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Abstract– An approach to the estimation
of motion parameters of moving objects in a
video-sequence, by using the SLIDE (Subspace-
based line detection algorithm) algorithm, is
considered. The proposed procedure projects
video-frames to the coordinate axes, in order
to obtain synthetic images containing informa-
tion about the motion parameters. These syn-
thetic images are mapped to the FM signals by
using constant µ-propagation. The problem of
velocity estimation is reduced to the instanta-
neous frequency (IF) estimation. IF estimators,
based on time-frequency (TF) representations,
are used. Three TF representations: spectro-
gram (SPEC), Wigner distribution (WD), and
S-method (SM), are used and compared to this
aim. A tradeoff between concentration of the
TF representation (velocity estimation accu-
racy) and reduction of the cross-terms (pos-
sibility for estimation of the multiple objects
parameters) is achieved by the SM. A perfor-
mance analysis of the algorithm is done. Theo-
retical results are illustrated on several numer-
ical examples.

I. I������	�
��

Time-frequency (TF) representations have
a significant practical importance for high-
resolution analysis of signals with time-varying
parameters. Here we mention several inter-
esting areas where the TF based methods
have been used: mechanical and biological sys-
tems, musical and speech signals, radar sig-
nals, analysis of optical interferograms and
multidimensional signals, etc. [1]-[7]. Estima-
tion of time-varying velocities using TF repre-
sentations is the topic of this paper. The pre-
sented approach is based on frame projections
and the SLIDE (Subspace-based line detec-
tion) algorithm [8], [9]. This algorithm is orig-
inally introduced to analyze line parameters.
Numerous, very interesting, applications are
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presented in [8]. A key step of the SLIDE algo-
rithm is to map a line into a complex sinusoid.
By using frame projections on coordinate axes
the velocity of an object is mapped into an im-
age, containing lines [9]. In order to transform
line parameters to the complex sinusoid pa-
rameters, the SLIDE algorithm with constant
µ-propagation is applied. Velocity parameters
were estimated based on spectral characteris-
tics of complex sinusoids [9]-[11]. Very accu-
rate results are obtained when objects have
uniform velocities. However, for nonuniform
velocities the SLIDE algorithm produces a fre-
quency modulated (FM) signal. This is the
reason why the instantaneous frequency (IF)
estimators, based on the TF distributions, are
used in this paper. The IF is estimated as
a position of the TF representation maxima.
Displacement techniques [12]-[14], are applied
for improvement of the estimator accuracy.

The primary goal of the proposed approach,
as well as of the original method [9], is to deter-
mine motion parameters of several relatively
small moving objects in video-sequences in an
efficient way, reducing the problem from the
analysis of a 3D video-sequence to the spec-
tral analysis of 1D FM signals. Aerial traffick
monitoring [9] is one of the practical applica-
tions areas. There are several other methods
for tracking moving objects in video-sequences
[9], [15]-[18]. They can be applied in the case of
translational motion model or for objects with
constant velocities. The proposed method
does not assume any specific parametric mo-
tion model and it can be applied for track-
ing objects with varying velocities. IF (veloc-
ity) estimators based on the TF representa-
tions provide a highly accurate estimates. The
proposed estimators are robust with respect



ESTIMATION OF TIME-VARYING VELOCITIES OF MOVING OBJECTS... 1591

to noise influence. Note that there are sev-
eral other approaches for velocity estimation
in video-sequences where the Fourier trans-
form (FT) is used [19]-[21]. Recently, spectral
analysis based methods were employed for a
more general case of the optical flow estima-
tion where displacement is calculated for each
point in a sequence [22], [23]. Furthermore,
FT based techniques are applied for segmen-
tation and analysis of dynamic spatiotemporal
image sequences [19], [24], [25]. An overview
and comparison of the optical flow estimation
techniques can be found in [26]. Almost all op-
tical flow estimation techniques assume a three
stage procedure: (a) Smoothing and/or filter-
ing; (b) Determination of the spatiotemporal
derivatives; (c) Integration of measurements to
produce the 2D flow fields. Our procedure can
also be represented by a three stage algorithm:
(a) Transformation of the 3D video-sequence
to the FM signals; (b) Calculation of a TF rep-
resentation; (c) Motion parameters extraction
by IF estimation. For a video-sequence with
large amount of noise a spatiotemporal pre-
filtering can be employed in the initial stage of
the algorithm [26].

The paper is organized as follows. Deter-
mination of signals by the SLIDE algorithm is
described in Section II. An algorithm for time-
varying velocity estimation is presented in Sec-
tion III. Application of the various TF repre-
sentations is considered in Section IV. The per-
formance analysis of proposed algorithm with
application of the displacement technique is
given in Section V.

