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Fractional Fourier transform as a signal
processing tool: An overview of recent

developments
Ervin Sejdíc, Igor Djurovíc and LJubiša Stanković

Abstract–Fractional Fourier transform (FRFT)
is a generalization of the Fourier transform, re-
discovered many times over the past hundred
years. In this paper, we provide an overview of
recent contributions pertaining to the FRFT.
Specifically, the paper is geared toward sig-
nal processing practitioners by emphasizing the
practical digital realizations and applications
of the FRFT. It discusses three major top-
ics. First, the manuscripts relates the FRFT
to other mathematical transforms. Second, it
discusses various approaches for practical real-
izations of the FRFT. Third, we overview the
practical applications of the FRFT. From these
discussions, we can clearly state the FRFT is
closely related to other mathematical trans-
forms, such as time-frequency and linear canon-
ical transforms. Nevertheless, we still feel that
major contributions are expected in the field of
the its digital realizations and applications, es-
pecially, since many digital realizations of the
FRFT still lack properties of the continuous
FRFT. Overall, the FRFT is a valuable signal
processing tool. Its practical applications are
expected to grow significantly in years to come,
given that the FRFT offers many advantages
over the traditional Fourier analysis.

I. I������	�
��

In very simple terms, the fractional Fourier
transform (FRFT) is a generalization of the
ordinary Fourier transform [1]. Specifically,
the FRFT implements the so-called order pa-
rameter α which acts on the ordinary Fourier
transform operator. In other words, the αth
order fractional Fourier transform represents
the αth power of the ordinary Fourier trans-
form operator. When α = π/2, we obtain the
Fourier transform, while for α = 0, we ob-
tain the signal itself. Any intermediate value
of α (0 < α < π/2) produces a signal repre-
sentation that can be considered as a rotated
time-frequency representation of the signal [2],
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[3].

Interestingly enough, the idea of the frac-
tional powers of the Fourier operator has been
“discovered” several times in the literature.
Initially, the idea appeared in the mathemati-
cal literature between the two world wars (e.g.,
[4], [5]). More publications relating to this idea
appeared after the second world war, however
they were sporadic (e.g. [6]). The idea of frac-
tional Fourier operator re-gains a momentum
in 1980’s with publications by Namias (e.g.
[7]). Following Namias’ contributions, a large
number of papers appeared in the literature
during 1990’s tying the concept of the frac-
tional Fourier operators to many other fields
(e.g., time-frequency analysis as described in
[2]). We have also witnessed a number of re-
cent contributions attempting to understand
the practical applications of the FRFT beyond
optics.

The main goal of this publication is to pro-
vide an overview of recent developments re-
garding the FRFT and its applications. Al-
though a number of publications reviewing the
FRFT has also appeared in recent years (e.g.,
[1], [8], [9]), some of these publications are
geared towards explaining the mathematical
eloquence behind the FRFT. Our goal is to
simplify the theory behind the FRFT and pro-
vide an overview suitable for a signal process-
ing practitioner. In particular, we emphasize
the practicality of the FRFT by devoting a sig-
nificant part of this manuscript to its discrete
realizations and applications. By attracting
more practitioners to this eloquent mathemat-
ical concept, we hope to foster more appli-
cations since the FRFT offers many valuable
properties, which otherwise were not available
with traditional tools (e.g., the Fourier trans-
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form).
The paper is organized as follows: Section

II introduces the concept of FRFT and relates
the transform to other mathematical represen-
tations. In Section III, we discuss several var-
ious implementation approaches for discrete
signals. Section IV provides an overview of
some FRFT applications, while in Section V,
we provide concluding remarks along with an
outline of possible future directions.

II. T� ���	�
���� F���
� ���������

The fractional Fourier transform (FRFT) is
a linear operator defined as [10]-[13]:

Xα(u) = Fα(x(t)) =
∫ +∞

−∞

x(t)Kα(t, u)dt

(1)
with Kα(t, u) representing the kernel function
defined as:

Kα(t, u)

=






√
1−j cotα

2π ej(u
2/2) cotα

×ej(t2/2) cotα−jut cscα

if α is
not

multiple
of π

δ(t− u)
if α is
a multiple
of 2π

δ(t+ u)
if α+ π is
a multiple
of 2π

(2)
and δ(t) representing the Dirac function.
Throughout the paper we use Fα to denote the
operator associated with the FRFT. It should
be noted that we adopted notation for the
FRFT found in signal processing literature. In
particular, we denote the rotation angle by α.
Mathematicians usually denote the rotation
angle by a, where a = 2α/π. It is important to
point out that various α values provide trans-
formations with distinctive properties. Hence,
α can be adjusted in many applications to pro-
vide enhanced results in comparison to other
existing methods. Additional computational
complexity associated with such optimization
efforts is often acceptable.
Given the properties of the kernel, equation

(1) is equal to x(t) when α is a multiple of 2π,

and is equal to x(−t) when α + π is a multi-
ple of 2π. Some properties associated with the
FRFT are summarized below [1], [14]:
1. The standard Fourier transform is a special
case of the FRFT with a rotation angle α =
π/2.
2. F0 is the identity operator, i.e., F0(x(t)) =
x(t). The same can be stated for F2π.
3. The FRFT is a linear operator, i.e.,
Fα (

∑
k ckxk(t)) =

∑
k ckFα (xk(t)).

4. The FRFT adheres to commutativity (i.e.,
Fα1Fα2 = Fα2Fα1) and associativity (i.e.,
(Fα3Fα2)Fα1 = Fα3 (Fα2Fα1)).
5. Successive applications of the FRFT of var-
ious orders is equal to a single application of
the FRFT whose order is equal to the sum of
individual orders (e.g., Fα1Fα2 = Fα1+α2).
6. Inverse FRFT is obtained by applying F−α
to the transformed signal (i.e., FαF−α = F0).
7. FRFT satisfies the Parseval’s theorem:
〈x(t), y(t)〉 = 〈Xα (u) , Yα (u)〉 .
Additional properties of the FRFT and

some transform pairs are listed in Tables I and
II. These properties clearly indicate that the
FRFT is an extension of the ordinary Fourier
transform. More extensive descriptions and
proofs of these properties, along with addi-
tional transform pairs, can be found in other
references (e.g., [1], [10], [11], [12]). The
FRFTs of a few sample signals are shown in
Figure 1.
A particularly interesting case of the above

listed properties is the fact that it can be
shown that the FRFT of a product of two sig-
nals, y (t) = x (t)w (t), can be shown to be
equal to [15]:

Yα (u) =
|cscα|√
2π

exp

(
ju2 cotα

2

)∫ +∞

−∞

Xα (υ)

×W ((u− υ) cscα) exp
(
−jυ

2 cotα

2

)
dυ (3)

where W (υ) is the Fourier transform of w (t) .
In other words, the resultant FRFT is equal
to convolution of the FRFT of x (t) with
the Fourier transform of w (t) multiplied by
a chirp function. A similar expression can
be derived for convolution of two signals
(y (t) = x (t) ∗w (t)). In particular, convolu-
tion of two signals in time domain equals to
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TABLE I

P�����
� �� �� FRFT

Signal FRFT
x (t− τ) exp

(
j
(
τ2/2

)
sinα cosα− juτ sinα

)
Xα (u− τ cosα)

x (t) exp (jυt) exp
(
−jυ2 (sinα cosα) /2 + jυ cosα

)
Xα (u− υ sinα)

x (t) t u cosαXα (u) + j sinαX′
α (u)

x (t) /t −j secα exp
(
j
(
u2/2

)
cotα

) ∫ u
−∞

x (z) exp
(
−j
(
z2/2

)
cotα

)
dz

x (ct)
√

1−j cotα
c2−j cotα exp

(
j
(
u2/2

)
cotα

(
1−

(
cos2 β/ cos2 α

)))
Xβ

(
u sinβ
c sinα

)
where

cotβ = cotα
c2

x′ (t) X′
α (u) cosα+ ju sinαXα (u)∫ t

b
x (t′) dt′ secα exp

(
−j
(
u2/2

)
tanα

) ∫ u
b
Xα (z) exp

(
j
(
z2/2

)
tanα

)
dz if α − π/2 is

not a multiple of π

TABLE II

FRFT �� ��� ���
	 ���	�
���.

