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Motion Parameters Estimation by New
Propagation Approach and
Time-frequency Representations

Igor Djurovié, Srdjan Stankovié, Akira Ohsumi and Hiroshi Ijima

Abstract— Estimation of time-varying motion
parameters of moving objects is considered.
The motion parameters are mapped into the in-
stantaneous frequency (IF) of a frequency mod-
ulated (FM) signal. The IF estimation is ob-
tained using the Wigner distribution (WD).
Generalization in the case of multiple objects
and reduced interference distributions is given.
A new propagation approach is proposed for
joint estimation of velocity and position of ob-
jects in a video-sequence. This approach pro-
duces better accuracy than the one based on
the variable p-propagation-based one.

I. INTRODUCTION

Motion estimation in video-sequences is a
corner stone in numerous applications. Espe-
cially, one of the important application fields is
the compression of video-signals. An overview
of techniques for the motion estimation used
in the video-signal compression is presented in
[1]-[3]- Detailed analysis of the optical flow es-
timation techniques is given in [4]. Tracking
and estimating motion parameters of several
moving objects in the sequence are the other
important issues. Recently, several techniques
based on the spectral analysis methods have
been proposed for this purpose.

In this paper, the time-frequency (TF)
analysis tools will be applied to the motion
parameters estimation. The spectral analysis
methods are one of the research directions in
the motion parameters and optical flow esti-
mation. Details of this research are published
in [5]-[16]. Numerous motion estimation algo-
rithms use projections of video-frames to co-
ordinate axes, in order to simplify the analy-
sis of a 3D video-sequence (2 spatial and 1
time coordinate) [8]-[9]. Synthetic images, ob-
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tained by projection of a video-sequence on the
coordinate axes, are used to produce the fre-
quency modulated (FM) signals [5], [6]. The
motion parameters can be obtained by spec-
tral analysis of these FM signals. The con-
stant p-propagation is proposed in [5], [6] for
mapping the synthetic images to the FM sig-
nals. This propagation approach stems from
a high-resolution estimation of direction-of-
arrival of impinging signals on the linear sen-
sors array [5]. The Fourier transform can be
used for estimation in the case of constant
velocities [6], while for the varying velocities
the TF methods for extraction of object’s ve-
locities are applied in [13]. The variable u-
propagation is proposed in [6], [7] for joint es-
timation of velocity and object position. In the
case of fast varying objects, this propagation
approach produces the signal with highly non-
linear phase. The TF representation-based
estimators of object parameters in this case
exhibit significant bias and sensitivity to the
spatio-temporal noise influence. In this paper,
we will propose a new propagation approach
that produces smaller bias in the estimate as
well as higher robustness to the noise influence.

The paper is organized as follows. An
overview of the instantaneous frequency (IF)
estimation based on the TF representations, in
particular the Wigner distribution (WD) and
the S-method (SM), is presented in Section II.
Transformation of the video-sequence to the
synthetic images is analyzed in Section III.
Motion parameters estimation by using con-
stant u-propagation, variable p-propagation
and new approach is given in Section IV. Nu-
merical examples are presented in Section V.
Conclusion is given in Section VI.
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II. TF REPRESENTATIONS AS IF ESTIMATOR

TF representations are widely used for es-
timation of signal parameters [17]. The most
important parameter is the IF. IF estimators
based on the positions of the TF representa-
tion maxima are commonly used in practice
[18]-[20]. In this paper the TF representations
are applied to the estimation of motion para-
meters of moving objects in a video-sequence,
where the motion parameters are embedded
in the IF of the analyzed signal. The IF of
the FM signal z(t) = A, (t)exp(jo(t)) is de-
fined as the first derivative of signal phase:
w(t) = ¢'(t). Assume that the signal is trans-
formed to the 2D TF plane, by using the TF
method: z(t) — TF,(t,w). The TF represen-
tations are usually highly concentrated on the
IF. Therefore, the IF can be estimated by us-
ing the position of the TF representation max-
ima [17]: @©(t) = argmax,TF,(t,w). For one-
component signal, the WD is a commonly used
TF representation (and IF estimator):

WD, (t,w) =

N/2-1

= Z Z(t—i—T)Z*(t—T)e_jZWT. (1)

T=—N/2

The WD is ideally concentrated on the IF for
linear FM signal with the IF w(t) = at + b.
However, the WD exhibits bias for the non-
linear FM signal. The bias and noise influence
in the WD-based IF estimator are analyzed in
detail in [20]. A brief review of these error
sources is given in Appendix.