II. T�
��
�
	�� B�	�������

Assume that a video-sequence i(x, y, t) may
be considered as a superposition of M rel-
atively small moving objects sm(x, y), m =
1, ...,M, and a stationary background f(x, y),
where (x, y) are spatial coordinates and t is a
time-instant. Let the moving objects be cen-
tered around positions given by the coordinate
pairs (ϕmx (t), ϕmy (t)), m = 1, ...,M, at an in-
stant t. Then the video-sequence can be mod-
eled as:

i(x, y, t) = f(x, y)+

+
M∑

m=1

sm(x− ϕmx (t), y − ϕmy (t)). (1)

The initial positions of objects are (xm0 , y
m
0 ) =

(ϕmx (0), ϕmy (0)), m = 1, ...,M, while the pro-
jections of the velocities are

ṽ
m = (vmx (t), vmy (t))

=

(
dϕmx (t)

dt
,
dϕmy (t)

dt

)
,m = 1, 2, ...,M. (2)

Velocity is represented in pixels per frame.
The main idea of our approach is mapping

the 3-D video-sequence (1) into two 1-D FM
signals, in order to reduce the problem dimen-
sion and to employ highly accurate spectral
analysis techniques for motion parameter esti-
mation. These signals will contain information
about object motion parameters. The first
step in this procedure is determination of two
synthetic images by using projections of the
video-sequence onto coordinate axes. Consider
the projections of frames on x and y axes

Px(x, t) =
∑

y

i(x, y, t) Py(y, t) =
∑

x

i(x, y, t).

(3)
By inserting (1) in (3), the projection Px(x, t)
can be written as

Px(x, t) =
∑

y

i(x, y, t) =
∑

y

f(x, y)+

+
∑

y

M∑

m=1

sm(x− ϕmx (t), y − ϕmy (t)) =

= Fx(x) +
M∑

m=1

smx (x− ϕmx (t)), (4)

where Fx(x) =
∑
y f(x, y), and smx (x, y) =∑

y s
m(x, y), m = 1, ...,M , are projections

of the background and objects, respectively.
Similar expression holds for the y-axis projec-
tion

Py(y, t) = Fy(y) +
M∑

m=1

smy (y − ϕmy (t)). (5)

In the following we will analyze only the esti-
mation of parameters of moving object along
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the x-axis. In order to eliminate influence of
the background, differentiation of Px(x, t) with
respect to t is done

∂Px(x, t)

∂t
= Px(x, t+ 1)− Px(x, t) =

=
M∑

m=1

[smx (x−ϕmx (t+1))−smx (x−ϕmx (t))]. (6)

Now we want to prove that (6) possesses pat-
terns that correspond to the motion parame-
ters. By expanding ϕmx (t + 1) into the Taylor
series

ϕmx (t+ 1) = ϕmx (t) +
∞∑

k=1

1

k!

dkϕmx (t)

dtk
(7)

from (6) follows

∂Px(x, t)

∂t
=

=
M∑

m=1

[

smx

(

x− ϕmx (t)−
∞∑

k=1

1

k!

dkϕmx (t)

dtk

)

−

−smx (x− ϕmx (t))]. (8)

The first term on the right hand side of (8) can
approximately be written as:

smx

(

x− ϕmx (t)−
∞∑

k=1

1

k!

dkϕmx (t)

dtk

)

≈

≈ smx (x− ϕmx (t))−

−
∞∑

k=1

1

k!

dkϕmx (t)

dtk
∂smx (x− ϕmx (t))

∂x
. (9)

Then, the projection partial derivative with re-
spect to t is (6)

∂Px(x, t)

∂t
≈ −

M∑

m=1

(
∞∑

k=1

1

k!

dkϕmx (t)

dtk

)

×

×
∂smx (x− ϕmx (t))

∂x
=

=
M∑

m=1

(
∞∑

k=1

1

k!

dkϕmx (t)

dtk

)

Πm
x (x− ϕmx (t))

(10)

where Πm
x (x) = −∂smx (x)/∂x. Therefore,

we obtained the synthetic image ∂Px(x, t)/∂t
with x and t coordinates that keep information
about objects’ coordinate ϕmx (t), m = 1, ...,M .
Direct estimation of the motion parameters
from ∂Px(x, t)/∂t can be inaccurate due to the
noise influence.
Then, transformation of the synthetic image

∂Px(x, t)/∂t to an FM signal is performed, in
order to produce a signal whose parameters
can be analyzed by the spectral analysis tech-
niques. The constant µ-propagation [8], can
be used for this purpose. This technique stems
from the detection of direction-of-arrival of a
signal to a sensor array. Its application to the
estimation of line parameters is proposed in
[8]. Mapping of the 2-D function ∂Px(x, t)/∂t
into the frequency domain, by using the con-
stant µ-propagation, can be performed as [8],
[9]

zx(t) =
∑

x

[∂P (x, t)/∂t]ejµx =

=
M∑

m=1

(
∞∑

k=1

1

k!

dkϕmx (t)

dtk

)
∑

x

Πm
x (x−ϕmx (t))ejµx

=
M∑

m=1

(
∞∑

k=1

1

k!

dkϕmx (t)

dtk

)

Φmx (µ) exp(jµϕmx (t))

(11)
where Φmx (µ) is the FT of signal Πm

x (x)

Φmx (µ) =
∑

x

Πm
x (x) exp(jµx). (12)