Signal FRFT
1

√
1 + j tanα exp

(
−j
(
u2/2

)
tanα

)

δ (t− τ)
√

1−j cotα
2π exp

(
j
((
τ2 + u2

)
/2
)
cotα− juτcosecα

)

exp
(
−t2/2

)
exp

(
−u2/2

)

exp (jηt)
√
1 + j tanα exp

(
j
((
η2 + u2

)
/2
)
tanα− juη secα

)

exp
(
jc
(
−t2/2

)) √
1−j cotα
c−j cotα exp

(
j
(
u2/2

) (
c2 − 1

)
cotα/

(
c2 + cot2 α

))

exp
(
−c
(
u2/2

)
cosec2α/

(
c2 + cot2 α

))

[15]:

Yα (u) = |secα| exp
(
ju2 tanα

2

)∫ +∞

−∞

Xα (υ)

×w ((u− υ) secα) exp
(
−jυ

2 tanα

2

)
dυ (4)

which shows that the FRFT of a convolution
can therefore be obtained by taking the FRFT
of one of the signals, multiplying by a chirp,
convolving with a scaled version of the other
signal, and multiplying again by a chirp and by
a scale factor. These two rules are of particu-
lar interests when developing a time-frequency
representation based on the FRFT.
Our next task is to understand the relation-

ship between the FRFT and other mathemat-
ical representations. First, we begin by es-
tablishing the relationships with the ordinary
Fourier transform. Then, we establish rela-
tionships with various time-frequency repre-
sentations and linear canonical analysis.

A. FRFT as fractional powers of Fourier
transform

In 1980, Namias provided an elegant gen-
eralization of the Fourier transform to the
FRFT [7], by deriving the FRFT from the
eigenfunctions of the Fourier transform. In
fact, Namias used the fact that the Hermite-
Gaussian functions (φk(t)) are eigenfunctions
of the Fourier transform and showed that the
αth order FRFT shares the eigenfunctions of
the Fourier transform. More specifically, the
eigenvalues of the FRFT are the αth root of
the eigenvalues of the Fourier transform [7]:

Fα (φk(t)) = exp (−jαk)φk(t) (5)

Therefore, if we expand a signal in terms of
these eigenfunctions, we obtained

x(t) =
∞∑

k=0

ckφk (t) (6)
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Fig. 1. Sample signals and their theoretical FRFTs (α = π/4): (a) time domain representation of the Dirac
functio; (b) FRFT of the Dirac function; (c) time domain representation of the unit function; (d) FRFT of
the unit function; (e) time domain representation of the exponential function; (f) FRFT of the exponential
function. Solid lines represent real parts, while dashed lines represent imaginary parts.

where

ck =

∫ +∞

−∞

φk (t)x (t) dt. (7)

By applying the fractional operator (Fα (·)) to
both sides of (6), we get

Fα (x(t))

=
∞∑

k=0

ckFα (φk (t))

=
∞∑

k=0

ck exp (−jαk)φk (u)

=

∫ ∞∑

k=0

exp (−jαk)φk (u)φk (t)x (t) dt (8)

From the above equation, it is clear that the
kernel function can be defined as:

Kα (t, u) =
∞∑

k=0

exp (−jαk)φk (u)φk (t) (9)

The above equation can be considered as the
spectral decomposition of the kernel function
of FRFT [1]. Using the Mehler’s formula,
Namias in fact shows that we obtain the FRFT
from (8) [7].

B. Relations to time-frequency representa-
tions

To understand the relationship between the
FRFT and various time-frequency analysis, we
consider the relationship between the ambi-
guity function and the FRFT. The ambiguity
function (AF) of a signal, x(t), is

AFx(t, f) =

∫ +∞

−∞

x

(
τ +

t

2

)
x∗
(
τ − t

2

)

× exp (−j2πτf) dτ. (10)

By introducing rotation of the AF by using the
following transformation:

t = R cosα (11)

f = R sinα (12)
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with R ∈ (−∞,∞) and α ∈ [0, π),
and redefining the AF as FRAFx(R,α) =
AFx(R cosα,R sinα), it becomes obvious that
the FRFT corresponds to a rotation of the AF
[16]. In particular, it is easy to prove that the
fractional power spectra is the Fourier trans-
form of the AF:

FRAFx

(
R,α− π

2

)

=

∫ +∞

−∞

|Xα (u)| exp (j2πRu) du. (13)

Using this relationship, the connection be-
tween the local fractional FT moments and
the angle derivative of the fractional power
spectra has been established in [17]. Fur-
thermore, it can be easily generalized that
the FRFT corresponds to rotation of a class
of time-frequency representations (TFRs) as
along as Ψ(t, f) = F−1θ→t,τ→f {φ(θ, τ)} is ro-
tational symmetric [18]-[21], where φ(θ, τ) is
a two-dimensional kernel function. For ex-
ample, the FRFT corresponds to the rotation
of the Wigner distribution (WD) in the time-
frequency plane [20], [22]-[25]:

WDFα(x(t))(t, f)

=WDx (t cosα− f sinα, u sinα+ f cosα) .
(14)

The relationship between FRFT and Radon-
Wigner distribution (RWD) (e.g., [26]) is stud-
ied in [23], [27], and it was shown that
the Radon-Wigner distribution is the squared
modulus of the fractional Fourier transform:

RW [x(t)] = |Fα [x(t)]|2 . (15)

Additionally, we should point out that the
FRFT could be potentially useful for ob-
taining time-frequency distributions without
cross-terms. For example, WD and AF ex-
hibit different behaviors when considering sig-
nals with multiple components. Namely, the
WD has signal components (i.e., auto-terms)
concentrated around their instantaneous fre-
quencies and group delays, while interferences
(cross-terms) are located between these com-
ponents. On the other hand, the AF has
the auto-terms concentrated around the ori-
gin while the interferences are dislocated from

the origin. The connection between these
two time-frequency representations is the 2D
Fourier transform:

WDx(t, ω) = FTτ→ω,θ→t{AFx(θ, τ)}. (16)
However, interesting results are obtained when
we use the 2D FRFT instead of the 2D Fourier
transfrom in (16). Specifically, it is possible to
separate all auto- and cross-terms in the time-
frequency plane for some classes of signals. To
illustrate this behaviour, let us considered a
signal with 4 components concentrated in the
TF plane around (t, f) = (±0.5,±6), and the
signal is defined as:

x(t) = [exp(−60(t− 0.5)2)
+ exp(−60(t+0.5)2)][exp(j12πt)+exp(−j12πt)]

(17)
with t ∈ [−1, 1]. The AF of this signal is de-
picted in Figure 2(a). All four auto-terms are
located in the middle of the graph (i.e., the
origin of the ambiguity plane). Each of four
horizontal and vertical objects with respect to
the origin represents two cross-terms, while the
corner objects represent single cross-terms. In
the case of the WD (Figure 2(b)), the corner
objects are auto-terms, while the central ob-
ject represents the four cross-terms. The re-
maining objects contain two cross terms each.
However, all 16 components (4 auto terms and
12 cross-terms) are clearly separated as shown
in Figure 2(c) when we used the FRFT oper-
ator with α = 0.5 in (16).