The main problem in the WD application
are interferences appearing in the case of mul-
ticomponent signals. For instance, assume
that there is a two-component signal: z(t) =
21(t) + 22(t) = A(t)ed® + Ay(t)ei®=®),
Then the WD is given as: WD, (t,w) =
WD, (t,w) + WD,,(t,w) + C(t,w), where
C(t,w) is the cross-term:

C(t,w) =

N/2-1

> alt+n)Et—r)e I

T=—N/2

=2Re

(2)
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The cross-term can be of higher magnitude
than each of the auto-terms WD, (t,w), i =
1,2, and it can mask useful information about
the signal components. This is the reason for
introducing distributions with reduced inter-
ference [23], [24]. The S-method (SM) [24]:

SM, (t,w)

L
= Y STFT.(t,w+mA)STFT; (t,w—mA),

m=—L
(3)
where 2L + 1 is the frequency window width,
can be used to reduce interferences. Here,
STFT,(t,w) is the short-time Fourier trans-
form given as:

STFT,(t,w) = Z 2(t + T)w*(1)e T, (4)

T

w(t) is the window function and A is the fre-
quency resolution.

The procedure for the IF estimation of an
M-component signal can be summarized as
follows [25], [26]:

(a) Determination of the SM maximum that
corresponds to the IF of the first component:

d)(l) (t) = argmaXSMz(t7w)' (5)

(b) Obtain a new TF representation
SMZ(I)(t,w) from SM,(t,w) by letting all val-
ues be zero in the region around the deter-
mined maximum [&™ (¢) — 8,00 (¢) + 6]. This
TF representation will be used for velocity es-
timation of the next component:

@@ (1) = argmaxSMW (¢, w). (6)

This step is repeated for each component
l = 3,...,M. If the number of components
is not known in advance, it can be obtained
by comparing the maxima of the modified
Syt (t,w) with a threshold value. Thresh-
old determination is discussed in [26]. If
max,, SM™ (t,w) < B, where 3 is the deter-
mined threshold, we can assume that there are
no more moving object in the sequence, and
the procedure can be stopped.
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In the next section, we will explain the
transformation of a 3D video-sequence to the
FM signal. Then, information about object
motion are embedded in the parameters of the
FM signal. Motion parameters can be ex-
tracted from obtained FM signal by using the
TF representation-based IF estimators.

III. MOTION MODEL

Consider a video-sequence consisting of a
background m(z, y) and moving object s(z,y):

f(@,y,t) = m(z,y)

+s(z =, (1), y — ¢y (1)), (7)

where (¢,(t), ¢, (t)) is position of the moving
object in frame t. In order to simplify our
analysis, in the sequel we will consider the sin-
gle moving object case. The starting object
position is given as (¢,(0), ¢, (0)), while its ve-
locity in the considered frame is given as a vec-
tor with coordinates (dy,(t)/dt,dy,(t)/dt).
In order to get information about motion pa-
rameters, consider projections of the 3D video-
sequence onto the coordinate axes:

P.(z,t) =
- Z[m(x,y) + 5@ — (1), y — 0, (t))]

:mx(x)+$m($*@x(t)): (8)
Py(yat) =

=Y Iml@,y) + s(@ — 0, (), y — @, (1))]

x

= my(y) + sy(y - ‘Py(t))v (9)

where mg (), my(y), sz(x) and s,(y) are pro-
jections of the background and object on each
coordinate axis. In the sequel we will consider
the estimation of motion parameters along the
z-axis, since estimation along the y-axis can
be done in a similar way. In order to avoid the
background influence, the difference between
two consecutive projections is introduced

M, (z,t) = Py(z,t + 1) — Py(x,t)