Now the motion parameters ϕmx (t) of mov-
ing objects can be extracted from the signal
zx(t), by using some of the spectral analysis
tools. For constant velocity of the moving ob-
ject, the FT based methods are employed [8],
[9]. However, for objects with varying velocity
more accurate results may be obtained by us-
ing the TF representations, as it will be shown
later.
As a result of the object motion the value of

∂Px(x, t)/∂t will have two components: posi-
tive and negative. Since these two components
produce the same spectral content, we intro-
duce a modified function

P̃x(x, t) =

{
∂Px(x,t)

∂t

∂Px(x,t)
∂t

≥ 0

0 ∂Px(x,t)
∂t

< 0
(13)
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in order to remove one of these components.
Therefore, the analysis of the object motion
parameters is reduced to the analysis of motion
of one of the object edges. We will assume
that the function Πm

x (x) can approximately be
written as

Πm
x (x) ≈ Amδ(x−∆xm) (14)

where ∆xm contains information about the ob-
ject dimension. >From (12) and (14) follows

Φmx (µ) ≈ Am exp(jµ∆xm). (15)

This relationship holds for relatively small
variations of object position between the con-
secutive frames.
Consider the case of constant velocities

vmx (t) =
dϕmx (t)

dt
= vmx = const

dkϕmx (t)

dtk
= 0 for k ≥ 2. (16)

From (11), (14), and (16), follows

zx(t) =
M∑

m=1

Amv
m
x exp(jµ∆xm + jµϕmx (t)).

(17)
The FT of zx(t) is

Zx(ω) =
∑

t

zx(t)e−jωt =

=
M∑

m=1

Amv
m
x exp(jµ∆xm + jµxm0 )

×δ

(
ω − µ

dϕmx (t)

dt

)
=

=
M∑

m=1

Amv
m
x exp(jµ∆xm+ jµxm0 )δ(ω−µvmx ).

(18)
In the case of single moving object (M = 1),
we have:

Zx(ω) = A1vx exp(jµ∆x + jµx0)δ(ω − µvx).
(19)

Thus, position of the FT maximum determines
the object velocity

ω̂ = arg max
ω
|Zx(ω)| = µvx =⇒ vx = ω̂/µ.

(20)

Observe that the velocity estimation can be
done by using position of the FT maximum.
The signal phase contains information about
the object initial position x0. Since there is an
ambiguity in the phase function, it cannot be
reliable for this purpose. One approach that
solves this problem, based on the variable µ-
propagation, is proposed in [27].

Note that we have considered an idealized
motion model. In a real video sequence, a
spatiotemporal noise is present. It can be re-
duced by filtering in the space domain and/or
by employing some more sophisticated deriva-
tion technique in (6). Details on this topic can
be found in [26].

Example 1: Consider a time-invariant
background of the size 256 × 256. The scene
contains two moving objects with initial po-
sitions (ϕ1x(0), ϕ1y(0)) = (x10, y

1
0) = (2, 8) and

(ϕ2x(0), ϕ2y(0)) = (x20, y
2
0) = (13, 217). We have

considered 100 frames. The objects’ veloci-
ties are: (dϕ1x(t)/dt, dϕ1y(t)/dt) = (v1x, v

1
y) =

(1.5, 2) and (dϕ2x(t)/dt, dϕ2y(t)/dt) = (v2x, v
2
y)

= (2,−1.2). The projection Px(x, t) is shown
in Fig. 1a, while ∂Px(x, t)/∂t is shown in Fig.
1b. Fig. 1b shows the lines which are the basis
for application of the SLIDE algorithm to the
velocity estimation. The signal zx(t) is pro-
duced by using the constant µ−propagation
with µ = 1. It is depicted in Fig. 1c. The
FT of zx(t) is shown in Fig. 1d. Estimated
parameters are: (v̂1x, v̂

1
y) = (1.508, 2.011) and

(v̂2x, v̂
2
y) = (2.011,−1.194).

III. SLIDE A����
��� ��� O��
	��

�
�� V��
���
 V
��	
�

�

In the previous application a reasonable
minimum number of frames for velocity esti-
mation is 20, i.e., time interval of 0.8s for the
video sequence with 25 frames/s. Since the ve-
locity can significantly vary within this inter-
val, our intention is to develop an algorithm
which will be able to track time-varying veloc-
ities in each considered frame. The previous
algorithm can be modified by applying the TF
representations to the signal zx(t).

Consider a linear velocity variation, with the
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Fig. 1. Velocity estimation by using the SLIDE algorithm: a) Px(x, t); b) ∂Px(x, t)/∂t; c) zx(t); and d) |Zx(ω)|.

position function:

ϕmx (t) = xm0 + vmx0t+ amx t
2/2,m = 1, ...,M

(21)
where xm0 is the initial position, vmx0 is the ini-
tial velocity, and amx is the acceleration. The
object velocity is

vmx (t) =
dϕmx (t)

dt
= vmx0 + amx t. (22)

The signal zx(t) can be represented as

zx(t) =
M∑

m=1

(vmx0 + amx t+ amx /2)

×Φmx (µ) exp(jµϕmx (t)) =

=
M∑

m=1

(vmx (t) + amx /2)Am exp(jµ∆xm)

× exp(jµ(xm0 + vmx0t + amx t
2/2)). (23)

Variable phase function associated with them-
th object is given by

φmx (t) = µ(∆xm + xm0 + vmx0t + amx t
2/2) (24)

while the corresponding IF is

ωmx (t) =
dφmx (t)

dt
= µ(vmx0 + amx t) = µvmx (t).