B.1 Local polynomial Fourier transform

It is also of our interest to establish the rela-
tionship between the FRFT and the local poly-
nomial Fourier transform (LPFT) ([28], [29]).
First, we rewrite the FRFT as:

Fα(x(t)) =
√
1− j cotα

2π

×ej(u2/2) cotα
∫ +∞

−∞

xw(τ)

×ej(τ2/2) cotα−juτ cscαdτ (18)

where xw(τ) = x(t + τ)w(τ). If the LPFT is
given by [28], [29]:

LPFTx(t, f) =

∫ +∞

−∞

x(t+ τ)
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Fig. 2. Time frequency representation of the four-component signal: (a) the AF; (b) the WD; (c) the FRFT of
the AF.

w(τ) exp(−j2πf1τ − j2πf2τ2/2

−...− j2πfMτM/M)dτ (19)

where f = (f1, f2, ..., fM), we set M = 2,
2πf1 = u cscα, and 2πf2 = cotα, then (18)
can be expressed in terms of the LPFT as:

Fα(x(t)) =
√
1− j cotα

2π

×ej(u2/2) cotαLPFTx(t, f1, f2). (20)

From these equations it can be clearly seen
that the LPFT provides a broad generalization
of the FRFT. Similar observations have been
made in [30]. Additionally, we can relate the
FRFT to the local polynomial periodogram
(LPP), which is defined as the squared magni-
tude of the LPFT:

LPPx(t, f) = |LPFTx(t, f)|2. (21)

To understand the relationship between the
FRFT and the LPP, let us consider the LPP
in more details. The LPP is a distribu-
tion belonging to the Cohen class of distrib-
utions [28], [29]. Its kernel is defined as the
AF of wg(t) = w(t) exp(−j2πf2t2/2 − ... −
j2πfMt

M/M !), which is a generalization of
the kernel used for the spectrogram (i.e., the
squared magnitude of the short-time Fourier
transform), where the kernel function is de-
fined as the AF of w(t). This generalization
stems from the fact that the short-time Fourier
transform is equal to the LPFT for M = 1.
Hence, to relate the LPP to (20), let us con-
sider the second order case (i.e., M = 2):

AFwg(t, f) =

∫ +∞

−∞

w

(
τ +

t

2

)
w∗
(
τ − t

2

)

× exp(−j2πf2(τ + t/2)2

+j2πf2(τ − t/2)2 − j2πfτ))dτ

=

∫ +∞

−∞

w

(
τ +

t

2

)
w∗
(
τ − t

2

)

× exp(−j4πf2τt− j2πfτ)dτ
= AFw(t, f + 2πf2t), (22)

where AFw(t, f) is the ambiguity function of
the used window. Hence, the LPP rotates
AFw(t, f) in the ambiguity plane and can ad-
just the resulting time-frequency representa-
tion according to the signal of interest. Simi-
larly can be stated for any localized form of the
FRFT with a proper selection of the α (angle)
parameter.
Equations (13)-(22) demonstrate that vari-

ous coordinate transformations have been im-
plemented to relate the FRFT to different
transformations. This implies that any coor-
dinate transformation can be used, which is
demonstrated in the next section, where we re-
late the FRFT with the linear canonical trans-
form.

B.2 Other time-frequency representations and
properties

A formal relationship between the wavelet
transform and the FRFT has also been estab-
lished [31], [32]. Specifically, the FRFT ker-
nels corresponding to different values of α are
closely related to the wavelet transform, which
can be obtained from the quadratic phase
function in (2) by scaling the coordinates
and the amplitude [31], [32]. Furthermore,
fractional-Fourier-domain realizations of sev-
eral other time-frequency representations were
also introduced. These include realizations
of the short-time Fourier transform [33], the
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weighted Wigner distribution (i.e., S-method)
[21], [34], the Gabor expansion [35]-[38], and
the tomography time-frequency transform de-
fined as the inverse Radon transform of the
FRFT [39].
Some of the properties associated with the

time-frequency analysis have been extended to
the FRFT. For example, marginals associated
with time-frequency representations based on
the fractional Fourier transform were exam-
ined [40] in analogy to marginals associated
with TFRs based on the standard Fourier
transform. However, it is not very clear what
is a precise meaning of those generalized mar-
ginals in comparison to the traditional time
and frequency marginals, which have a spe-
cific meaning relating those quantities to the
signal under analysis. Several publications
also investigated the uncertainty principle in
the fractional domain [41]-[44].

C. FRFT and linear canonical transform

The linear canonical transform (LCT) is a
multiparameter integral transform and it rep-
resents a generalization of many mathematical
transformations (e.g., the Fourier transform,
FRFT, Fresnel transform) [1], [45]. It should
be mentioned that the LCT is also called the
affine Fourier transform, the generalized Fres-
nel transform, the Collins formula, the ABCD
transform, or the almost Fourier and almost
Fresnel transformation [1], [45]. The transfor-
mation is useful in many practical applications
such as optics, radar system analysis, filter de-
sign, phase retrieval, and pattern recognition
[45].

The LCT is defined by [1], [45], [46]:

LCTΛ (x (t))

=






√
1

j2πb exp
(
jdu2/ (2b)

)

×
∫+∞
−∞ exp (−jut/b)

× exp
(
jat2/ (2b)

)
x (t) dt

b �= 0

√
d exp

(
jcdu2/2

)
x (d · u) b = 0

(23)
where ad − bc = 1, Λ = {a, b, c, d}. Using
the above equation, it is straightforward to
show that the FRFT is the special case of LCT
where {a, b, c, d} = {cosα, sinα,− sinα, cosα}

with some phase correction [1], [45], [46]. In
other words,

Fα(x(t)) =
√
exp (jα)

×LCT{cosα,sinα,− sinα,cosα} (x (t)) (24)

Additionally, other existing forms of the LCT
can be related to FRFT. For example, the
simple coordinate transform proposed in [16]
when considered with parameters {1, α, 0, 1}
represents the form of the second order poly-
nomial Fourier transform with 2πf2 = α. Fur-
thermore, de Bruijn proposed a form of the
LCT in 1973 [6]. The parameters of this distri-
bution are {coshα, sinhα, sinhα, coshα} and
its kernel function is defined as:

Kα(t, u) =
1√
sinhα

×e−jπ(u2/2) cothαe−jπ(t2/2) cothα+jπut/ sinhα.
(25)

which is quite similar to the FRFT. This trans-
form shares numerous properties of FRFT and
it will be interesting to investigate a range of
possible application of this coordinate trans-
form given recent advances in signal process-
ing.

C.1 Coordinate transformation of other higher-
order time-frequency representations

The FRFT and linear canonical transform
framework can be generalized for some higher
order time-frequency representations. Here,
we discuss the case of the L-Wigner distrib-
ution (L-WD) introduced in [47] for achieving
high concentration of the time-frequency rep-
resentations by eliminating the so-called inner
interferences. The L-WD can be defined as:

LWD(t, f) =

∫ +∞

−∞

xL(t+ τ/2)

×x∗L(t− τ/2) exp(−j2πftτ)dτ. (26)

Signal xΛ(t), producing the coordinate trans-
form of the L-WD LWD(at+ bf, ct+ df), can
be defined for b �= 0 as:

xΛ(t) = (1/2π|b|)1/2L

×
(∫ +∞

−∞

xL(t)ej
L
2 (

1−a
b )u

2−j L(t−u)
2

2b du

)
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×ej 1−db t2/2. (27)

For rotation a = d = cosα and c = −b = sinα,
the generalized (L) form of the FRFT can be
written as:

XL,α(u) =

(
L(1− j cotα)

2π

)1/2L

×
(∫ +∞

−∞

xL(t)ej
L
2 cotα(u

2+t2)−jLut cscαdt

)1/L
.

(28)
The L-FRFT form can be evaluated using the
FRFT as:

XL,α(u) = L
1/2L

(
1 + j cotα

2π

)L−1
2L

×
(∫ +∞

−∞

∫ +∞

−∞

...

∫ +∞

−∞

(
L∏

i=1

Xα(ui)dui

)

×e−j cotα2 (
∑

L
i=1 u

2
i−u

2)δ

(

Lu−
L∑

i=1

u2i

))

.

(29)
For L = 2, this relationship can be written as:

X2,α(u) =

(
1 + j cotα

π

)1/4

×
(∫ +∞

−∞

Xα(u+ τ)X
∗
α(u− τ)e−j cotατ

2

dτ

)1/2
.

(30)
In general the L-FRFT of the k +m-th order
can always be expressed using the L-FRFT of
k−th and m−th orders:

Xk+m,α(u) =

(
(k +m)(1 + j cotα)

2πkm

)1/2(k+m)

×
(∫ +∞

−∞

Xk
k,α(u+ τ/k)X

m
m,α(u− τ/m)

× e−j(k+mkm )/2dτ
)1/(k+m)

. (31)

Similar coordinate transform can be deter-
mined for all time-frequency representations
depending on powers of the signal local-
autocorrelation x(t + τ/2)x∗(t − τ/2). How-
ever, as far as we know there are no reported
results for other higher-order time-frequency
representations such as the polynomial Wigner
distribution (e.g., [48]) with the usage of sev-
eral auto-correlations.