= 82(2 — @ (t + 1)) = sa(z — ¢, (1)) (10)
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It has been derived in [13] that I, (z,t) can be
approximately written as

. (Z %@;)(t)) Osale — 2ul0)

(1))

(EZ%éﬁw)rmwam, (11)
k=1

with T'(z) = 0s,(z)/0x, under the follow-
ing assumptions: (a) ¢, (t) has continuous and
bounded derivatives; (b) s;(z) is continuous
function around = — ¢, (t); (c) object veloc-
ity is relatively small. In this way, we ob-
tain synthetic images I (z,t) and II,(y,t),
containing information on the object motion.
Due to the spatio-temporal noise, extraction
of the motion parameters, performed directly
through these images, will be inaccurate. In-
stead, these synthetic images are mapped to
FM signals, and then the velocity parame-
ters are extracted using spectral analysis tech-
niques.

Note that this simple differentiation proce-
dure (10) can introduce errors in our algorithm
for noisy sequences. More sophisticated differ-
entiation relationships are derived in the opti-
cal flow estimation where the displacement is
calculated for each pixel in the sequence. An
overview of these techniques can be found in
[4]. Here, we will use a simple filter of the
projection function P, (z,t),

—sy(z —

Pz(x7t) =

1
N Zg >pa(&,0)

XD D al&OP(z—Ey—0),  (12)
3

0

where a(£,0) are coefficients of the consid-
ered filter. After performing filtering (10),
M, (z,t) = Py(x,t + 1) — Py(x,t) can be used
in the previously described procedure. In this
paper we used the simple filter a(£,0) = %
for [{] < 1 and [f] < 1 and a(&,0) = 0 else-
where. In this case, I1,(z,t) can be calculated
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without evaluation P,(z,t), i.e., I(z,t) =
2SS Pa(E t + 2) — Puo(&t — 1)) More
sophisticated filtering forms can be found in
[4].

The next step in our procedure is ob-
taining the FM signal from synthetic image
I, (x,t) (or for II,(y,t)). This will be done
applying propagation approach to the image
IT,(z,t). The term propagation stems from
the direction-of-arrival estimation of imping-
ing signals on a sensor array network where
this algorithm is used to produce highly accu-
rate estimate [5], [22]. Recently, this approach
has been applied in [6] to the velocity estima-
tion. In the next section, the existing propaga-
tion functions are reviewed and the new func-
tion, that can be used to get more accurate
results compared to the ones obtained by the
previously defined functions is introduced.

IV. PROPAGATION
A. Review of existing procedures

Transformation of the synthetic image
IT,(z,t) to an FM signal can be obtained by
using the constant p-propagation [5], [6] that
can be written in the generalized form as

= an(x, t)ein( )z
x
Z T'(z—

where A,(t) = -2 (1/E)e¥ () and
u(x, t) is a propagation function. .Assume that
the object velocity is small compared with the
object size. Then, the following approxima-
tion holds T'(x — ¢,(t)) =~ d(xz — ¢,(¢)), ie.,
signal (13) can be written as:

eJu(i t)i (13)

Z(t) = Aw(t)eju(wz(t),t)wz(t)_ (14)
For constant p-propagation, the propagation
function exhibits a form p(x,t) = p and the IF
function of (14) is w.(t) = udp,(t)/dt. Note
that the IF is proportional to the object veloc-
ity, so that the WD- and SM-based estimator
can be applied to estimate it. Performance of
the velocity estimators are the same as perfor-
mance of the IF estimator described in Ap-
pendix. However, we should keep in mind
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that the signal amplitude A,(t), is now pro-
portional to the object velocity. Therefore, the
estimator variance for a small velocity could
be very high. Fortunately, such a small veloc-
ity case is not of our practical interest. Be-
sides, the high variance can be avoided by in-
troducing a proper threshold. An alternative
approach for reducing errors in the small ve-
locity case is discussed in [13]. Note that the
IF of signal (14) has no information about the
object position. The variable p-propagation
is developed in [6], [7] with propagation func-
tion u(x,t) = px. For instance, for the con-
stant velocity case of ¢, (t) = vt + ¢,(0), this
propagation form produces the signal z,(t) ~
A, (t)edrat+0.(0) with the WD concentrated
along the IF:

WD, (t,w) =

~ AT A2 (1) (w — 2uv*t — 2pv,0,(0)).  (15)

Then the IF line w,(t) = 2uv2t + 2uv.¢,(0)
determines both parameters v, and ¢_(0).
These parameters can be generally ex-
tracted from the IF estimate based on some
simple interpolation procedure. For the ob-
ject whose position in the x- coordmate is de-
scribed by a polynomial, ¢, (t) = >, Oaltl
the phase of the FM signal with the vari-
able p—propagation is given by: ¢,(t) =

M l 2 .
1 (leo agt ) , and the IF is

M M
= QMZZ (I + E)aart! ™1 (16)
1=0 k=0

The highest order in the IF function (16) is
(2M — 1), and the bias in the WD-based IF
estimation can be very high because of the
high IF nonlinearity, as stated in Section II
[20]. Therefore, the procedure of interpolation
of the IF estimate with (2M —1)-order polyno-
mial model becomes quite difficult to handle,
because the coefficients in the expression for
w,(t) are no longer linear.

For the general motion model ¢, (t) the
phase function is given by ¢, (t) = pp2(t),
so that the IF is obtained as w,(t) =
2, (t)[de, (t)/dt]). The information about the
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object position can be extracted from esti-
mates of the velocity and IF of signal ob-
tained using the constant and variable pu-
propagations, respectively.

B. New propagation approach

In our previous papers [13], [7] we used
the variable p-propagation for obtaining the
joint information on the object position and
velocity. However, in some applications this
approach had produced unsatisfactory results
due to the effects described in the previous
subsection. Therefore, we investigated other
possible propagation function should be used
to handle this issue. The propagation function
should satisfy the following properties: deriv-
ative of signal phase should contain informa-
tion on both instantaneous velocity and object
position relation between IF and motion para-
meters should be as simple as possible; order
of polynomial in the signal phase should be as
low as possible. We have found that all these
requirements are satisfied by the time-varying
propagation

p(z,t) = pt. (17)

Then, in the constant velocity case, the signal
is expressed as:

2o (t) ~ Ay (t)e?Hvettea (0 (18)
The WD of (18) is concentrated ideally along
the IF line:

WD.,.(t,w) ~ 41 A2 ()6(w — 2pv.t — e, (0)).

(19)
Thus, the motion parameters can be deter-
mined by the interpolation of this IF estimate.
Consider now the case of the polynomial func-
tion. In this case, the time-varying propaga-
tion produces the FM signal with the phase
function:

M
60 =pYat . (20)
1=0
The IF of (20) is:
M
wa(t) = uz a(l+ 1)t (21)

=0
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Note here that the highest order is now M, so
that in this case the bias can be reduced more
than in the case of the variable p-propagation.
Owing to the linearity of the coefficients {a;}
in (21), determination of these parameters
through interpolation of w,(t) is rather easy,
compared with the method with variable p-
propagation mentioned in the previous subsec-
tion. Furthermore, the lower order of poly-
nomial in the signal’s phase implies nothing
but the robustness of the motion parameter
estimation even though the noise influence is
high. These facts clearly show that the pro-
posed propagation approach can be used to
produce more accurate motion parameter es-
timates than that preformed by the standard
form of the variable p-propagation.

In this case, for the general motion law the
phase is given by ¢, (t) = ute,(t), while the
IF is w,(t) = ple,(t) + tde,(t)/dt]. The po-
sition can be estimated as ¢, (t) = @ (t)/p —
10, (t), where @, (t) is the estimated IF of the
signal produced by the new propagation ap-
proach, and 9,(t)is the velocity estimate ob-
tained from the signal with the constant u-
propagation. It is interesting to discuss the
choice of p parameter in these propagations.
It should be chosen as a trade-off according to
two criteria: (a) larger p means larger maxi-
mal possible detected value of the parameters;
(b) larger p means higher error caused by dis-
cretization. In order to explain these facts con-
sider an example. Let the frame have K x K
pixels and let maximal velocity of the object
be vpixel/frame. Assume also that variations
in the velocity are not extremely fast. Them
the maximal value of the IFs obtained by the
constant u, variable p and new propagation
are pu.v, p,Kv and p,[K/2 + Nv/2], where
Lo, My and p,, are constants used in these
propagations, respectively. Resolution in the
estimation is, respectively, u,v/N, p,Kv/N
and p,,[K/2 4+ Nv/2]/N. Assuming uniformly
distributed error within one step, the mean
squared error (MSE) caused by the discretiza-
tion is (Ap)? /12, where Ay is resolution in the
case of the corresponding propagation.. There-
fore, maximal observed values of the parame-
ters increase with the increase of propagation
parameter p but in the same time discretiza-