(25)

Therefore, we will use the IF estimation for
analysis of object’s velocity. Numerous IF es-
timators are used in practice. An excellent
review of these estimators is given in widely
used Boashash paper [28]. For monocompo-
nent signals, the commonly used approach is
the IF estimation based on the position of the
TF distribution maxima [29]-[31]. Several ap-
proaches are also developed for the IF estima-
tion in the case of multicomponent signals [32],
[33]. Here, we will use the following procedure:
1) Determination of zx(t) (or zy(t));
2) Mapping of the signal zx(t) into the TF

plane by using a TF representation:

zx(t)
(t,ω)
−→ TFzx(t, ω). (26)

3) IF estimation corresponding to the first
object velocity. It will be done by using the
maximum of the TF distribution:

ω̂1x(t) = arg max
ω

TFzx(t, ω). (27)

4) Obtaining a new TF representation by
taking zero-values in the region around the
determined maximum [ω̂1x(t) − δ, ω̂1x(t) + δ].
This TF representation will be denoted by

TF
(1)
zx (t, ω). It will be used for the IF esti-

mation of the next component:

ω̂2x(t) = arg max
ω

TF(1)zx (t, ω). (28)
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Step 4 is repeated for each moving object m =
3, ...,M .
5) The velocities based on the IFs are given

by:

v̂mx (t) = ω̂mx (t)/µ, m = 1, 2, ...,M. (29)

6) Accelerations are estimated as:

âmx =
1

t− t0
[v̂mx (t)− v̂mx (t0)],m = 1, 2, ...,M.

(30)
The number of moving objects can be es-

timated based on the comparison of the TF

representation TF
(m)
zx (t, ω) with the assumed

threshold value. If it is less than a thresh-
old, one may assume that there are no more
moving objects in the sequence, and that the
procedure can be stopped. An approach for
the threshold value determination is presented
in [33].

IV. TF R
!�
�
����
���

Since the TF distributions play a key role
in our approach, a short review of some com-
monly used distributions will be done in this
section. Comprehensive analysis of these and
other important TF distributions can be found
in [34]-[36].

A. Spectrogram

The simplest TF representation is the spec-
trogram (SPEC), defined as a squared modu-
lus of the short-time FT (STFT)

SPECzx(t, ω) = |STFTzx(t, ω)|2 =

∣∣∣∣∣

∑

τ

zx(t+ τ)w(τ)e−jωτ

∣∣∣∣∣

2

(31)

where w(τ) is a lag window function. In the
case of relatively slow varying velocity, as com-
pared to the signal phase, the following ap-
proximation holds [35]:

SPECzx(t, ω) ∼=

M∑

m=1

2πA2m[vmx (t) + amx /2]2

µamx

×w2
(
ω − µamx t− µvmx0

µamx

)
=

M∑

m=1

SPECmzx(t, ω)

(32)

where:

SPECmzx(t, ω) =
2πA2m[vmx (t) + amx /2]2

µamx

×w2
(
ω − µamx t− µvmx0

µamx

)
. (33)

From (32) and (33) one may observe that:
1) Taking the window w(0) > w(t) for ∀t 
=

0, the maximum of SPECmzx(t, ω) is positioned
along the IF:

ω = µ(amx t+ vmxo). (34)

2) For constant velocity (amx = 0) the SPEC
is ideally concentrated along the IF:

SPECmzx(t, ω) ∼ δ(ω − µvmx0). (35)

3) By increasing amx , the resolution and am-
plitude of the TF components decrease. It
may cause error in the IF estimation. This is
the reason for introducing other highly concen-
trated TF distributions, like the Wigner distri-
bution (WD).

B. Wigner Distribution

The WD is defined by:

WDmzx(t, ω) =
∑

τ

w(τ)w(−τ)

×zmx (t+ τ)zm∗x (t− τ)e−j2ωτ . (36)

In the case of the signal zmx (t), (23), it is:

WDmzx(t, ω) =

=
∑

τ

w(τ)w(−τ)Am[vmx (t+ τ) + amx /2]

× exp[jµ(xm0 +∆xm+vmx0(t+τ)+amx (t+τ)2/2)]

×Am[vmx (t− τ) + am/2] exp[−jµ(xm0 + ∆xm

+vmx0(t− τ) + amx (t− τ)2/2)]e−j2ωτ . (37)

For vmx (t+ τ) ∼= vmx (t− τ) ∼= vmx (t), and am �
vmx (t), follows:

WDmzx(t, ω) ∼= A2m[vmx (t)]2
∑

τ

w(τ)w(−τ)