C.2 Multiparameter coordinate transforma-
tions

Further generalizations can be achieved by
introducing additional parameters. Mathe-
matically, such generalization would be given
as [

t′

f ′

]
=

[
a b
c d

] [
t
f

]

+

[
β γ
θ φ

] [
t
f

] [
t f

] [ 1
1

]
(32)

where t′ and f ′ represent the transformed
coordinates. These transformations corre-
spond to more complex distortions in the time-
frequency plane in comparison to the FRFT
and LPFT. The generalization, as shown in
(32), could be used to describe many existing
transforms as well. For example, when d �= 0,
φ �= 0 and all other parameters are equal to
zero, we obtain the LPFT forM = 3, as shown
in (19).

III. P��	�
	�� ���
���
��� �� FRFT

In order to practically realize the FRFT
based operators, filters, correlators, and other
optical systems, we are required to numeri-
cally calculate the FRFT [49]. As depicted in
the previous section, the FRFT is a subclass
of integral transformations characterized by
quadratic complex exponential kernels. These
complex exponential kernels often introduce
very fast oscillations as shown in Figure 3.
Hence, it is not possible to evaluate these
transformations by direct numerical integra-
tion since these fast oscillations require exces-
sively large sampling rates. A possible ap-
proach is to decompose these integral trans-
formations into sub-operations. However, we
still require significantly higher sampling rates
than the Nyquist rate, depending on the order
and particular decomposition employed. This
results in greater time of computation, larger
numerical inaccuracies, and the need for more
memory. Therefore, the goal of this section is
to provide an overview of various practical im-
plementations proposed over the years. Given
that we are concerned with practical imple-
mentations using discrete signals, we only con-
sider approaches for the implementation of the
so-called discrete fractional Fourier transform
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(DFRFT). In other words, for a discrete signal,
x (n), of length N we can define the DFRFT
as follows:

Xα (n) = Fαx(n) (33)

where Fα is defined as the discrete fractional
Fourier transform matrix, x(n) is a vector rep-
resenting the signal, and Xα (n) is a vector
representing the DFRFT of the signal. There-
fore, the optical based implantations (e.g.,
[49]) are beyond the scope of this paper. A
summary of various approaches is shown in Ta-
ble III.

A. DFRFT through sampling of FRFT

A straightforward approach for obtaining
the DFRFT is to sample the FRFT, since the
sampling theorems for the FRFT of bandlim-
ited and time-limited signals follow from those
of the Shannon sampling theorem [14], [50]-
[55]. However, the resultant discrete trans-
form may lose many important properties (i.e.,
unitarity and reversibility). In addition, the
DFRFT obtained by direct sampling of the
FRFT lacks closed-form properties and is not
additive, meaning that its applications are
very limited [56]. In order to maintain some
of FRFT properties, a type of DFRFT, de-
rived as a special case of the continuous FRFT,
was proposed in [57]. Specifically, it was as-
sumed that the input function is a periodic,
equally spaced impulse train. Since this type
of DFRFT is a special case of continuous
FRFT, many properties of the FRFT also ex-
ist and have the fast algorithm. However, this
type of DFRFT cannot be defined for all val-
ues of α due to various imposed constraints.
Around the same time, Ozaktas et. al pro-
posed two innovative approaches for obtaining
the DFRFT through sampling of the FRFT
[58]. Both of the methods are based on the
idea that we can manipulate the expression for
the FRFT, such that the form can be appropri-
ately sampled. In particular, the first method
begins simply by multiplying the signal, x (t),
with a chirp function:

g(t) = exp
[
−jπt2 tan (α/2)

]
x (t) (34)

followed by a chirp convolution

h (t) = Aα

∫ +∞

−∞

exp[jπ csc (α)

× (t− τ)]g (τ) dτ. (35)

and the last chirp multiplication

Fα (x(t)) = exp
[
−jπt2 tan (α/2)

]
h (t) (36)

The convolution operation in the above equa-
tion can be achieved by sampling g(t), and
then performing the convolution using the fast
Fourier transform (FFT). Hence, using the
FFT for convolution, provides us with sam-
ples of Fα (x(t)). However, one has to keep in
mind that the bandwidth and time-bandwidth
product of g(t) can be as large as twice that of
x(t). Thus, we need to sample g (t) at the rate
twice the original sampling rate used for x(t),
which means that the samples of x (t) need
to be interpolated. Specifically, assuming that
x and Xα denote column vectors with N ele-
ments containing the samples of x (t) and its
DFRFT, respectively, then, in a vector nota-
tion, the above procedure can be given as

Xα = Fαx = DΛHΛJx (37)

where D and J are matrices representing the
decimation and interpolation operation, Λ is
a diagonal matrix that corresponds to chirp
multiplication, and H corresponds to the con-
volution operation. Equation (37) provides the
samples of the αth transform in terms of the
samples of the original signal. This is a desir-
able property for a definition of the DFRFT
matrix [58]. Very similar results were obtained
in [52] as well. Sample computed FRFTs for
impulse and step functions are shown in Fig-
ure 4. The second approach, proposed in [58],
implements a very similar principle. However,
the authors rewrote the FRFT into the form:

Xα = Aα exp
(
jπ cot (α)u2

)

×
∫ +∞

−∞

exp (−j2π csc (α)ut)

× [exp (jπ cot (α) t)x (t)] dt (38)
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TABLE III

A ������� �� ������
� ��� ��
� �
�	�
��� ��� ����
�
�� �� DFRFT.

Approach Advantages Disadvantages
Sampling of FRFT Mostly straightforward ap-

plication of the Shannon
sampling theorem

May loose many important
properties.

Linear combination Simple implementation of
Fourier operators.

The transform results do
not match the result of the
continuous FRFT.

Eigenvalue decomposition Maintains some important
properties of the FRFT.

Could lack the fast com-
putation algorithm. Can-
not be written in a closed
form.
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Fig. 3. The FRFT kernel function for various α values with the solid line representing the real part and the
dashed line representing the imaginary part (t = 1): (a) α = π/8; (b) α = π/4; (c) α = 3π/8; and (d)
α = π/2.
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Fig. 4. Theoretical and computed FRFTs of impulse and step functions (α = π/4): (a) the magnitude of
theoretical FRFT of the impulse function; (b) the magnitude of computed FRFT of the impulse function;
(c) the magnitude of theoretical FRFT of the unit function; and (d) the magnitude of computed FRFT of
the unit function.

Then, the modulated function [exp (jπ cot (α) t)
x (t)] is represented by Shannon’s interpola-
tion formula:

[exp (jπ cot (α) t)x (t)]

=
N∑

n=−N

[
exp

(
jπ cot (α)

n

2∆t

)

×x
( n

2∆t

)
sinc

(
2∆t

(
t− n

2∆t

))]
(39)

allowing us to obtain the samples of the frac-
tional transform in terms of the samples of the
original signal as

Xα (m) =
Aα
2∆t

N∑

n=−N

exp (jπ (cot (α)

×
( m
2∆t

)2
− 2 csc (α) mn

(2∆t)2
+

cot (α)
( n

2∆t

)2))
x
( n

2∆t

)
(40)

which is a finite summation and ∆t represents
the sampling interval. In a vector form, the
overall procedure can be represented as

Xα = Fαx = DKJx (41)

where

K (m,n) =
Aα
2∆t

exp

(
jπ

(
cot (α)

( m
2∆t

)2

−2 csc (α) mn

(2∆t)2
+ cot (α)

( n

2∆t

)2
))

