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Abstract– Signal processing can be found

in many applications and its primary goal is

to provide underlying information on specific

problems for the purpose of decision making.

Traditional signal processing approaches as-

sume the stationarity of signals, which in prac-

tice is not often satisfied. Hence, time or fre-

quency descriptions alone are insufficient to

provide comprehensive information about such

signals. On the contrary, time-frequency analy-

sis is more suitable for nonstationary signals.

Therefore, this paper provides a status report

of feature based signal processing in the time-

frequency domain through an overview of re-

cent contributions. The feature considered here

is energy concentration. The paper provides an

analysis of several classes of feature extractors,

i.e., time-frequency representations, and fea-

ture classifiers. The results of the literature re-

view indicate that time-frequency domain sig-

nal processing using energy concentration as a

feature is a very powerful tool and has been

utilized in numerous applications. The expec-

tation is that further research and applications

of these algorithms will flourish in the near fu-

ture.

I. I������	�
��

Signal processing is often used for feature
extraction and classification in medical dis-
ease diagnosis [1]-[3], industrial process con-
trol [4], fault detection [5] and many other
fields. The primary goal of signal processing
in these applications is to provide underlying
information on specific problems for decision
making [6]. These techniques can be classified
either as time, frequency or time-frequency do-
main based algorithms. At the classification
level, there also exist several different method-
ologies. Typical approaches along with sam-
ple features used in extraction and classifi-
cation are shown in Fig. 1. Understanding
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of the problem at hand is crucial in deciding
which framework to employ for feature analy-
sis. Some features, such as amplitude levels
in the time domain, are easily extracted and
classified, but are susceptible to noise. Oth-
ers, such as energy concentration in the time-
frequency domain, even though require more
involved operations, can lead to more robust
feature extraction and more accurate classifi-
cation. Furthermore, not every feature yields
plausible conclusions. For example, in the
analysis of heart sounds, which are nonsta-
tionary, the amplitude rarely provides conclu-
sive information. The intensity of the recorded
heart sounds is affected by many factors, which
are not necessarily pathological. On the other
hand, the amplitude in the time domain will
provide sufficient information when consider-
ing control of the liquid level in a tank. There-
fore, depending upon whether the phenom-
enon under analysis is stationary or nonsta-
tionary, and on the nature of the desired fea-
ture, different algorithms have to be used. The
question is what signal processing algorithms
should be used for feature analysis in a given
situation? The answer simply depends on a
priori knowledge about the phenomenon un-
der consideration. Parametric signal process-
ing algorithms can be used for feature extrac-
tion and classification if an accurate model of
the signal exists in a selected representation
space [7]. However, such modeling techniques
have limitations as well. Modeling of nonsta-
tionary signals is more difficult and consistent
parametric models often do not exist, except in
very few special cases, e.g., mono or multi com-
ponent chirp signals [8]. Most of the signals
encountered in practice do not satisfy the sta-



TIME-FREQUENCY FEATURE REPRESENTATION USING ENERGY CONCENTRATION 155

tionarity conditions, which explains the grow-
ing interest in nonstationary signal processing.

A. Time-Frequency Analysis

Time-frequency analysis (TFA) is of great
interest when the signal models are unavail-
able. In those cases, the time or the frequency
domain descriptions of a signal alone cannot
provide comprehensive information for feature
extraction and classification. The time do-
main lacks the frequency description of the
signals. The Fourier transform of the sig-
nal cannot depict how the spectral content of
the signal changes with time, which is crit-
ical in many nonstationary signals in prac-
tice. Hence, the time variable is introduced
in the Fourier based analysis in order to pro-
vide a proper description of the spectral con-
tent changes as a function of time. Therefore,
the basic goal of the TFA is to determine the
energy concentration along the frequency axis
at a given time instant, i.e., to search for joint
time-frequency representation of the signal [9].
In an ideal case, the time-frequency transform
would provide direct information about the
frequency components occurring at any given
time by combining the local information of an
“instantaneous frequency spectrum”with the
global information of the temporal behaviour
of the signal [10], [11].

The time-frequency representations (TFRs)
can be classified according to the analysis ap-
proaches. In the first category, the signal is
represented by time-frequency (TF) functions
derived from translating, modulating and scal-
ing a basis function having a definite time and
frequency localization. For a signal, x(t), the
TFR is given by

TFx(t, ω) =

∫ +∞

−∞

x(τ)φ∗t,ω(τ)dτ =
〈
x, φt,ω

〉

(1)
where φt,ω represents the basis functions (also
called the TF atoms) and ∗ represents the com-
plex conjugate. The basis functions are as-
sumed to be square integrable, φt,ω ∈ L2(R),
i.e., they have finite energy [12]. Short-time
Fourier transform (STFT) [10], wavelets [12],
[13], and matching pursuit algorithms [12], [14]
are typical examples in this category.

Cohen’s idea of time-frequency distributions
(TFD), originally proposed in [15], represents
the second category of TFRs. This approach
characterizes the TFR by a kernel function.
The properties of the representation are re-
flected by simple constraints on the kernel that
produces the TFR with prescribed, desirable
properties [9]. A mathematical description of
these TFRs can be given by

TFDx(t, ω)

=
1

4π2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

x

(
u+

1

2
τ

)

×x∗
(
u− 1

2
τ

)
φ(θ, τ)

×e−jθt−jτω+jθududτdθ (2)

where φ(θ, τ) is a two-dimensional kernel
function, determining the specific representa-
tion in this category, and hence, the proper-
ties of the representation. Wigner distribu-
tion, Choi-Williams distribution, and spectro-
gram are some of the methods commonly used
for obtaining the TFDs [9].

Extensive review of TFRs and their proper-
ties is beyond the scope of this paper; however,
an interested reader is referred to the following
excellent sources [10]-[13], [16]-[37] for details.