1618

100
Frame

80
60
40

i/
/
/

20

50 100 150 200 250
@

100 Frame
80
60
40

20

50 100 150 200 250
(c)

100 Frame
80
60
40

20

50 100 150 200 250
(e

Fig. 1.

TIME-FREQUENCY SIGNAL ANALYSIS

100
Frame

80
60
40

20
Y

50 100 150 200 250
(b)

100
Frame
80
60
40

20

y
50 100 150 200 250
(d)

100
Frame
80
60
40

20

Y
50 100 150 200 250
®

Synthetic images II;(z,t) (left column) and ITy,(y,t) (right column): First row - Non-noisy sequence;

Second row - Noisy sequence; Third row - Noisy sequence with smoothing of Py(z,t) and Py(y,t).

tion error increases. If maximal velocity is
known in advance, the limits for propagation
parameter can be easily set. Note that sam-
pling rate in the signals obtained by propaga-
tion is At = 1 frame and that maximal fre-
quency in the WD is 7/2, while in the SM it is
7. Therefore, in the case of the new propaga-
tion approach and the WD, the maximal value
of the parameter p is 7/[K 4+ Nvpax].

V. NUMERICAL EXAMPLES

Example 1: An artificial video-sequence
with 100 frames of size 256 x 256 with white
background is considered. The moving object
is a black rectangle of size 10 x 10. Object
positions can be described with:

u(t) = 02(0) + 02 (0)t + ast?/2,  (22)

py(t) = ¢, (0) + vy (0)t +ayt®/2,  (23)
where starting object position is (¢, (0), ¢, (0))
= (20,15), while initial velocity is given
as (v2(0),v,(0)) = (0.5,2.5).  The ob-
ject uniformly accelerates with (az,a,) =
(0.01, —0.02). We considered two experiments:
(a) Noiseless video-sequence; (b) Noisy video-
sequence with a large white Gaussian noise
v(z,y,t) with standard deviation o = 40.
Note that the sequence has 255 grayscale lev-
els where the white level is 255 and the black
level is 0. Projections I (z,t) and II,(y,?)
for noise-free case are depicted in Figs. la,b,
while for noisy case they are shown in Figs.
le,d. From Figs. 1c,d one may notice a signif-
icant amount of noise. Synthetic images ob-
tained after smoothing of projections by (12)
are given in Figs. le,f. The used filtering func-



MOTION PARAMETERS ESTIMATION BY NEW PROPAGATION APPROACH...

® [@] @ (o]
0.5 0.5 0.5 0.5
i = e o g
0 0 o] 0
-0.5 -0.5 -0.5 -0.5
Frame Frame Frame Frame
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
x10© @ x10’  ® x1o0 © x10. @
[0 ® [0} (O]
2 / 2 / z / 2 /
0 [¢] 0 0
-2 -2 -2 -2
Frame Framel Frame Frame|
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
x10. © xt0. O xt00 9 x100 @
(&3] [0} w (o]
5 / 5 / 5 / 5 /
0 [¢] 4] 0
-5 -5 -5 -5
Frame Frame Frame Frame
20 40 60 &0 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

0]

W

(k)

U]

1619

Fig. 2.