(42)
for |n| and |m| ≤ N and where Aα is a con-
stant.
However, both presented cases assumed that

the Wigner distribution of x (t) is zero out-
side an origin-centered circle of diameter equal
to the sampling period [58]. Therefore, there
might be several DFRFT matrices providing
the same result within the accuracy of this ap-
proximation. Nevertheless, if the signal energy
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contained within this circle is approaching to
the total signal energy, we know that all of
these matrices provide more accurate results.
In other words, signals can be recovered from
their transforms only within some approxima-
tion errors [59], [60].
In order to alleviate some of the problems

associated with the DFRFT proposed in [58],
a new type of DFRFT, which is unitary, re-
versible, and flexible, was proposed in [56]. In
addition, the closed-form analytic expression
of this DFRFT can be obtained. Its perfor-
mance is similar to the FRFT and can be effi-
ciently calculated by FFT. Assuming that the
samples of the input function, x(t), and the
output function Xα (u) of the FRFT are ob-
tained by the interval ∆t, ∆u as

y (n) = x (n∆t) Yα (m) = Xα (m∆u) (43)

where n = −N,−N + 1, ..., N and m =
−M,−M + 1, ...,M , then, the following two
formulas of the DFRFT are in order:

Yα (m) =

√
sinα− j cosα
2M + 1

× exp
(
j

2
cotαm2∆u2

)

×
N∑

n=−N

exp

(
−j 2πnm
2M + 1

)

× exp
(
j

2
cotαn2∆t2

)
y (n) (44)

when sinα > 0 (α ∈ 2Dπ+(0, π), D ∈ Z), and

Yα (m) =

√
− sinα− j cosα

2M + 1

× exp
(
j

2
cotαm2∆u2

)

×
N∑

n=−N

exp

(
j
2πnm

2M + 1

)

× exp
(
j

2
cotαn2∆t2

)
y (n) (45)

when sinα < 0 (α ∈ 2Dπ + (−π, 0), D ∈ Z).
Additionally, the constraints that M ≥ N
(2N +1, 2M +1 are, respectively, the number

of points in the time and frequency domains)
and

∆u∆t = 2π |sinα| / (2M + 1) (46)

must also be satisfied. We note that when
M = N and α = π/2 (−π/2), equations (44)
and (45) become the DFT or IDFT. We also
note that when α = Dπ (D ∈ Z), there is no
proper choice for ∆u and ∆t that satisfies the
inverse formula, and thus, we cannot use the
above as the definition of the DFRFT. In fact,
in these cases, we can just use the following
definitions:

Yα (m) = y (m) when α = 2Dπ (47)

Yα (m) = y (−m) when α = (2D + 1)π. (48)

The inverse DFRFT is simply a Hermitian
forward DFRFT with -α. This DFRFT is ef-
ficient to calculate and implement. Because
there are two chirp multiplications and one
FFT, the total number of the multiplication
operations required is 2P+(P/2) log2 P , where
P = 2M + 1 is the length of the output. The
authors also claimed that this DFRFT also
has the lowest complexity among all types of
DFRFT that still work similarly to the contin-
uous FRFT [56]. However, it does not match
the continuous FRFT and lacks many of the
characteristics of the continuous FRFT. For
example, it is difficult to filter out the chirp
noise with this type of DFRFT [56].

B. Linear combination-type DFRFT

One of the first approaches for the DFRFT
was proposed by Dickinson and Steiglitz in
1982 [61]. In their paper, the DFRFT was de-
rived by using the linear combination of iden-
tity operation (F0), discrete Fourier transform(
Fπ/2

)
, time inverse operation (Fπ), and the

inverse discrete Fourier transform
(
F3π/2

)
. In

other words, the fractional matrix operator,
Fα, for 0 ≤ α ≤ π/2 was given as [61]:

Fα =
3∑

k=0

βkFkπ/2 (49)

where

βk =
1

4

4∑

l=1

exp

[
jπl

(
2α

π
− k

)
/2

]
(50)
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for 0 ≤ k ≤ 3. In particular, it has been shown
that the operator defined by (49) is unitary
[62]. In other words,

F
H
α = F

−1
α = F−α (51)

FαF−α = I (52)

Furthermore, the operator satisfies the angle
additivity property [62]:

Fα1Fα2 = Fα1+α2 (53)

and angle multiciplity property [62]:

F
m
α = Fmα (54)

It has also been noticed that the operator is
periodic in the parameter α with a fundamen-
tal period 2π [62].
This type of the DFRFT corresponds to a

completely distinct definition of the fractional
Fourier transform. However, the main prob-
lem is that the transform results will not match
to the continuous FRFT [60]. In other words,
it is not the discrete version of the continuous
transform [63].

C. DFRFT based on eigenvectors

A possible approach for the DFRFT is based
on searching the eigenvectors and eigenvalues
of the DFT matrix and then computing the
fractional power of the DFT matrix (e.g., [59],
[60], [63], [64]). This type of the DFRFT was
proposed to combat the issues associated with
previous implementations such as a lack of uni-
tarity and index additivity (e.g., [57] and [58])
and the fact that most of these provide a satis-
factory approximation to the continuous trans-
form. In particular, the DFRFT is based on
the eigendecomposition of the DFT kernel ma-
trix [60]. The transform kernel of the DFRFT
can be defined as

F2α/π = UD2α/πU

F2α/π

=






∑N−1
k=0 exp (−jkα)

×ukuTk
for
N odd

∑N−2
k=0 exp (−jkα)ukuTk

+exp (−jNα)uNuTN
for

N even

where U = [u0 u1 ... uN−1], when N is odd,
and U = [u0 u1 ... uN−2 uN ] when N is even.
uk is the normalized eigenvector corresponding
to the kth order Hermite function and D2α/π

is defined as the following diagonal matrix :

D2α/π = diag(exp (−j0) , exp (−jα) , ...,

exp (−jα (N − 2)) , exp (−jα (N − 1))) (55)

for N odd and

D2α/π = diag(exp (−j0) , exp (−jα) , ...,

exp (−jα (N − 2)) , exp (−jαN)) (56)

for N even. In order to ensure orthogonal-
ity of the DFT Hermite eigenvectors (uk), the
Gram—Schmidt Algorithm (GSA) or the Or-
thogonal Procrustes Algorithm (OPA) can be
used [60]. The GSA minimizes the errors be-
tween the samples of the Hermite functions
and the orthogonal DFT Hermite eigenvectors.
On the other hand, the OPA minimizes the to-
tal errors between those samples. It should be
also pointed out that the main difference be-
tween the approach proposed in [60] and simi-
lar approaches proposed (e.g., [59], [63], [64]) is
found in the obtained eigenvectors in previous
contributions, in that they were just discrete
Mathieu functions [60]. Although the Math-
ieu functions can converge to Hermite func-
tions, the convergence for the eigenvectors ob-
tained in previous approaches are not so fast
for the high-order Hermite functions by the lin-
ear mean square error criterion [60]. Addition-
ally, the authors investigated the relationship
between the FRFT and the DFRFT and found
that for a sampling period equal to

√
2π/N ,

the DFRFT performs a circular rotation of the
signal in the time—frequency plane [60]. How-
ever, the DFRFT becomes an elliptical rota-
tion in the continuous time-frequency plane
for sampling periods different from

√
2π/N

[60]. Therefore, for these elliptical rotations an
angle modification and a post-phase compen-
sation in the DFRFT are required to obtain
results similar to the continuous FRFT [60].
This approach has been extended to the so-
called multiple-parameter discrete fractional
Fourier transform (MPDFRFT) [65], [66]. In
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fact, the MPDFRFT maintains all of the de-
sired properties and reduces to the DFRFT
when all of its order parameters are the same.
A similar approach to [60] has been pro-

posed in [67]. However, authors in [67] be-
lieve that the discrete time counterparts of
the continuous time Hermite-Gaussians main-
tained the same properties, since these discrete
time counterparts exhibited better approxi-
mations than the other proposed approaches
[68]. In order to resolve this issue about
the approximation of Hermite-Gaussian func-
tions, a nearly tri-diagonal commuting matrix
of the DFT and a corresponding version of
the DFRFT was proposed in [69]. Most of
the eigenvectors of this proposed nearly tri-
diagonal matrix result in a good approxima-
tion of the continuous Hermite-Gaussian func-
tions by providing a smaller approximation er-
ror in comparison to previous approaches.
Using the findings presented in [60] and [67],

methods for parallel and cascade computations
of DFRFT are proposed in [70]. By this new
method, the DFRFT of any angle can be com-
puted by a linear combination of the DFRFTs
with special angles [70]. The parallel method
is suitable for the signal whose DFRFT in spe-
cial angles are already known. The chirp signal
detection is a common one, and the cascade
method has a regular structure; therefore, it is
very suitable for VLSI implementation.
However, it should be noted that these types

of DFRFT’s lack the fast computation algo-
rithm and the eigenvectors cannot be written
in a closed form.