× exp[jµ2vmx0τ + jµ2amx tτ ]e−j2ωτ =



1596 TIME-FREQUENCY SIGNAL ANALYSIS

=
1

2
A2m[vmx (t)]2W (ω − µ(amx t + vmx0)) (38)

with W (ω) =FT{w(τ/2)w(−τ/2)}. For a
wide window width, the following holds:

WDmzx(t, ω) ∼= πA2m[vmx (t)]2δ(ω−µ(amx t+vmx0)).
(39)

Note that, for a linear FM signal, the WD is
ideally concentrated along the IF (39). In the
considered application this is a very favorable
property of the WD.
Unfortunately, the WD is nonlinear, i.e., for

multicomponent signal zx(t) =
∑M
m=1 z

m
x (t) it

exhibits very emphatic cross-terms:

WDzx(t, ω) =
M∑

m=1

WDmzx(t, ω)+

+2 Re






M∑

m,n=1
m�=n

WDmnzx (t, ω)





, (40)

where WDmnzx (t, ω), for m 
= n, is the cross-
term:

WDmnzx (t, ω) =
∑

τ

w(τ)w(−τ)

×zmx (t+ τ)zn∗x (t− τ)e−j2ωτ . (41)

This is a serious drawback of the WD since
the cross-terms can make the IF estimation
impossible. This is the reason for introduc-
ing the reduced interference distributions [37],
[38]. All of them reduce cross-terms, and at
the same time decrease the auto-terms con-
centration [35]. The distribution, called the
S-method (SM) [38], will be used here for mul-
ticomponent signals. The SM produces the
auto-terms concentration close to those in the
WD, with significantly suppressed cross-terms.

C. S-method

The SM can be realized in a very simple way
by using the STFT

SMzx(t, ω) =
∑

θ

P (θ)

×STFTzx(t, ω + θ)STFT∗zx(t, ω − θ). (42)

Two limit cases of the SM are the SPEC for
P (θ) = δ(θ), and the WD for P (θ) = 1. Tak-
ing an appropriate frequency window P (θ)

P (θ) =

{
1 |θ| ≤ L∆ω
0 |θ| > L∆ω,

(43)

where ∆ω is the frequency resolution of the
STFT, it is possible to achieve the concen-
tration of auto-terms as in the WD, and re-
duce cross-terms as in the SPEC. More details
about the SM, frequency window width and
reduction of the cross-terms can be found in
[38]-[40]. Note that significant improvement
in the concentration can be achieved by using
relatively narrow frequency window P (θ), (for
example L = 1, 2, 3 is appropriate in numerous
applications).

D. Modification of TF Representations

It can be seen that the signal zx(t) has
amplitude proportional to the object velocity
(23). Thus, the amplitude of the TF distri-
butions is proportional to the squared object
velocity (33), (39). By using the modified TF
representation

TF′(t, ω) = TF(t, ω)/f(ω), (44)

better IF estimation can be achieved. In the
examples we used the function f(ω) of the
form

f(ω) = |ω|2 + (k∆ω)2. (45)

Example 2: Here, we consider a mov-
ing object with the initial position (x0, y0) =
(106, 12), initial velocity (vx0, vy0) = (0.5, 0.5),
and acceleration (ax, ay) = (0.02, 0.01) in a
video sequence of 100 frames. The initial
frame is shown in Fig. 2a, while the last
frame is shown in Fig. 2b. The projection
functions Px(x, t) and Py(y, t) are shown in
Fig. 2c and 2d, respectively, while functions
∂Px(x, t)/∂t and ∂Py(y, t)/∂t are given in Fig.
2e and 2f. The FTs of signals zx(t) and zy(t)
are shown in Fig. 3a and 3b. They pro-
vide only the information about the spectral
content, i.e., the “average” velocity in a se-
quence. Estimation of the varying velocity can
be performed by using the TF distributions:
the SPECs (Fig. 3c and 3d), and the WDs
(Fig. 3e and 3f). The velocity estimations,
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Fig. 2. Video sequence with single moving object: a) Frame 1; b) Frame 100; c) Px(x, t); d) Py(y, t); e)
∂Px(x, t)/∂t; and f) ∂Py(y, t)/∂t.

performed by using maxima of the SPECs and
the WDs, are shown in Fig. 4. The true veloci-
ties are marked by dashed lines while their esti-
mates are depicted with thick lines. The mean
squared errors (MSE) are MSEx=0.01001
and MSEy=0.01318 for the SPECs, and
MSEx=0.00164 and MSEy=0.00317 for the
WDs.