B. Feature Based Signal Processing and TFA

The main goal of the TFA of a signal is to de-
termine the energy distribution along the fre-
quency axis at each time instant [9]. Effects of
TF transforms on energy distribution are con-
sidered by using three sample signals: x1(t)
- a signal with four short transients; x2(t) -
a linear chirp; and x3(t) - a signal with sinu-
soidally modulated frequency. The TF domain
representations of the signals are obtained by
four different TFRs: STFT, S-transform [38],
S-method [39], and Wigner distribution (WD)
as shown in Fig. 2.

Several observations can be made by com-
paring the respective TFRs. The STFT pro-
vides constant concentration at all frequencies.
The S-transform provides good concentration
at lower frequencies, but poor concentration
at higher frequencies. The S-method provides
overall good concentration at all frequencies,
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Fig. 1. Signal processing for pattern classification in a typical application.

Fig. 2. Sample TFRs: (a) x1(t); (b) x2(t); (c) x3(t); (d) STFT of x1(t); (e) STFT of x2(t); (f) STFT of
x3(t); (g) S-transform of x1(t); (h) S-transform of x2(t); (i) S-transform of x3(t); (j) S-method of x1(t); (k)
S-method of x2(t); (l) S-method of x3(t); (m) WD of x1(t); (n) WD of x2(t); (o) WD of x3(t).
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but it is nonivertible, which may pose a prob-
lem if a synthesis of the entire or a part of
the signal is required. The Wigner distrib-
ution suffers from cross terms for multicom-
ponent signals. Furthermore, this distribu-
tion may also suffer from inner interferences
for monocomponent signals as shown in Fig.
2(o). These simple examples show that no sin-
gle TFR can be ideal for all possible applica-
tions. The choice of a particular TFR depends
on specific applications at hand. However, the
TFA offers what other time or frequency tech-
niques are unable to do. Simultaneous analy-
sis of a signal in time and frequency domains
has proved to be the key to successful extrac-
tion and classification of signals with different
characteristics in numerous applications.

One of the simplest feature based signal
processing procedures in TFA is via energy
concentration. The idea is to analyze behav-
iour of the energy distribution, i.e., the concen-
tration of energy at certain time instant or cer-
tain frequency band or more generally, in some
particular time and frequency region. Such
analysis is capable of revealing more informa-
tion about a particular phenomenon for diag-
nostic purposes. However, if the energy con-
centration in the TF domain is used as a fea-
ture for extraction, classification and/or recog-
nition, the following questions have to be an-
swered. For example, can enhanced concentra-
tion of the STFT be achieved? More generally,
is it possible to enhance the energy concentra-
tion in the TF domain for a variety of TFRs
such that they resemble as closely as possible
to an ideal TFR? Also, if the energy concentra-
tion in a certain TF band is used as a feature
in a classification process then how does one
carry out the classification procedure? Should
existing classification techniques be used? Or
should new classification schemes be developed
which rely strictly on the TFR? The rest of
this paper provides a literature overview on
the development in the field of feature based
signal processing in the TF domain, and also
provides some answers to the above questions.

Two research streams prevail in the litera-
ture as shown in Fig. 3. The first stream re-
lies on enhancement of the energy concentra-
tion in the TF domain. The idea is that the

properly optimized energy concentration will
simplify the decision-making process. From
a pattern recognition point of view, this ap-
proach essentially means increasing the reso-
lution of the feature extractor. The second
stream deals with the development of new clas-
sification schemes relying on TFR of the sig-
nal. For example, it has been shown that the
accuracy of a correlation based classifier can be
enhanced if certain pre-processing of the signal
is carried out.

C. Organization of the Paper

This paper has been divided into six sec-
tions. Section II provides an overview of the
TF algorithms relevant to the scope of this pa-
per. These algorithms have appeared in the
literature dating back to 1990’s. Earlier devel-
opments of the TF techniques have been re-
viewed in excellent papers by Cohen [19] and
Hlawatsch [22]. Section III provides a review
of the classification schemes based on TFRs.
An application example is shown in Section
IV, where the accuracy of instantaneous fre-
quency (IF) estimation for different TFRs is
examined. General remarks and future direc-
tions regarding the feature analysis based on
the energy concentration in the TF domain are
presented in Section V. Conclusions are drawn
in Section VI followed by an extensive list of
references.

A reader should keep in mind of the follow-
ings while reading this paper: First, the pa-
per provides an overview of algorithms for only
one-dimensional signals. The overview of the
algorithms based on the artificial intelligence
methods or multidimensional signals (i.e. im-
ages) is beyond the current scope. Second,
some of the algorithms considered herein have
previously been reviewed, mostly in the form
of edited books. For the sake of completeness,
they are still included.

II. TFR �� � F������ E����	���

Signal processing using energy concentra-
tion as a feature in the TF domain essentially
consists of evaluating a TFR of the given sig-
nal. If the energy concentration in the TFR
is closer to that of the ideal TFR, more likely
it will produce more accurate classification re-
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Fig. 3. Overview of feature extraction and classification procedures based on the energy concentration in the
TF domain.

sults. Hence, a lot of research has focused on
how to obtain more concentrated energy dis-
tribution.

Research activities reported in the literature
can be summarized in the following four as-
pects: The first two deal with the develop-
ment of new TFRs based on either signal de-
composition or Cohen’s idea. The third re-
lies on so-called rotated TFRs, in which the
TF plane is rotated to a certain angle in or-
der to align the analysis axis with the signal
components. The fourth relates to the signal
optimized transform. A possible approach in
obtaining the signal optimized transform is to
employ a concentration measure in order to
optimize the behaviour of a parameter. For
example, the window length in the short-time
Fourier transform can be optimized for every
signal in order to achieve higher energy con-
centration [40]. Another approach to signal
optimized transform is to design the TF trans-
form optimized for classification. For exam-
ple, the kernel of the transform is directly op-
timized in the TF domain to yield a classi-
fier with a higher accuracy [41]. Even though

the TFA represents a clear framework for the
analysis of the energy concentration in time
and frequency domains, there are still some
problems as outlined by sample examples in
the previous section. This section provides an
overview of these approaches with emphasis on
recent developments.

