transform SNR, and confirms the advantage of
using the S-method in cases of non-stationary
signals. The S-method’s performance with
targets exhibiting three-dimensional motion is
also presented. Such motion is among the
many used in simulated and experimental data
sets to which the S-method is applied. These
data sets are range from groups of microwave
reflectors rotating in a two-dimensional plane

to fast-maneuvering aircraft exhibiting com-
plex changes in pitch, roll, and yaw. In all
cases, while the Fourier transform produces
images with severe blurring, the S-method is
able to produce focused images of the targets
by locating prominent point-scatterers in their
respective range and cross-range cells. Results
indicate that the S-method greatly surpasses
the conventional Fourier transform method in
improving blurred and distorted ISAR images
due to various target motions. The compar-
isons also made it clear that the S-method is
computationally efficient, as its algorithm is
executed in little as 1.5 times slower than the
conventional Fourier transform’s.

This paper demonstrates that the S-method
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can be applied to real-time target identifica-
tion in ISAR systems. This work is especially
pertinent to the ISAR imaging capability in
military intelligence, surveillance and recon-
naissance operations.
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