Example 3: In this example, a sequence
with three moving objects is considered. The
initial positions of the objects are (x10, y

1
0) =

(106, 12), (x20, y
2
0) = (8, 12), and (x30, y

3
0) =

(198, 250), while the initial velocities are:
(v1x0, v

1
y0) = (0.5, 0.5), (v2x0, v

2
y0) = (2.8, 4),

and (v3x0, v
3
y0) = (−0.93,−0.2). Accelera-

tions of the objects are (a1x, a
1
y) = (0.02, 0.01),

(a2x, a
2
y) = (−0.05,−0.08), and (a3x, a

3
y) =

(−0.02,−0.045). The initial and the 100th
frame are shown in Fig. 5a and 5b, re-
spectively. The projections Px(x, t) and
∂Px(x, t)/∂t are shown in Fig. 5c and 5d. The
SPEC, the SM for L = 2, and the WD are
shown in Fig. 6. The WD exhibits significant

amount of cross-terms (Fig. 6c). The velocity
estimates are shown in Fig. 7. Fig. 7a and
7b represent estimates obtained by using the
SPEC, while the estimation performed by us-
ing the SM with L = 2 is shown in Fig. 7c and
7d. Procedure (26)-(30) is applied for the ve-
locity estimation. The improvement of estima-
tion accuracy is obtained by using the modified
form of the TF distributions (44), Figs. 7b,d.
It can be seen that the SPEC forms, Fig. 7a
and 7b, cannot track fast velocity variations,
due to the small TF resolution. That is the
reason why, in the short intervals, the spec-
trogram based velocity estimation recognizes
constant values. The SM overcomes this draw-
back since it is highly concentrated along the
IF, (Fig. 7c and 7d).

Example 4: A real video-sequence is con-
sidered in this example. It lasts 12.4s and
it contains 187 video-frames (15 frames/s) of
the size 320 × 240 with 256 gray levels. The
sequence is recorded in the QVGA Motion-
JPEG format. Scene contains the moving ob-
ject (walker) and the background. Object po-
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Fig. 3. FTs and TF representations of zx(t) and zy(t): a) Zx(ω); b) Zy(ω); c) SPEC of signal zx(t); d) SPEC
of signal zy(t); e) WD of signal zx(t); and f) WD of signal zy(t).

Fig. 4. Velocity estimation based on: a) SPECzx(t, ω); b) SPECzy(t, ω); c) WDzx(t, ω); and d) WDzy(t, ω).
True value - dashed line; Velocity estimate - thick line.
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Fig. 5. Video-sequence with three moving objects: a) Frame 1; b) Frame 100; c) Px(x, t); and d) ∂Px(x, t)/∂t.

Fig. 6. TF representations for video-sequence with three moving objects: a) SPEC; b) SM with L = 2; and c)
WD.
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Fig. 7. Velocity estimation of three moving objects: a) SPEC; b) Modified SPEC; c) SM; and d) Modified SM.

sition in frames 1, 11, 21, ..., 181, is depicted in
Fig. 8a1 . It can be seen that the object slowly
accelerates from frame 1 to 120, with rapidly
increasing velocity around the frame 120. Af-
ter that, velocity decreases around frame 150
(within one walker step), increases again until
the final decrease in the frame 180. Since the
object has moved along the x-coordinate, we
made only velocity estimation of x-component.
The synthetic image ∂Px(x, t)/∂t is shown in
Fig. 8b. From this figure we can observe the
pattern that contains motion parameters. Rel-
atively small patterns may be noticed around
the basic one, that represent moving of the ob-
ject’s legs and hands. Also, noise-like patterns
are observed from ∂Px(x, t)/∂t. Noise sources
are: variations in the background, error caused
by the compression method, and variations in
the scene illumination. Error caused by vari-
ations in the scene illumination produces ver-
tical lines in ∂Px(x, t)/∂t. This error appears
several times in the first 50 frames and three
such frames are denoted with arrows. The con-
stant µ-propagation with µ = 0.4 is applied to
the function ∂Px(x, t)/∂t from Fig. 8b. The
spectrogram of the signal zx(t) is shown in Fig.
8c, while the SM is shown in Fig. 8d. Veloc-
ity estimation obtained by using these two TF
representations is presented in Fig. 8e. Dot-

1The video sequence can be found at: http://
www.tfsa.ac.me/dscn1442.mov

ted line represents results obtained by using
the SPEC, while thick line depicts estimate ob-
tained by using the SM. It can be easily seen
that the SPEC is not precise velocity estima-
tor, while the SM tracks accurately the ob-
ject velocity within the entire interval. It is
important to note that, in this case, an accu-
rate velocity estimation would be very difficult
by employing any specific parametric motion
model.

V. P
�#�����	
 A���$�
�

The accuracy of velocity estimation depends
on several factors, such as: discretization, sto-
chastic error (caused by: approximations in
the algorithm, background influence, variation
of the illumination, etc.), and bias in the TF
representations. An analysis of the mentioned
errors is presented in this section.

A. Discretization Error and Displacement

Technique

The maximum velocity value, that can be
estimated by using the presented algorithm,
depends on parameter µ. Since the sampling
interval in the signal zx(t) is ∆t = 1, then the
maximum frequency in the TF representations
is

ωmax =
2π

2∆t
= π. (46)
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Fig. 8. Velocity estimation in the real video-sequence: a) Object positions in frames 1, 11, 21, ..., 181; b)
∂Px(x, t)/∂t (arrows depict frames with illuminance variation); c) SPECzx(t, ω); d) SMzx(t, ω); and e)
Velocity estimates: Dotted line - SPEC; Thick line - SM.