A. Signal Decomposition Based TFRs

The signal decomposition based TFRs are
often used to describe energy concentration
since they do not have cross term issues as
those TFRs based on Cohen’s idea. Cross
terms can cause problems at the classification
stages. The methods for decomposition range
from classical such as STFT, wavelet trans-
form to some newer methods such as:
• multiresolution Fourier transform (MFT)
[42]:

φt,ω(τ) =
√
sh(s(τ − t)) exp(−jωτ) (3)

where h(·) is a window function and s is the
scale similar to one used in the wavelet analy-
sis;
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• S-transform [38]:

φt,ω(τ) = h(τ − t, σ(ω)) exp(−jωτ) (4)

where h(·) is a Gaussian window function and
σ(ω) is the standard deviation of the Gaussian
window;
• short-time harmonic transform (STHRT)
[43], [44]:

φt,ω(τ) = h(t− τ)ϕ(1)u (τ)exp(−jωϕu(τ)) (5)

where ϕu(τ), known as the unit phase func-
tion, is the phase function of the fundamental
divided by its nominal IF and ϕ

(1)
u (τ) is the

first-order derivative of ϕu(τ);
• short-time Hartley transform (STHT) [45]:

φt,ω(τ) = h(t− τ)cas(ωτ) (6)

where cas(·) = cos(·) + sin(·).
It should be mentioned that the S-transform

can be considered a special case of the MFT
with the Gaussian window. In fact, the S-
transform adds a constraint by restricting the
window width of MFT. Because MFT is a
function of three independent variables, it be-
comes difficult to be used as a tool for analysis
[46].

Some properties of these techniques are
summarized in Table I. The choice of a fea-
ture extractor, i.e., the TFR, depends on an
application. Different techniques have unique
properties.

A hyperbolic FM signal, x(t) = exp(j20π
ln(11|t| + 1)), is used to examine the effects
of a variable window width over a constant
window. The signal is analyzed with STFT
and the S-transform. The TFRs are shown in
Fig.s 4(a) and 4(b). The S-transform provides
a more concentrated representation than the
STFT does due to the fact that the window for
the S-transform is wider at lower frequencies
and narrower at higher frequencies. However,
the S-transform does not always yield satisfac-
tory results as depicted in Fig.s 2(e) and 2(h),
where higher energy concentration for the lin-
ear FM signal is achieved with the STFT.

The advantage of the TFA of the har-
monic signal, x(t) = exp(j2π(10t + 5t2)) +
exp(j2π(20t+5t2))+exp(j2π(30t+5t2)), with

the STHRT over the STFT is depicted in Fig.s
4(c) and 4(d). These graphs represent TFRs
of sample harmonic signal which consists of
three linear FM signals. The STHRT yields
a higher concentration in comparison to the
STFT for the harmonic signals as expected.
Furthermore, the STHRT provides a localized
impulse-train spectrum for signals that are
comprised of time-varying harmonics. How-
ever, a severe limitation for this transform is
that φu(τ) has to be known in advance. Oth-
erwise, an exhaustive search procedure is re-
quired to determine the unit phase function
[44].

Hardware implementation of most signal de-
composition based techniques requires sepa-
rate implementation for the forward and back-
ward transforms. This may add to the cost of
the implementation [45]. However, for STHT,
any hardware built to compute the forward
transform can be used for the inverse trans-
form without any modification, because the
Hartley transform kernel is the same for both
the forward and the backward transforms.

Some shortcomings identified in Table I have
been addressed in the literature. A generalized
S-transform is introduced to allow greater con-
trol over the window function. This general-
ization also allows nonsymmetric windows to
be used [47], [48]. Several window functions
are considered including two forms of expo-
nential functions, amplitude and phase modu-
lations by cosine functions, a bi-Gaussian win-
dow [49], a complex phase function [50], and
a subclass of complex windows [51]. The bi-
Gaussian window is introduced to resolve time
resolution associated with the Gaussian win-
dow. The long front tapers of the Gaussian
window degrade the time resolution of event
onsets [49]. By joining two non-symmetric
half-Gaussian windows, this problem can be
resolved. The phase and the amplitude mod-
ulation resolve the issue for complex windows
which could produce a misleading amplitude
spectrum in the TF domain. Unless corrected
by proper modulation, the complex windows
can produce an IF in the TF domain that is
not equal to the true IF [50], [51]. The solution
to the problem of the constant window width
associated with the STHT is proposed in the
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TABLE I

P������
�� �� ��� �
���� ��	�����
�
�� ��	��
���� ��� ���������
�� ������ 	��	������
�� 
� ���

TF ����
�.

Method Advantages Disadvantages
STFT Very simple for implementation. Constant window width limits

time-frequency resolution.
Wavelet analy-
sis

Variable resolution. Does not maintain the absolute
phase of the signal components. A
scale to frequency conversion is de-
pendent on a mother wavelet.

MFT Variable resolution. Absolute
phase of each component is main-
tained.

Complex requirements for the win-
dow function. Choice of scale
might require oversampling.

S-transform Variable resolution. Absolute
phase of each component is main-
tained.

Single window function.

STHRT Good energy concentration ob-
tained for the harmonic signals.

ϕu(τ) has to be known or precisely
estimated.

STHT Easy for hardware implementation. Same disadvantages as STFT.