D. Other approaches

The FRFT can also be realized by the
quadratic phase transform (QPT) [71], [72],
which is defined as

QP(µ, ν) =

∫ +∞

−∞

x(t)e−jµt−jνt
2

dt. (57)

Compared with (1), the FRFT can be com-
puted by mapping variables µ and ν of the
QPT onto α and u of the FRFT. With this
equivalence of implementation, a number of
fast algorithms for the QPT can be used to
compute the FRFT [71], [73]-[75]. Specifically,
the fast algorithms proposed in [71] make use

of the concept of decimation-in-time decompo-
sition along the µ and ν domain. These algo-
rithms can reduce the numbers of both com-
plex multiplications and additions by a factor
2 log2N , where N is the number of samples
in the time domain. By further exploiting the
periodic and symmetric properties of the QPT
and with the radix-2 decimation-in-frequency
principle, a computationally more efficient al-
gorithm was proposed in [73]. Recently, the
above fast algorithms are also extended to real
value sequences [75], which are useful in voice,
audio, and image signal analysis.
Several other approaches for obtaining the

DFRFT were proposed in the literature. Here,
we only provide a brief overview of these
techniques. For complete details, a reader
should refer to these contributions. Using the
group theory, authors in [76] proposed that the
DFRFT can be obtained as the multiplication
of DFT and the periodic chirps. This DFRFT
satisfies the rotation property on the Wigner
distribution, and the additivity and reversible
property. However, this type of DFRFT can
be derived only when the fractional order of
the DFRFT equals some specified angles. As
well, when the number of points is not prime,
it will be very complicated to derive. Us-
ing Chirp-Z transforms, a fast numerical al-
gorithm for the DRFT was proposed in [77].
This method allows free choice of resolutions
in both fractional Fourier spaces, simultaneous
data-peeping in any region, and easy imple-
mentation. Furthermore, the authors argued
that their method is easier to implement in
comparison with the method proposed in [61],
while maintaining the same computational ef-
ficiency.

IV. A���
	��
���

In this section, we review the practical appli-
cations of the FRFT and its discrete counter-
part as a signal processing tool. Nevertheless,
our literature review showed that applications
are very scarce beyond optics. We anticipate
additional publications regarding practical ap-
plications of the FRFT are bound to appear.
For example, we foresee an increased num-
ber of applications of the FRFT based time-
frequency representations in speech and music
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processing, biomedical signal processing, and
mechanical vibrations analysis. Some prob-
lems stemming from such applications demand
such advanced time-frequency representations
(e.g., spectrogram, the Wigner distribution),
since these classical time-frequency tools do
not provide a framework sufficient for a com-
prehensive analysis [2].
It should be also mentioned that in this pa-

per we devote more space to newer applica-
tions of the FRFT such as watermarking and
communications. Other contributions (e.g.,
[1], [9]) described either more traditional ap-
plications such as filtering and signal recovery
or only briefly covered different applications.
Our goal is to emphasize that the FRFT is a
valuable tool in many various applications.

A. Filtering

The idea of using the FRFT for fundamen-
tal signal processing procedures such filtering,
estimation and restoration is particularly in-
teresting for applications involving optical in-
formation processing [78], [79]. In several pub-
lications the concepts of filtering, estimation
and restoration of signals in fractional domains
were developed for these applications, reveal-
ing that under certain conditions one can im-
prove upon the special cases of these opera-
tions in the conventional space and frequency
domain. Furthermore, the FRFT can be ap-
plied to the problem of time-varying filtering
of non-stationary, finite energy processes both
in continuous-time and discrete-time frame-
works [80]. Filtering in fractional Fourier do-
mains may enable significant reduction of the
mean square error in comparison with ordi-
nary Fourier domain filtering. In particular,
the optimum multiplicative filter function that
minimizes the mean square error in the αth
fractional Fourier domain was derived in [80].
Similarly, a novel fractional adaptive filtering
scheme was introduced [81], and simulation re-
sults showed that adaptive filtering in the frac-
tional domain is superior in comparison to its
time domain counterparts.

B. Watermarking

The FRFT and its counterparts have not
be fully exploited in the field of the multime-

dia due to several plausible reasons. Firstly,
several well established transforms are already
used in the multimedia applications (e.g.,
DCT, DST, Walsh, DWT, DFT). Secondly,
multimedia applications are commonly sub-
ject to some sort of standardization. Also, a
relatively short history of the fast algorithms
for the FRFT realization and a short period
for the detailed study of the FRFT proper-
ties limit its wider usage in this area. The
third reason is that this transform with a rela-
tively long history in the other signal process-
ing related disciplines, is still relatively un-
known in the multimedia systems. However,
this situation is gradually changing with more
papers focusing on this transform. Here, it
is worthwhile mentioning the application in
the digital watermarking (e.g., [82]-[84]). The
digital watermarking is a technique used for
the copyright protection of digital multimedia
data [85]. A desired ability for these tech-
niques is a creation of a large number of wa-
termarks that can be embedded in multimedia
data without perceptible degradation of host
data. Then, the FRFT domains offer more
flexibility since it has been shown that the
FRFT watermarks with various angles have
small correlation. Usage of two angles in the
2D FRFT offers significant possibility to hide
more different watermarks in images than the
standard DFT or DCT-based domains.

This is illustrated with Figures 5 and 6 taken
from [82]. In this figure the original Lena im-
age used as a common test example is given
in Figure 5(a) while the watermarked image
is given in Figure 5(b). Watermark is em-
bedded for angles α1 = α2 = 0.375π. Detec-
tion of watermarks for 1000 watermark keys is
demonstrated in Figure 6(a) where upper line
corresponds to detection in the watermarked
image while lower line corresponds to detec-
tion in non-watermarked image. From spread
between these two lines we can conclude that
watermark detection is reliable. Figure 6(b)
demonstrates a situation when a search with
the proper watermark key is performed around
proper angles. It can be seen that the water-
mark can be detected only if the angle under
which the watermark is embedded is known.
This is a quite important fact and it helps
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Fig. 5. Watermarking using the FRFT: (a) original image; (b) watermarked image.

in increasing the number of watermarks that
can be embedded within multimedia data. A
practically useful scheme for the FRFT based
watermarking is recently proposed in [86]. In
particular, the impact of the noise and other
errors is severely reduced on the FRFT coeffi-
cients by pre-filtering these coefficients yield-
ing a scheme that is more robust to various
attacks.

Similarly, a watermarking scheme in the
space/spatial-frequency domain has been pro-
posed in [87]. This watermarking technique
uses 2D chirp signals that are well concen-
trated in the joint space/spatial-frequency do-
main, but not in the space or spatial-frequency
domain only. Therefore, this concept of water-
marking provides results robust to the stan-
dard filtering, since watermarks are concen-
trated in the joint space/spatial-frequency do-
main [87].

Both of these techniques are closely mon-
itored and followed by numerous researchers
[88]-[97]. The main obstacle in further appli-
cations of these techniques is the complexity
that can be reduced with various previously
described fast realization strategies. In addi-
tion, the availability of the FRFT fast realiza-
tions will lead to numerous implementations of
the FRFT and related transforms in multime-
dia.