WDs for non-noisy sequence: First row - WD obtained by using constant u-propagation; Second row

- WD obtained by variable u-propagation; Third row - WD obtained by new propagation approach. First
column - WD of signal z;(¢) produced without filtering of projection; Second column - WD of signal z(t)
produced with filtering of projection; Third column - WD of signal z,(t) produced without filtering of
projection; Fourth column - WD of signal zy(t) produced with filtering of projection.

tion was a(&,0) = 1 for |¢] < 1and |f| <1 and
0 elsewhere. From Figs. le,f we know that
not only the noise influence is attenuated but
also that the pattern that representing motion
becomes smoothed, as well.

The following propagation functions are ap-
plied to the synthetic images II,(x,t) and
IT,(y,t): the constant p-propagation with y =
0.5, the variable p-propagation with u = Hlov
and the new propagation approach with p =
WIO' The WDs are depicted in Figs. 2 and 3 for
noise-free and noisy sequences, respectively.
In both figures each row (from top to bot-
tom) represents the WD of the signal obtained
through the constant, variable u-propagation,
or by the new propagation; the first two
columns depict WD, _(t,w) with and without

smoothing of P,(z,t) and the other two are

WD, (t,w). Corresponding IF estimates are
depicted in Fig. 4. The results obtained by us-
ing smoothed projection are marked with thick
lines while those produced with non-smoothed
projection are shown with dashed lines. It can
be seen that in the noise-free case (first two
columns) all these estimates perform similarly.
However, there are some errors at boundaries
due to limited amount of data. In the noisy se-
quence case (last two columns) better behavior
is shown by the smoothed projection. Also, it
can be seen that the variable u-propagation is
more sensitive to the noise influence than the
new approach. The reason for that is the in-
ner interferences appearing in the non-linear
FM signal case increase the bias in the estima-
tion and in the same time decrease the max-
ima of the WD. Then, the errors caused by
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TABLE I
MSE IN dB FOR VELOCITY ESTIMATION FOR VARIOUS
NOISE AMOUNTS. INDECES DENOTE: x, y -
CORRESPONDING COORDINATE; 1 - WITHOUT FILTERING
OF PROJECTION; 2 -WITH FILTERING OF PROJECTION.

g MSEml MSEIQ MSEyl MSEyQ
0 -36.02 | -35.90 | -37.69 | -37.22
5.1 |-26.33 | -35.92 | -37.35 | -37.27
10.2 | -15.12 | -35.95 | -23.57 | -37.18
15.3 | -12.35 | -35.76 | -16.11 | -37.22
20.4 | -8.60 -35.79 | -10.93 | -37.09
25.5 | -5.72 -24.58 | -8.40 -37.23
30.6 | -4.43 -24.25 | -6.91 -30.17
35.7 | -3.98 -15.86 | -5.23 -22.75
40.8 | -3.53 -12.53 | -4.17 -20.70
459 | -3.64 -10.37 | -3.20 -14.10
51 -3.48 -10.08 | -2.43 -11.37

the high noise become larger in the case of the
variable p-propagation than in the case of the
new propagation approach. This is an impor-
tant advantage of the proposed approach. The
MSE for the velocity estimation with respect
to the different noise amounts is presented in
Table I. Note that the first and the last ten
samples are avoided in the calculation. The
numerical results of the motion parameter es-
timation via variable p- and new propagation
methods are presented in Tables IT and III. Re-
sults are obtained by using the Monte Carlo
simulation with 100 trials. Again the first and
the last ten frames are omitted. It can be
seen that the new propagation approach out-
performs the variable p-propagation.
Example 2: The real video-sequence is
considered, representing a man who moving
from the upper right corner toward the left
end of scene. The sequence has 220 frames of
the size 240 x 320. Frames 24k, k=1,2,...,9,
are depicted in Fig. 5. We considered only the
motion along the z-coordinate. The distrib-
utions obtained from the SM with constant
p-propagation with g = 0.5 and new propa-
gation approach with pu = ﬁlo are illustrated
in Fig. 6 as well as the corresponding IF es-
timates. The position estimate is marked by
thick line in Fig. 7. Object position is es-
timated in the following way. The constant
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p-propagation is used to produce estimate of
the velocity 0,,(t), while the time-varying prop-
agation produces estimate of £, (t) = tv,(t) +
¢, (t). The object position can be estimated as
b, (t) =&, (t) — ti,(t). The ‘true’ value of the
object position was calculated manually point
by point, as the z-coordinate of the object’s
head. It can be seen that the accuracy is high,
except in the region of the small z-component
of velocity (first 75 frames).