Fig. 4. A comparison of four signal decomposition techniques based TFRs: (a) STFT of a sample hyperbolic
signal; (b) S-transform of a sample hyperbolic signal; (c) STFT of a sample harmonic signal; (d) STHRT of
a sample harmonic signal.
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form of a Hartley S-transform. The Hartley S-
transform introduces a variable window width
framework for the Hartley analysis [52]. How-
ever, only one window function is introduced
as for the Fourier S-transform.

B. Feature Representation Based on Cohen’s
Class of TFR

A lot of research has been done for fea-
ture representation and extraction based on
Cohen’s TFR. Many significant contributions
have been made and some are listed below.
The attractiveness of these representations is
based on the fact that, when cross terms and
inner interferences are minimized, these trans-
forms can produce very high resolution repre-
sentations. A classical example is a TFA of
a linear FM signal as shown in Fig. 2. The
energy concentration obtained by Wigner dis-
tribution is significantly higher than the con-
centrations obtained by the STFT or the S-
transform.

The problems with feature extractors based
on Cohen’s class are cross terms and inner in-
terferences, which can lead to the ambiguous
representation of a signal in the TF domain.
Hence, most of the research conducted in this
area attempts to reduce the effects of cross
terms. The classification accuracy is signif-
icantly diminished by the cross terms, espe-
cially for multicomponent signals. The cross
terms can be reduced or eliminated by in-
troducing a kernel function φ(θ, τ). To show
how different kernels can reduce the effects of
the cross terms, let’s rewrite Cohen’s class of
the TFRs in terms of the ambiguity function,
A(θ, τ). The ambiguity function is defined as
[9]:

A(θ, τ)

=

∫ +∞

−∞

x

(
u+

1

2
τ

)
x∗
(
u− 1

2
τ

)
ejθudu

(7)
and the Cohen’s class can then be rewritten as

TFDx(t, ω) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞

A(θ, τ)

×φ(θ, τ)e−jθt−jτωdτdθ. (8)

This reformulation provides an easier under-
standing of the auto and cross terms location.
The ambiguity function can be considered as
a joint TF autocorrelation function. All auto
terms are located along and around the am-
biguity domain axis, and hence the maximum
occurs around the origin. For the nonoverlap-
ing components, the cross terms are dislocated
further from the axis [22].

The framework of reduced interference dis-
tribution (RID), introduced in [53] and [54],
summarizes the efforts of different kernels.
Kernels are designed in the ambiguity domain
as low-pass filters to suppress and eliminate
the efforts of cross terms, and to obtain the
desired properties of the TFRs. Some of the
proposed distributions following the idea of the
RID class are listed below:
• Born-Jordan distribution [9] with

φ(θ, τ) =
sin (θτ/2)

θτ/2
. (9)

• Choi-Williams distribution [55] with

φ(θ, τ) = exp

(
−θ

2τ2

σ2

)
(10)

where σ is a scaling factor.
• Zhang-Sato distribution [56] with

φ(θ, τ) = exp

(
−θ

2τ2

σ2

)
cos (2πβτ) (11)

where σ and β are parameters. For β = 0 a
Choi-Williams distribution is obtained, since σ
is defined in the same manner as for the Choi-
Williams distribution.
• Radial Butterworth Distribution [57] with

φ(θ, τ) =
1

1 +
(
θ2+τ2

ro

)M (12)

where ro and M are adjustable parameters
with constraints ro �= 0 and M ∈ Z+.
• Bessel distribution [58] with

φ(θ, τ) =
J1(2παθτ)

παθτ
(13)

where J1 is the first kind Bessel function of
order one and α > 0 is a scaling factor.
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• Generalized exponential distribution [59],
[60]

φ(θ, τ) = exp

(
−
(
θ

θ1

)2N (
τ

τ1

)2M)
(14)

where N , M are positive integers, and θ1,
τ1 are positive frequency and time scal-
ing constants, respectively, chosen such that
φ(θ1, τ1) = exp (−1).
• Multiform tiltable exponential distribution
[61] with

φ(θ, τ) = exp
{
−π

[
µ2 (τ/τo, θ/θ0, α, r, β, γ)

]λ}

(15)
where

µ (τ/τo, θ/θ0, α, r, β, γ)

= (τ/τ0)
2 (θ/θ0)

2α + (τ/τo)
2α (θ/θ0)

2

+2r
{
[(τ/τo) (θ/θ0)]

β
}γ

(16)

and the parameters have the following prop-
erties: α is a nonnegative power, λ is a pos-
itive power, τ0 is a positive time lag scaling
constant, θ0 is a positive frequency lag scal-
ing constant, r is a tilt or rotation given by
r ∈ [−1, 1], and β and γ are coupled powers.
• S-method [39] with

φ(θ, τ) = P

(
−θ
2

)
∗θ
∫
∞

−∞

w
(
u+

τ

2

)

×w∗
(
u− τ

2

)
exp(−jθu)du (17)

where ∗θ represents a convolution in θ, P (θ)
is a smoothing function and w(t) is a window
function used for the STFT.
• Distribution for multicomponent linear FM
signals [62] with

φ(θ, τ) = Π

(
θ − χτ

b

)
(18)

where χ is a frequency modulation rate, b is
the width in the direction of θ and Π(ξ) = 1
for |ξ| ≤ 1/2.
• A time-lag kernel distribution [63]

φ(θ, τ) = |τ |α 22α−1

Γ (2α)
Γ (α+ jπθ) Γ (α− jπθ)

(19)

where α is a bounded parameter such that 0 <
α ≤ 1, and Γ (z) is the Gamma function of z.
• Hyperbolic distribution [64]:

φ(θ, τ) =
1

cosh(βθτ)
(20)

where β is a parameter to control the expo-
nential terms of the hyperbolic function.