C. Radar applications

A couple of techniques related to the
FRFT have been recently used for focusing
SAR/ISAR images (e.g., [98], [99]). This tech-
nique is commonly referred as the LPFT in
the related literature. Two forms of the adap-
tive LPFT-based technique for focusing ISAR
images are proposed in [100]. The focusing
is performed without assuming any particular
model of a target’s motion. Therefore, these
versions of the LPFT can be applied for any re-
alistic motion. The first technique is based on
knowing that, for monocomponent and multi-
component signals with similar chirp-rates, a
single chirp-rate parameter can be estimated
for all components. The ISAR image is then
focused by using the estimated value of signal
parameters obtained through the LPFT calcu-
lation. For multicomponent signals with differ-
ent chirp-rates, a sum of the weighted LPFT
is used. If the signal’s components have sig-
nificantly different chirp-rates, the estimation
of these parameters should be performed sep-
arately for each component. Moreover, the
obtained estimate is additionally refined by
combining estimations obtained for close re-
flectors. For targets with very complex mo-
tion patterns, segmentation of the radar im-
age in regions-of-interests is performed. The
adaptive LPFT is calculated for each region
in order to form focused ISAR image. Adap-
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Fig. 6. Analysis of the detector: (a) statistical analysis of detecting watermark signal in watermarked and
nonwatermarked image; (b) detection of watermark signal using different transformation angles.

tive parameters are obtained by using a simple
concentration measure. Here, we demonstrate
test image of the B727 plane given on Figure
7(a) (the figure is taken from [100]). Focus-
ing of the radar image is performed for each
cross-range parameter and the focused image
is given in Figure 7(b). Estimated chirp-rate
parameters (angles in the FRFT terminology)
are depicted with dashed lines in Figure 7(c).
Additional improvements have been achieved
when these chirp-rates are filtered with median
filter (thick line). Then, the radar images fo-
cused with the filtered chirp-rate as depicted
in Figure 7(d).

A similar approach is proposed in [101], but
the chirp-rate is estimated by using contrast
of the LPFT-based ISAR image. Moreover, a
modulus of the target effective rotation vector
is calculated from the obtained estimation. A
quantitative analysis of the signal-to-noise ra-
tio (SNR) for the LPFT applied in the ISAR
imaging is presented in [102]. It has been
shown that the LPFT-based methods for fo-
cusing ISAR images can achieve a significantly
higher output SNR than those based on the
STFT.

Focusing of the SAR images is usually per-
formed by estimating parameters of a received
signal. A technique for applying the prod-
uct higher-order ambiguity function (PHAF)
for estimating parameters of the radar sig-
nal and focusing SAR images is proposed in
[103]. Moving target focusing can be per-
formed by this technique for some specific sce-
narios. More precisely, the obtained SAR im-

age will be focused only when one target exists
in a range bin, or when all targets in one range
bin have similar motion parameters. Other-
wise, this technique fails to achieve high con-
centration of each target simultaneously. In
order to overcome this drawback, an algorithm
for separating signal components correspond-
ing to targets with different motion parame-
ters is applied in [104] where the LPFT-based
technique is used for focusing each component.
The drawback of the LPFT-based technique,
applied in this manner, is high computational
complexity needed for selection of chirp-rate
that produces the best concentration. There-
fore, an algorithm for the automated selection
of phase parameters used for the LPFT cal-
culation is proposed in [105]. In this algo-
rithm, an adaptive set of chirp-rates is formed
for each unfocused target. When one or more
unfocused targets are detected in a range, the
PHAF is evaluated and the position of its max-
imum is used for the coarse estimation of chirp-
rate. Further improvement of the obtained
estimate is performed by using a fine search
in the region around the chirp-rate obtained
from the coarse search. The number of chirp-
rates in the fine search stage is rather small
(usually not larger than several tens) which
yields a significant decrease in the computa-
tional complexity with respect to the tech-
nique proposed in [104] (which requires hun-
dreds or thousands). In addition, a procedure
for the third-order phase compensation is ap-
plied in the proposed algorithm without a sig-
nificant increase of the calculation burden. In
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Fig. 7. B727 radar image: (a) results obtained by the FT-based method; (b) adaptive LPFT method; (c)
adaptive chirp rate (dotted line), filtered adaptive chirp rate (light solid line), linear interpolation of filtered
data (bold solid line); (d) adaptive LPFT with interpolated data. ωτ and ωm represent the range and the
cross-range, respectively.

[104], [105], [106] it has been shown that the
LPFT-based methods for focusing SAR images
are more robust to the additive noise influence
than the STFT radar imaging techniques.
Here, we have borrowed figure from [105]

where the SAR image of several moving and
stationary targets is shown (Figure 8(a)). It
can be seen that the moving targets have se-
riously spread components. Alternative tools
such as a technique called the S-method [107]
are unable to separate overlapping targets
(Figure 8(b)). The LPFT technique with
predefined set of the chirp-rates gives signif-
icantly improved results as shown in Figure
8(c). However, the procedure proposed in [105]
based on the LPFT with automatic selection
of the chirp-rate parameters, produces highly
focusing of all considered targets (Figure 8(d)).

D. Communications

Traditional multicarrier systems (MC) are
designed with the DFT based schemes. The

main representative of these techniques is
the orthogonal frequency-division multiplex-
ing (OFDM). However, for doubly-selective
channels (channels with selectivity in both
time and frequency) this technique produces
non-satisfactory results. Martone in 2001 pub-
lished a corner-stone paper where the discrete
FRFT is used instead of the DFT in multi-
carrier systems [108]. For channels with fast
variations with available the line-of-sight com-
ponent (usually associated with mobile sta-
tions mounted on high speed carriers and/or
non-urban environments) this scheme signifi-
cantly outperforms DFT-based counterparts.
Performance of this technique is significantly
improved since the time-frequency plane can
be adjusted (rotated) in a way to compensate
undesired modulation of the signals introduced
by high velocity of participants and/or by mul-
tipath component shifted from the line-of-sight
components. This technique is generalized for
general linear canonical form of the transform
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Fig. 8. Simulated SAR image of seven target points obtained by using: (a) 2D FT; (b) adaptive S-method; (c)
LPFT with predefined set of chirp rates; and (d) proposed LPFT.

(affine Fourier transform - AFT) in [109]. This
form has shown an improved flexibility with
respect to the FRFT-based scheme. These
chirp based modulations and associated AFT
schemes have been identified as a suitable basis
for multicarrier communications such as aero-
nautical and satellite [110]. Table IV provides
a comparison between the AFT-MC technique
and the standard OFDM for four typical sce-
naria that can be observed in the case of the
aeronautical channels. The best results for the
AFT-MC techniques are observed for en-route
scenario while in the worst case for the parking
scenario, the AFT-based technique behaves
the same as the OFDM. Then, in our opinion
the AFT technique are important candidates
for novel digital standards for the aeronauti-
cal communications with solved problem of the
fast realizations of the AFT (FRFT).

Similarly, other contributions discussed the
application of the FRFT in communication
systems. In a very recent publication (e.g.,
[111]), a minimum mean squared error re-

ceiver based on the FRFT for MIMO systems
with space time processing over Rayleigh faded
channels was presented. The numerical analy-
sis of the proposed receiver showed improved
performance; outperforming the simple mini-
mum mean squared error receiver in Rayleigh
faded channel. Furthermore, chirp modulation
spread spectrum based on the FRFT was re-
cently proposed for demodulation of multiple
access systems [112]. The numerical analysis
showed that the FRFT based receiver is more
flexible and efficient system for multiple ac-
cess by reducing the designing complexity of
the system. The authors also argued that re-
ceivers based on the FRFT are more sensitive
than earlier coherent receivers for chirp sig-
nals.

E. Compression

An interesting application of the FRFT to
compression can be found in [113]. In partic-
ular, the contribution dealt with image com-
pression and found that even though the pre-
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TABLE IV

A 	�����
��� �� ��� �	��
���.

Scenario En-route Arrival/Takeoff Taxi Parking
AFT-MC vs. OFDM Significantly better Slightly better Slightly better Equal

sented method yielded inferior results in com-
parison to commonly available compression al-
gorithms, there is still a room for improve-
ment. The authors argued that their method
is very basic and further improvements can be
achieved by combining with other techniques.
The concept of compression using the FRFT
has been further extended in [114], where au-
thors proposed a scheme for signal compres-
sion based on the combination of DFRFT and
set partitioning in hierarchical tree (SPIHT).
The application of the scheme to different
types of signals demonstrated a significant re-
duction in bits leading to high signal compres-
sion ratio. The results were further compared
with those obtained with the discrete cosine
transform. Hence, the DFRFT is shown to be
more suitable for compression than the DCT,
especially in terms of quality of reconstructed
signal and the percentage root-mean-square
difference. There is no need to encode the
error signal and send along with the encoded
DFRFT coefficients, as the dynamic range of
error signal is too small.