Example 3: Here, we consider an artificial
video-sequence with two moving objects. Ob-
jects’ coordinates can be described with:

@yi(t) = 0,i(0) + vy (0)t + ayit? /2, i = 1,2,

(25)
with the following parameters (p,(0), vz1(0),
az1, 0,1(0), v,1(0), ay1) = (15, 2.5, 0.2,
20, 0.5, 0.01) and (,2(0), v22(0), az2, ©,2(0),
vy2(0), ay2) = (230, —3, 0.018, 220, 0.5,
—0.03). Objects’ size is 10 x 10. The sequence
has 100 frames. We perform the constant u-
propagation of the considered sequence and
the new propagation approach. The spectro-
grams and SMs of signals obtained by using
these two propagation approaches are given
in Fig. 8. It can be seen that the spectro-
gram produces components spread over the
TF plane, while the SM gives highly concen-
trated components. The IF estimate is per-
formed by using the SMs. The velocity esti-
mates obtained from the signal produced by
the constant p-propagation are given in Figs.
9a and b. The IFs of signals obtained by using
the new propagation approach contain infor-
mation on both object velocity and position.
Therefore, by combining information from the
SMs of signal produced by the constant p- and
new propagation, we obtain the estimation of
objects’ position depicted in Figs. 9c and d.
It can be seen that estimation is quite accu-
rate, excluding the region of very small veloci-
ties. Note that, in this case, both propagation
approaches produce TF components that do
not overlap in the TF plane. Some sophisti-
cated procedure for segmentation of the TF
plane is required to produce separate estima-
tion of particular object parameters in the case
of overlapping TF components.

(24)
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Fig. 3. WDs for noisy sequence: First row - WD obtained by using constant u-propagation; Second row - WD
obtained by variable p-propagation; Third row - WD obtained by new propagation approach. First column
- WD of signal z,(t) produced without filtering of projection; Second column - WD of signal z;(t) produced
with filtering of projection; Third column - WD of signal z,(t) produced without filtering of projection;
Fourth column - WD of signal z,(¢) produced with filtering of projection.

TABLE 11
ESTIMATION OF THE MOTION PARAMETERS BY USING THE VARIABLE p-PROPAGATION. NF - WITHOUT FILTERING
OF PROJECTION; F' - WITH FILTERING.

true c=0NF|o=0,F|0c=40,NF | 0 =40, F
a, | 0.0010 [ 0.00073 0.00095 | 0.0021 0.0033
vz | 0.50 0.6928 0.3666 -2.1742 -1.8378
o | 20 17.6741 32.8455 | 30.2183 28.7478
ay | -0.0020 | -0.0015 -0.0158 | 0.0025 0.0038
vy | 2.5 2.5193 2.5131 -1.2903 -0.3212
Yo | 15 25.9683 25.4098 | -199.5194 -313.3988
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Fig. 4. IF estimation: First row - constant p-propagation; Second row - variable p-propagation; Third row -

new propagation approach; First column - z,(t) for non-noisy sequence; Second column - zy(t) for non-noisy

sequence; Third column - z,(¢) for noisy sequence;
with filtering; Dashed line - without filtering.

Fourth column - zy(t) for noisy sequence; Thick line -

TABLE III
ESTIMATION OF THE MOTION PARAMETERS BY USING NEW APPROACH. NF - WITHOUT FILTERING OF PROJECTION;

F - WITH FILTERING.

true c=0NF|o=0,F|oc=40,NF | 0 =40, F
az | 0.0010 | 0.00078 0.00083 | -0.0045 0.0012
vz | 0.50 0.6925 0.6564 3.4750 0.3502
xo | 20 25.5096 26.9643 | -142.6412 41.61
ay | -0.0020 | -0.0017 -0.0174 | 0.0014 -0.0019
vy | 2.5 2.2907 2.2925 -1.4083 2.3983
Yo | 15 31.5317 31.4440 | 81.6503 25.1504