Furthermore, two subclasses of RID based
TFDs are also proposed for discrete signals
[65], [66]. The RID kernels which can be
implemented recursively are proposed in [65].
These kernels allow simultaneously recursive
implementations of the local autocorrelation.
In [66], high resolution kernels based on the
Prony’s method are introduced.

It is important to mention that all the ker-
nels presented above, except the kernel for the
Born-Jordan distribution, contain one or more
adjustable parameters. This implies that for
a given kernel the parameter(s) can be cho-
sen such that the resulting kernel produces a
representation similar to a representation ob-
tained by some other kernel with the same
number of parameters. Having the opportu-
nity to “fine tune” the kernel generally repre-
sents an advantage for feature extraction. In a
given application, the kernel can be optimized
to achieve maximal reduction of the cross term
effects. As an example, variations of some of
the parameters for the kernel proposed in [61]
are depicted in Fig. 5. However, finding a
proper value of the parameter(s), yielding the
highest energy concentration in the TF do-
main, can also represent an additional com-
putational burden.

It should be mentioned that not every ker-
nel can produce satisfactory results in all ap-
plications. Some kernels are only proposed
for certain specific classes of signals, such as
the kernel defined by (18) [62]. In addition, it
should be noted that the Cohen’s class of rep-
resentations can only achieve the ideal TFR
of the signal if the IF of the signal is a linear
function (e.g. a linear FM signal) [67] as de-
picted in Fig. 2. If the IF variations are of
higher order, no signal independent distribu-
tion from Cohen’s class can produce the ideal
representation [67]. Therefore, it is worthwhile
to mention the generalization of Cohen’s class
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Fig. 5. The tiltable, generalized exponential kernel for various values of parameters: (a) λ = 1/2, α = 1, r = 0,
β = 1, γ = 1, τ0 = 200, θ0 = 0.2; (b) λ = 1/2, α = 0.002, r = −1, β = 2, γ = 1/2, τ0 = 200, θ0 = 0.2 (c)
λ = 8, α = 0, r = −0.75, β = 1, γ = 1, τ0 = 300, θ0 = 0.3 (d) λ = 1/2, α = 0, r = −1.5, β = 2, γ = 1/2,
τ0 = 200, θ0 = 0.2.

representations proposed in the form of the L-
class distributions [68] - [73] in the context of
feature extraction for signals with a higher or-
der IF variation. These distributions repre-
sent higher order representations, i.e., the or-
der higher than second, with diminished in-
ner interference effects and enhanced resolu-
tion in comparison to the Cohen’s class. The
problem of the cross terms becomes more pro-
found. However, these cross terms can be di-
minished or completely eliminated by careful
recursive implementation of a L-class distribu-
tion by using the STFT [68]. Some further
improvements are proposed in the forms of
a pseudo-quantum signal representation [74],
and a “complex time” TFD [75], [76].

In addition to reducing the effects of cross

terms, the kernels presented here have other
properties on the resulting TFRs. These prop-
erties are usually selected in advance by the
designers. Furthermore, there exist design
methods for constructing new kernel functions
with specific application oriented properties.
A summary of some kernel design methods is
given in Table II.

C. Rotation of the TF Plane

The feature extractors based on the rotation
of the TF plane have been introduced to im-
prove energy concentration for signals whose
components are not aligned with either the
time or the frequency axis [83]. As an exam-
ple, let’s compare the TFRs obtained by the
rotation of the TF plane with some standard
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TABLE II

P������
�� �� ��� ������ ���
�� ������� 
� ��� �
��������.

Kernel Design
Method

Advantages Disadvantages

POCS method
[77]

Two or more design constraints
can be satisfied simultaneously.

Constraints have to be chosen
carefully, otherwise questionable
results may be obtained.

Frequency trans-
formation method
[78]

Produced kernels can have effi-
cient cascade implementation.

Not every kernel produced by the
FTM is amenable to cascade fil-
ter implementation in the time-
frequency plane.

Design via point
and derivative
constraints [79]

Kernels with various constraints
could be easily constructed.

Only applicable to discrete ker-
nels. The design procedure may
yield a conflict between time and
frequency marginal properties.

Kernels with
desired auto-term
properties [80]

Kernel is optimized for the signal
auto-term.

It has to be recalculated for every
class of signals.

Minimum vari-
ance kernels [81],
[82]

Kernel satisfies the TF con-
straints and provides the mini-
mum variance for the power spec-
trum estimate for the Gaussian
white noise processes [81] or addi-
tive circular complex white noise
processes [82].

Only minimizes the average vari-
ance. The method is optimal for
noisy signals.

approaches presented earlier, e.g. the STFT
and Wigner distribution. Let’s assume a sam-
ple signal consisting of three linear FM com-
ponents. The Wigner distribution (WD) is ca-
pable of achieving the ideal energy concentra-
tion of the linear FM signal as shown in Fig.
2. However, in this case, the TFR obtained
by WD suffers from the effects of cross terms
as shown in Fig. 6(b). The advantage of the
STFT in this case is that it does not contain
cross terms. However, the energy concentra-
tion of each component is severely degraded
in comparison to the representation obtained
by the Wigner distribution. The TFR ob-
tained by the local polynomial Fourier trans-
form (LPFT) enhances the concentration of
the components in comparison to the STFT,
and it does not contain any cross terms as
shown in Fig. 6(d).