Thus, the velocity maximum which can be es-
timated is vmax = ωmax/µ = π/µ. Larger
velocity would cause the aliasing effect and
the estimation could not be done accurately.
For example, µ = 0.5 produces vmax ≈ 2π
pixels/frame. This is a reasonable operating
range for many practical applications. Resolu-
tion of the TF distributions is

∆vx =
2vmax
Nw

=
2π

µNw
(47)

where Nw is the window width in the short-
time FT (31). The MSE caused by a discrete

nature of the TF distribution is

MSE(∆vx) =
1

12

[
2π

µNw

]2
. (48)

The uniform probability of error in the interval
[−∆vx/2,∆vx/2] is assumed. It can be seen
that with a decrease of µ the maximum de-
tectable velocity increases, while the accuracy
of estimation decreases. The methods for re-
ducing this error are based on zero-padding
of signal zx(t) in the time-domain, or on dis-
placement techniques. For this application we
have found that the latter are more appropri-
ate [12], [13]. They are based on interpolation
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of the TF distributions around their maxima.
Here, we have used the technique described in
[12]. The velocity estimation can be obtained
as

v̂′x(t) = v̂x(t) + δx(t)∆vx (49)

where v̂x(t) is the estimate of velocity per-
formed by using the maxima of the TF repre-
sentation, while δx(t) is the displacement. For
the TF distributions calculated by using the
Hanning window, the displacement is given by
[12]

δx(t) =
1.5[Q+1 −Q−1]

Q−1 [1 +Q+1/Q0] +Q0 +Q+1
(50)

where Qi = |STFT (t, µv̂x(t) + i∆ω)|, i =
−1, 0, 1, for the estimation based on the STFT,
and Qi = |WD(t, µv̂x(t) + i∆ω)|, i = −1, 0, 1,
for the estimation based on the WD. If the SM
is used, Qi in (50) is

Qi = |SM(t, µv̂x(t) + i∆ω)|α, i = −1, 0, 1
(51)

with 1/2 ≤ α ≤ 1 (for L = 0 =⇒ α = 1/2, and
for L ≥ Nw/2 =⇒ α = 1).

Example 5: Consider a moving object with
parameters as in Example 2. Estimation of the
velocity component vx(t), based on the SM
(with L = 2) maxima, is shown in Fig. 9a.
The improvement of estimation precision ob-
tained by using the displacement technique is
shown in Fig. 9b. The corresponding MSEs
are given in Fig. 9, as well. The MSE is de-
creased more than 5 times by using the dis-
placement.

B. Stochastic error

Approximations in expressions (10), (14),
(15) introduce an error in the algorithm. Ad-
ditional errors are caused by the background
variation, interactions between the objects and
the background, camera motion, etc. These
errors can be modeled by additive νa(t) and
multiplicative νm(t) noises

z′x(t) = zx(t)(1+νm(t))+νa(t) = zx(t)+νz(t)
(52)

where νz(t) represents the noise influenced
term:

νz(t) = zx(t)νm(t) + νa(t). (53)

An asymptotic expression for the variance of
the WD based IF estimator is derived in [30].
The velocity estimator variance, under as-
sumption that νz(t) is a white Gaussian noise
with the variance σ2z, is given as

σ2(t,Nw) = var{∆v̂(t)} =

6σ2z
µ2|Az(t)|2

(
1 +

σ2z
2|Az(t)|2

)
1

N3
w

(54)

where Az(t) is the amplitude of signal zx(t),
(11):

Az(t) = A

(
∞∑

k=1

1

k!

dkϕx(t)

dtk

)

(55)

while A is the amplitude of motion pattern in
∂Px(x, t)/∂t (13). By neglecting the higher or-
der derivatives in (55), the variance σ2(t,Nw)
becomes

σ2(t,Nw) =
6σ2z

µ2|Avx(t)|2
×

(
1 +

σ2z
2|Avx(t)|2

)
1

N3
w

. (56)

Obviously, error caused by noise is an increas-
ing function of the variance σ2z, while it is a
decreasing function of A, vz(t), and window
length Nw. Large error in the case of small
velocity |vz(t)| ≈ 0 can be reduced by using
modified TF representations (44). It will be
illustrated on Example 6.

C. Bias

The bias in the IF estimation comes from
the higher order derivatives in the signal’s
phase, i.e., when velocity can be represented
with a higher order polynomial. If we take

zx(t) ≈ Az(t) exp(jµϕx(t)) (57)

the bias of the WD based estimator is [30]

bias(v̂x(t)) =
∞∑

s=1

as
d2s+1ϕx(t)

dt2s+1
N2s
w (58)

where as are constants determined by the win-
dow shape. Neglecting higher order deriva-
tives, the bias can be reduced to [30]

bias(v̂x(t)) ≈ a1
d2vx(t)

dt2
N2
w. (59)
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Fig. 9. Velocity estimation by using: a) SM; and b) SM with displacement.

Fig. 10. Real video-sequence with artificial object: a) Scene without object: Initial frame; b) Scene with object:

Object positions in frames 1, 11, 21, ..., 201, Arrows mark motion direction; c) P̃x(x, t); and d) P̃y(y, t).