F. Pattern recognition

Given that the FRFT provides an extra pa-
rameter (e.g., the rotation angle) in compari-
son with the ordinary Fourier transform, the
FRFT also provides additional degrees of free-
dom in pattern recognition systems. For ex-
ample, the FRFT was used as a pre-processor
for a neural network [115]. The use of frac-
tional based pre-processing resulted in an im-
proved performance comparing to both no pre-
processing and ordinary Fourier transform pre-
processing. Also, the fractional based pre-
processing resulted in a substantial reduction
of classification and localization error. While
use of the fractional Fourier transform in-
creases the cost of the training procedure, the
improvements achieved with its use come at
no additional routine operating cost.

Furthermore, it has been also shown
that pattern recognition methods based on
matched filtering can be generalized by replac-
ing the standard Fourier operations by frac-
tional Fourier operations [116]. However, these
systems become time (or space) varying sys-
tems.

G. Cryptography

The FRFT can also be used in the field of
cryptography [117]-[121]. For example, a 2004
US patent invented a cryptographic approach
[117]. At the encryption side, a user first se-
lects at least four parameters including an an-
gle of rotation, a time exponent, a phase, and
a sampling rate as the encryption key. Then,
more than one modified FRFT kernels corre-
sponding to the encryption key are selected
and multiplied with the input signal. On the
other hand, a reverse procedure with respect
to the encryption process is used for decryp-
tion.

The modified FRFT (e.g., [118]) along with
the double random phase encoding technique
has been successfully applied for encrypting
digital data. Specifically, using the double ran-
dom phase encoding in the multiple-parameter
FRFT domain, this encryption method en-
hances data security because the order para-
meters of the modified FRFT can be exploited
as extra keys for decryption. However, this en-
cryption scheme has shown to be linear [119].
Hence, it is insecure because a known plain-
text attack can break this scheme, which is
equivalent to solving a set of linear equations
[119]. It is also shown that the current stan-
dard algorithms such as AES [122] outperform
the above system in terms of both encryption
speed, bandwidth, and storage requirements.

Recently, a random discrete FRFT, pro-
posed in [123], exhibits an important feature
that the magnitude and phase of its transform
output are both random. This random dis-
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crete FRFT is also first applied to the image
encryption to show its potentials.

H. Fractal signal processing

The FRFT also found its application in
processing of fractal signals. For example, the
FRFT was used for the determination of the
main parameters of fractals in [124]. In [125],
a FRFT based estimation method was intro-
duced to analyze the long range dependence in
time series. In particular, the FRFT was used
for estimation of the Hurst exponent. The re-
sults have shown that the FRFT estimator can
achieve a reliable estimation of the Hurst ex-
ponent when compared to some other exist-
ing estimation methods, such as wavelet-based
method and a global estimator based on dis-
persional analysis.

I. Other applications

The FRFT can be useful in terms of differen-
tial equations [7], [126], especially for solving
these equations. For example, the FRFT of
a function x (t) can be considered as a solu-
tion of a differential equation, where x(t) can
be considered as the initial condition of the
equation. In particular, Namias solved sev-
eral Shrodinger equations using this assump-
tion [7]. Further examples can be found in [1],
[7], [126]. The FRFT can be also shown to
be a particular case of the evolution operators
[127]. Further details about the application
of the FRFT to differential equations can be
found in [128].

An application of the FRFT to computer
tomography was also recently discussed [129].
In particular, a two-dimensional FRFT has
been used to characterize the effect of scatter-
ing [129].

The FRFT has also been applied to tran-
sient motor current signature analysis (TM-
CSA) [130], due to the shortcomings of Fourier
transform for such an analysis. This paper
also proposed the optimization of the FRFT
to generate a spectrum where the frequency-
varying fault harmonics appear as single spec-
tral lines and, therefore, facilitate the diagnos-
tic process.

V. C��	���
��

The FRFT is a powerful mathemati-
cal transform that generalizes the ordinary
Fourier transform through the order parame-
ter α. As such, it has been rediscovered in
the literature several times. In this paper, we
provided an overview of the FRFT from the
signal processing point of view. In particu-
lar, our goal was to attract signal processing
practitioners to this mathematically eloquent
concept and depict its advantages. In order
to do so, the paper is thematically divided
into three topics. In the first part, we pre-
sented the definition of the FRFT and tied it
to other mathematical representations. The
second part of the paper covered various prac-
tical realizations of the FRFT, while the prac-
tical applications of the FRFT were discussed
in the third part of the paper. The conclusions
stemming from each part were as follows:
• Besides its ties to the ordinary Fourier trans-
form, the FRFT can be further related to var-
ious time-frequency transforms. In particular,
we showed the direct relationship between the
AF, the WD and the FRFT. This relationship
enables us to relate the FRFT to a wide class of
time-frequency transforms. Furthermore, we
showed that the FRFT can be considered as
a special case of the second-order LPFT and
LPP. Also, the FRFT can be considered as
the special case of the LCT. Such a relation-
ship provides a direct generalization link be-
tween the FRFT and many higher-order/affine
mathematical transformations. In particular,
we outlined the connection between the FRFT
and L-WD for the first time in the literature.
Future contributions in this theme will include
a further understanding of the FRFT and its
ties to other mathematical transforms.
• The digital realizations of the FRFT can be
divided into three major streams. One stream
is represented through direct sampling of the
FRFT. It is the least complicated approach,
but these discrete realizations could lose many
important properties of the FRFT. Further-
more, the kernel associated with the FRFT
can introduce very fast oscillations that re-
quire excessively large sampling rates. A sec-
ond stream relies on a linear combination of
ordinary Fourier operators raised to different
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powers. Nevertheless, these realizations often
produce an output that does not match the
output of the continuous FRFT. The third
stream approaches the discrete realizations
based on the idea of an eigenvalue decompo-
sition. The realizations obtained through this
stream tend to closely resemble the representa-
tions obtained by the continuous FRFT. How-
ever, we should point out that the major draw-
backs of this approach are that they cannot
be written in a closed form and might have
computational costs. Lastly, we also outlined
other approaches that appeared in the liter-
ature. We specifically suggested that poten-
tial realizations of the FRFT could be achieved
with the so-called quadratic phase transform.
Anticipated contributions in this field need to
deal with issues associated with the current
schemes.
• The number of publications discussing prac-
tical applications of the FRFT has been
steadily rising. In particular, we have wit-
nessed a strong expansion of the FRFT in sev-
eral fields, including watermarking, radar ap-
plications, and wireless communications. Fur-
thermore, we also have the FRFT present in
other fields as well (e.g., fractal signal process-
ing, pattern recognition, filtering). The main
advantage is that the FRFT-based schemes in-
crease processing accuracy. For example, a
group of authors described an adaptive filter-
ing scheme in a recent contribution. The pre-
sented results showed a superior performance
in comparison to its time domain counterparts.
Similar trends have been observed in multi-
media signal processing, where the FRFT has
been used for watermarking. In particular, the
watermark could be detected only if the angle
under which the watermark was embedded was
known. This enabled us to increase the num-
ber of watermarks embedded within multime-
dia data. From these past contributions, we
expect an expansion of FRFT-based methods
in different applications to dominate the fu-
ture contributions. In particular, we expect to
see increased application of the FRFT based
time-frequency representations in speech and
music processing, biomedical signal processing
and mechanical vibrations analysis. Problems
stemming from such applications require the

employment of such advanced time-frequency
transforms.

Overall, the paper provided a compact sum-
mary of the recent contributions regarding the
FRFT (for your convenience, Table V con-
tains reference sorted according to their top-
ics). The FRFT is a very powerful tool and has
been applied to many fields. Further research
and applications of existing schemes will in-
crease in the near future.
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