The TFA based on the rotation of the TF
plane can be achieved in several ways:

• Fractional Fourier transform (FRFT) [84],

[85], [86]:
Fα(u) =





√
1−j cotα

2π ej(u
2/2) cotα

×
∫ +∞
−∞

x(t)

×ej(t2/2) cotα−jut cscαdt

αmodπ
�= 0

x(t)
αmod2π

= 0

x(−t) (α+ π)mod
2π = 0

(21)
The standard Fourier transform is a special
case of the FRFT with a rotation angle α =
π/2.
• Local polynomial Fourier transform (LPFT)
[87] - [91]:

LPFTx(t, ω) =

∫ +∞

−∞

x(t+ τ)w(τ)×

exp
(
−jω1τ − jω2τ

2/2− ...− jωMτM/M
)
dτ

(22)
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Fig. 6. Sample signal analysis with several TFRs: (a) time-domain representation of a sample signal consisting
of 3 linear FM components; (b) Wigner-Ville distribution of the sample signal; (c) STFT representation of
the sample signal; (d) LPFT representation of the sample signal.

where ω = (ω1, ω2, ..., ωM). The LPFT en-
ables one to estimate both the time-varying
frequency and its derivatives. The technique
is based on fitting a local polynomial approx-
imation of the frequency which implements a
high-order nonparametric regression.
• Radon-Wigner distribution (RWD) [92] -
[95]:

RWD(r, ϑ) = R [WVx(t, ω)] =

∫
WVx(t, ωo +mt)dt

∣∣∣∣
m=−1/ tan(ϑ);ωo=r/ sin(ϑ)

(23)
where R [f(x, y)] =

∫
f(r cosϑ − s sinϑ;

r sinϑ+s cosϑ)ds and r and s represent x and
y axes rotated counterclockwise by an angle ϑ.

Summary of some properties associated with
these approaches is given in Table III. It

should be mentioned that the FRFT corre-
sponds to the rotation of a class of TFRs as
along as Ψ(t, f) = F−1θ→t,τ→f {φ(θ, τ)} is rota-
tional symmetric [96]. The FRFT based TFRs
also have marginals associated with them [97]
in analogy to the TFRs based on the standard
Fourier transform.

Even though the RWD is considered a tool
for the rotation of the TF plane at a certain
angle, the RWD was developed primarily for
detection and classification of multicomponent
linear FM signals in noise. This approach re-
duces the task of tracking straight lines in the
TF plane to locating the maxima in a 2-D
plane. It is also interesting to mention that
the ambiguity function can be obtained as an
inverse Fourier transform of the RWD.

The presented approaches for rotation of the
TFRs are similar in principle. The relationship
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TABLE III

P������
�� �� ��� ������	��� ��� ��� �����
�� �� ��� TF �����.

Approach Advantages Disadvantages
FRFT Allows representation of a signal on

the orthonormal basis formed by
chirps.

cot(α) can take enormous values
and oversampling may be needed to
satisfy the sampling theorem.

LPFT Provides generalization of the
FRFT to any order of the polyno-
mial IF.

A drawback of the LPFT is the in-
crease in dimensionality, i.e., an in-
crease of the calculation complexity.

RWD Excellent for establishing the direc-
tion of the linear FM modulated sig-
nal in the ambiguity plane.

Not suitable for long data records,
and the segmentation of such
records is needed. Analyzed in
depth only for the WD.

between FRFT and RWD has been studied in
[98], and it is shown that the Radon-Wigner
distribution is the squared modulus of the frac-
tional Fourier transform:

RW [x(t)] = |FRFT [x(t)]|2 . (24)

To establish the relationship between the
FRFT and the LPFT, the FRFT can be writ-
ten as:

Fα(u) =

√
1− j cotα

2π
ej(u

2/2) cotα

×
∫ +∞

−∞

xw(τ)e
j(τ2/2) cotα−juτ cscαdτ (25)

where xw(τ) = x(t + τ)w(τ). For M = 2,
ω1 = u cscα, and ω2 = cotα in (22), equation
(25) can be expressed in terms of the LPFT
as:

Fα(u) =

√
1− j cotα

2π

×ej(u2/2) cotαLPFTx(t, ω1, ω2). (26)

From these equations it can be seen that the
LPFT provides a broad generalization of the
FRFT.

Several different feature extractors have
been proposed using the rotated TF domain
framework. A fractional-Fourier-domain re-
alization of the weighted Wigner distribution
(i.e. S-method) [99] and of Gabor expansion
[100]-[103] are introduced in several publica-
tions. The LPFT is also implemented for a
polynomial Wigner distribution [104], and the

extension to the L-Wigner distribution is pre-
sented in [105]. Several other generalizations
to and modifications of the rotated TFA are
also proposed in the literature such as: uni-
tary similarity transformations [106], a four-
parameter atomic decomposition of chirplets
[107], joint fractional representations [108],
[109], generalization of the FRFT into the
linear canonical transform [110], and the to-
mography TF transform defined as the inverse
Radon transform of the FRFT [111]. Also, effi-
cient algorithms to compute uniformly spaced
samples of the Wigner distribution and the
ambiguity function located on arbitrary line
segments are proposed in [112][113].

D. Signal Dependant TFRs

The feature extractors described in the pre-
vious sections deal with several concepts re-
garding the improvement of energy concen-
tration: reducing the effects of spectral leak-
age; diminishing the effects of cross terms; and
aligning the axis of analysis with the princi-
pal axis of the signal components. However,
can a single feature extractor be optimal for
all signals? Unfortunately not, since a ma-
jor drawback of all fixed mappings is that, for
each mapping, the resulting TFR is satisfac-
tory only for a limited class of signals. Thus,
the enhanced concentration in the TF domain
is desirable for a variety of classes of signals.
Concentrated components generally overlap or
interfere with other nearby components as lit-
tle as possible, and yield a “sharp” representa-
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tion. The maximal concentration also implies
that components are confined as closely as pos-
sible to their proper support in the TF domain.
Hence, this is why signal dependent TFRs are
important. It has to be mentioned that these
techniques are generally nonlinear and non-
quadratic due to the nature of the computa-
tion process. In this subsection, an overview
is provided only for signal dependent represen-
tations, which are based on the two classes of
the TFRs mentioned in the Introduction.