Note that for the rectangular window holds
a1 = 1/(40µ), see [30, eq. (11)]. The bias
is an increasing function with respect to the
window width. The expressions for bias have
similar forms for other TF representations [30].

D. Optimal Window Width

The estimation MSE can be written as a
sum of squared bias and variance

MSE(t,Nw) =

(
1

40µ

d2vx(t)

dt2
N2
w

)2
+

6σ2z
µ2|Avx(t)|2

(
1 +

σ2z
2|Avx(t)|2

)
1

N3
w

. (60)

Minimum of the MSE is achieved for

∂MSE(t,Nw)

∂Nw
|Nw=Nopt(t) = 0. (61)
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Fig. 11. TF representations and velocity estimates along the x-coordinate: Left column: SMs; Right column:
v̂x(t), Thin line: Exact velocity; Thick line: Estimated velocity. First row: Nw = 8; Second row: Nw = 32;
Third row: Nw = 128; and Fourth row: Modified SMs Nw = 32 and k = 5.

Then the optimal window width is

Nopt(t) =
7

√√√√√
7200σ2z

(
1 + 2σ2z

|Avx(t)|2

)

|Avx(t)|2 d
2vx(t)
dt2

. (62)

Obviously, this formula cannot be used for de-
termination of the optimal window width since
it contains unknown motion parameters (ve-
locity and its derivative). Recently, an adap-
tive algorithm for determination of the subop-
timal window width in the IF estimator, based
on the TF representations, has been proposed
[30]. Application of that adaptive algorithm
to the velocity estimation will be the topic of
our further research.

Example 6. A real video-sequence is con-
sidered. Its initial frame is shown in Fig.
10a2 . Sequence has 205 frames, and it lasts
13.6sec. Frame size is 320 × 240. We trans-
form each frame to a 256-level grayscale image
and we calculated synthetic images P̃x(x, t)
and P̃y(y, t). The mean value of P̃x(x, t) is

36.74, while for P̃y(y, t) it is 56.22. An artifi-
cial moving object is added to this sequence.
It is a black square of size 5× 5 pixels, whose
motion can be described as

ϕx(t) = 14.81 + 5.24t− 0.025t2,

2The video sequence can be found at: http://
www.tfsa.ac.me/dscn1632.mov
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Fig. 12. TF representations and velocity estimates along the y-coordinate: Left column: SMs; Right column:
v̂y(t), Thin line: Exact velocity; Thick line: Estimated velocity. First row: Nw = 8; Second row: Nw = 32;
Third row: Nw = 128; and Fourth row: Modified SMs Nw = 32 and k = 5.

ϕy(t) = 50 + 45 sin(0.035t+ 0.185). (63)

We presented positions of the object in frames
1, 11, 21, ..., 201, with arrows denoting mo-
tion direction in Fig. 10b. Projections P̃x(x, t)
and P̃y(y, t) (13) are shown in Fig. 10c and
10d. Motion patterns can be observed from
these figures. The constant µ-propagation
is applied with µ = 0.5. The SMs with
Nw = 8, Nw = 32, and Nw = 128, and
the modified SM (44) with Nw = 32 and
k = 5, with corresponding velocity estimates,
are shown in Figs. 11 and 12. The MSEs
are: MSEx = (2.1478, 0.7918, 0.1320, 0.0088)
and MSEy = (4.8197, 1.1286, 0.1875, 0.0235)
for these four TF representations, respectively.

It can be seen that the modified SM behaves
better than other TF representations, espe-
cially around vx(t) ≈ 0 and vy(t) ≈ 0.
Also, we added artificial noise to the se-

quence

i′(x, y, t) = i(x, y, t) + σν(x, y, t), (64)

where ν(x, y, t) is the white Gaussian noise
with unitary variance
E{ν(x′, y′, t′)ν(x′′, y′′, t′′)} = δ(x′ − x′′, y′ −
y′′, t′ − t′′). Two cases are considered: σ = 5
and σ = 10. The initial frames with object
positions and with projections P̃x(x, t) and
P̃y(y, t) are shown in Fig. 13. The modi-
fied SM with Nw = 32 and k = 5 is ap-
plied in these cases, Fig. 14. The MSEs
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obtained by the Monte Carlo simulation in
20 trials are: MSEx = (0.0119, 0.4741) and
MSEy = (0.0384, 0.1955), for these two noise
amounts, respectively. In our simulations the
larger amount of noise than σ = 12 produced
unreliable estimates. This error can be re-
duced by using spatiotemporal filters or more
sophisticated differentiation function than (6).
More details on this topic can be found in [26].

VI. C��	���
��

TF analysis tools are used for estimation of
time-varying velocity of moving objects. The
constant µ-propagation is used to transform
motion parameters to an FM signal. The ob-
ject velocity is estimated based on the IF. Dif-
ferent TF representations, employed as the IF
estimators, were analyzed and compared. In
the case of a single moving object, the WD is
a very appropriate tool. The SM is used for
velocity estimation of several moving objects.
The displacement technique and the modified
TF representations are proposed for an im-
provement of the estimation accuracy.
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