Example 4. Real video-sequence repre-
senting two walkers is considered. Walkers
have opposite motion directions. Sequence has
220 frames. Walker 1 appear about frame 40
while walker 2 is present in the sequence from
frame 1. The constant - and new propagation
are performed with parameters y = 0.2 and

Tloo respectively. The SM calculated for sig-

nal produced with the constant p-propagation
is depicted in Fig. 10a, while the IF (velocity)
estimations are given in Fig. 10b. Velocity es-
timates are marked with dotted and solid lines
for walker 1 and 2, respectively. The SM ob-
tained based on new approach is given in Fig.
10c. Position estimates obtained based on the
results from constant p- and new propagation
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Fig. 5. Frames in the real video-sequence.
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Fig. 6. Position estimation by using constant p-propagation and new approach. Thick line - estimate; Thin
line - exact position.
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line - exact position.

are given in Fig. 10d (position estimate for
walker 1 are given after frame 40 where this
object appears in the scene). In order to visu-
alize these results in a better way Fig. 11 is
presented. Estimate of walker 1 position along
x-coordinate are marked with sign ‘=" in bot-
tom of frame, while position of the walker 2 are
marked with sign “*’ in top of frame. It can
be seen that the proposed approach produces
accurate indication of the objects’ positions.

VI. CONCLUSION

A procedure for the velocity estimation us-
ing the TF representations has been presented.
The WD was applied to a single moving ob-
ject in the sequence, while for multiple ob-
jects and real-sequences the S-method can be
used. The time-varying form of the vari-
able p-propagation is proposed in order to
improve accuracy of the object position esti-
mation. This propagation approach produces
signal with smaller nonlinearity in the signal
phase. It means that TF representation-based
estimates of motion parameters have better ac-
curacy due to the smaller bias. Furthermore,
smaller bias implies better concentration along
the IF and, at the same time, robustness to
the noise influence. These effects have been
proved in the numerical and real-life exam-
ples. The proposed approach can be used for
tracking a small number of objects in video-
sequences with highly non-stationary motion.
Possible application areas can be traffic control
and sports event monitoring. Note that cur-
rent video-compression algorithms could be in-

100

150 200

Position estimation by using constant p-propagation and new approach. Thick line - estimate; Thin

accurate in the presence of objects with highly
varying motion parameters. Therefore, ap-
plication of the proposed algorithm to low-
quality video-compression will be one of the
further research directions.
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APPENDIX A

The sources of error in the IF estimation
are analyzed in [20]. The bias caused by the
IF non-linearity is [20]:
o~ Ao, (1)

di25+1

bias(wy(t)) N2, (26)

Qs
s=1

where {as, s = 1,2,..} are constants de-
pending on the window width. This error in-
creases as the window length N increases. Er-
ror caused by the stochastic influence asymp-
totically approaches:

var{w,(t) — @, (t)}

6o, o? 1
4P (H 2|Am(t)|2) RERGL
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Time-frequency representations: (a) STFT.4(t,w) - constant p-propagation; (b) STFT,y(t,w) - con-

stant p-propagation; (¢) SM.4(t,w) - constant p-propagation; (d) SM.y(t,w) - constant p-propagation; (e)
STFT,(t,w) - new propagation approach; (f) STFT.y(t,w) - new propagation approach; (g) SM.z(t,w) -
new propagation approach; (h) SM_,(t,w) - new propagation approach.

Note that expressions (26)-(27) are derived un-
der the assumption that the additive noise is
of the moderate magnitude [20]. However, in
the high noise environment the WD maxima
can be outside the auto-term and causing the
dominant error in the IF estimation [21]. This
error becomes high in the case of signals with
high non-linearity in the IF function.

This is the reason to present properties of
the WD-based IF estimator in this section.

Note that the high noise has smaller impact to
the WD-based IF estimator than to the higher-
order TF representation-based ones. This is
the reason why in this application we have
used the WD instead of some higher-order TF
representations, which can be very sensitive to
the noise influence.
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constant p-propagation; (b) Velocity estimates; (¢) S-method obtained with new propagation approach; (d)
Position estimates. Dotted line - walker 1; Solid line- walker 2.
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