The signal dependent TFRs are available in
several forms in the literature. These repre-
sentations differ in their adopted forms. They
are based on:
• concentration measures [40] - [124]
• reassignment methods [125] - [128]
• signal optimized kernels/windows [129] -
[142].

Some properties of each approach are sum-
marized in Table IV.

The concentration measure approach exam-
ines the effects of certain parameter variations
on the energy concentration of the signal in
the TF domain. The parameter value yielding
the highest energy concentration is chosen for
the signal dependent TFR. The development
of the concentration measure can be divided
into two groups based either on the distrib-
ution norms or on the entropy of the distri-
butions. The initial research in the develop-
ment of the measures based on the distribu-
tion norms has been carried out by Jones and
Parks [40], [114]. They proposed a measure
based on the STFT for signal concentration
that allows the fully automated determination
of the optimal basis parameters. The concen-
tration measure (CM) is given by:

CM =

∫+∞
−∞

∫ +∞
−∞

|STFT (t, ω)|4 dtdω
(∫+∞

−∞

∫+∞
−∞

|STFT (t, ω)|2 dtdω
)2 .

(27)
The concentration measure in (27) favours
those components with higher concentration.
However, for multicomponent signals, a local
measure is required to determine the concen-
tration of the dominant component at each
location in the TF domain. Eqn. (27) can
be turned into a local concentration measure

by multiplying the squared magnitude of the
short-time Fourier transform by a “localization
weighting function”[115].

A solution to the problem in the Jones-
Parks measure is proposed by Stankovíc. The
concentration measure proposed in [116] does
not discriminate low concentrated components
with respect to the highly concentrated ones
within the same distribution, and it is given
by:

CM =

(
N∑

k=1

N∑

n=1

|TFRx(n, k)|1/p
)p

(28)

where TFRx(n, k) is a discrete version of any
of the TFRs.

A different notion of the quantification of
the TFR appeared in the literature around
the same time as the Jones-Parks measure.
Williams et al considered how the informa-
tion measures, such as the Shannon or Rényi
information measure, could be used to pro-
vide information on TFDs [117]. The Shan-
non information measure is appropriate only
for positive TFRs. The Rényi measure con-
forms closely to the visually based notion of
complexity when inspecting TFRs and can be
used for other TFRs [118]. For Cohen’s class of
the TFRs, the Shannon information measure
is given as

H(TFx(t, ω)) =

−
∫ +∞

−∞

∫ +∞

−∞

TFx(t, ω) log2 TFx(t, ω)dtdω

(29)
and the Rényi measure as

Rα(TFx(t, ω)) =

− 1

1− α
log2

∫ +∞

−∞

∫ +∞

−∞

TFx(t, ω)dtdω (30)

where α > 0, and the Shannon entropy is re-
covered as the limit of Rα, as α → 1. A de-
tailed study of the properties and some po-
tential applications of the Rényi TF informa-
tion measures, with emphasis on the mathe-
matical foundations for quadratic TFRs can
be found in [121]. It should also be noted that
the Rényi measure is sensitive to the amplitude
and phase variations in the signal components
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[119]. However, it has been shown that the ex-
pected value of the third-order Rényi entropy
has well defined upper and lower bounds in
the presence of white noise [122]. Effects of
three concentration measures on the TFR of
a signal consisting of a sinusoidally FM and
linear FM components, x(t) = exp(j20πt +
j30πt2) + exp(j5π cos(4πt) + j150πt), are de-
picted in Fig. 7.

It is also necessary to mention a resolution
performance measure [123], [124]. The reso-
lution performance measure allows the design
of high-resolution TFRs for multicomponent
signals. However, this measure requires exten-
sive knowledge of the signal and representa-
tion attributes such as: the average amplitudes
of the mainlobes; sidelobes; cross terms; and
the components relative frequency separation
of any two consecutive components of multi-
component signals. Thus, it may be difficult
to implement in practice.

The energy concentration of the signal com-
ponents in the TF domain is tackled from an-
other perspective by a so-called reassignment
method. The reassignment method, initially
proposed in [125] for a spectrogram, and later
on, generalized for any TF method in [126],
[127], [128], creates a modified version of a
representation by moving its values away from
where they are computed to produce a better
localization of the signal components. In order
to perform such an operation, for each point
in the TF plane, one calculates the center of
gravity for the signal energy such as:

t̂(t, ω) = t−
∫ ∫

uTFR(t− u, ω −Ω)dudΩ∫ ∫
TFR(t− u, ω −Ω)dudΩ

(31)

ω̂(t, ω) = ω −
∫ ∫

ΩTFR(t− u, ω −Ω)dudΩ∫ ∫
TFR(t− u, ω −Ω)dudΩ

.

(32)
Given these centers of gravities, the reassigned
TFR is obtained by

RTFR(t, ω) =
∫ ∫

TFR(τ , υ)δ(t−t̂(τ , υ))δ(ω−ω̂(τ, υ))dτdυ
(33)

where δ(t) is a Dirac function. However, it
is noticed that the technique is highly sensi-
tive to noise, and some modifications to the

original algorithm have been proposed [143] -
[146]. The reassignment method is also com-
putationally expensive. A fast algorithm that
allows the recursive evaluation of TFDs modi-
fied by the reassignment method is introduced
[147].

The first two approaches to signal depen-
dent TFRs are based upon the fact that an
optimized representation is found for each new
signal. Another stream of research in this
area is based on the development of the sig-
nal dependent kernels/windows for a class of
signals through an optimization design pro-
cedure. The initial research has been con-
ducted for so-called radially Gaussian distri-
butions [129], [130]. The problem of finding
the optimized kernel boils down to finding the
optimal σ (ψ) for radially Gaussian functions
for the given signal. Therefore, the optimiza-
tion problem can be posed as:

max
Φ

∫ 2π

0

∫
∞

0

|A(r, ψ)Φ(r, ψ)|2 rdrdψ (34)

with a constraint that the energy of Φ(r, ψ)

must be finite, where r =
√
θ2 + τ2 and

A(r, ψ) is the ambiguity function of the signal
in the polar coordinates. The technique per-
forms well in the presence of additive noise,
which suggests that it may prove useful for
the automatic detection of unknown signals in
noise. A generalization of the idea to any other
type of kernels is shown in [131], and in [133],
where the kernel is further optimized locally
for each signal component. Computationally
effective procedure for the optimal kernel de-
sign is given in [132], and a procedure that
adapts the kernel over time is presented in
[134]. Similar approach based on the idea that
the kernel should be optimized for classifica-
tion has been proposed in [41]-[141],[148],[149].
The idea is that once the kernel is optimized
to extract discriminant features among differ-
ent classes, the classification process will yield
more accurate results. The optimal kernel for
classification, Φ, is the solution as given below:

Φ̂(θ, τ) = argmax
Φ

d(TFR1, TFR2) (35)

where d(TFR1, TFR2) is a distance between
the two TFRs, TFR1 and TFR2 represent
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Fig. 7. Several TFRs of a sample signal consisting of a linear FM component and sinusoidally modulated
component: (a) spectrogram (b) spectrogram according to the Stankovíc measure; (c) spectrogram according
to the Jones-Parks measure; (d) spectrogram according to the Rényi entropy.

TABLE IV

S��� �������
�� �� ��� ������	��� ��� ����
�
�� �
���� ��������� TFR�.

Approach Advantages Disadvantages
Concentration
measure

Usually easy to implement. Good
energy concentration can be ob-
tained.

It has to be calculated for each sig-
nal.

Reassignment
methods

Excellent energy concentration
can be obtained.

Computationally expensive. Sen-
sitive to noise.

Signal optimized
kernels/windows

It does not need recalculation for
every signal, but it is rather based
on class of signals.

Needs careful implementation
when working with signals in
noisy environment.
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TFRs of two signals belonging to different
classes. Also a variety of distance measures
can be implemented such as: Euclidian dis-
tance, correlation, a broad family of dissimilar-
ity measures that is given by the f-divergences
(e.g. Kolmogorov distance and Bhattacharyya
distance) and the Lq distances based on the
normalized TFRs.

While developing the signal optimized win-
dows or kernels, it is important to mention
that the bias and the variance of the esti-
mated signal parameters in the presence of
noise is dependent on the window/kernel used
[142]. Hence, choosing appropriate parame-
ters for the window/kernel is critical in order
to achieve accurate estimation. In particular,
the optimal choice of the window size based
on asymptotic formulas for the bias and the
variance can resolve the bias-variance trade-
off usual for nonparametric estimation. How-
ever, in practice, such an optimal estimator
is difficult to implement because the optimal
window size depends on the unknown smooth-
ness of the IF. In [142] an algorithm is pre-
sented, which determines a time-varying data-
driven window size for local polynomial peri-
odrogram. The algorithm is then able to pro-
vide an accurate estimate that is close to what
can be achieved if the smoothness of the IF is
known in advance. The developed algorithm
uses only the formulas for the variance of the
estimate. This approach has also been applied
to other TFRs as shown in Table V.

III. S
���� C����
�
	��
��/R�	���
�
��
B���� �� E����� C��	������
��


� ��� TF D���
�

In signal processing, linear or non-linear
transformations are used to enhance features
for improved classifications [178]. The previ-
ous section discussed how to extract the en-
ergy concentration of signals in the TF do-
main. Classification/recognition based on the
extracted features will be discussed in this sec-
tion. In situations where a statistical model
(such as Gaussian distribution) is known, the
optimal classification procedure can be devel-
oped. Often, however, no statistical model is
available. In these cases, the application of the
optimal classifier would require an estimation

of the relevant probability density functions.
Hence, a large set of signal realizations may
be required for learning purpose [6]. If the
set is small, suboptimal procedures may have
to be used. As pointed out in the Introduc-
tion, for the nonstationary signals it is neces-
sary to use a model-free representation space
in which the differences between different fea-
tures are emphasized and the similarities are
de-emphasized [178].

A. TFA in Classification Process

TFR-based classification methods are pre-
ferred because TFRs have discriminant capa-
bilities for signals belonging to different signal
classes. This situation is often encountered in
practical applications [149]. Also, the main
advantage of the TF domain based classifica-
tion is the flexibility to form the feature vec-
tor in 2D representations. The question is how
to perform classification/recognition based on
energy concentration in the TF domain.

Before analyzing possible approaches, let’s
consider sample energy concentration patterns
depicted in Fig. 8. The patterns represent
phenomena, which are manifested through
short duration transients. These patterns can
be nonoverlapping as shown in Fig.s 8(a)-(c)
or overlapping as shown in Fig. 8(d). The
nonoverlapping patterns can be easily classi-
fied through frequency or time domain filter-
ing. However, what happens if the two sam-
ple patterns are overlapping in frequency and
time domain, such as Fig. 8(d)? Classifica-
tion of such patterns becomes more involved
either in frequency or time domain alone. In
such a situation, the energy concentration in
the TF domain can effectively be used as the
feature for classification purpose. The classifi-
cation based on energy distribution in the TF
domain can be performed in two ways:
• by visual inspection of the patterns in the
TF domain;
• by development of classification schemes.

It has been shown in [179] - [229] that
the differences amongst different patterns can
be best revealed in the TF domain. How-
ever, in some cases the differences are not
always obvious with all the feature extrac-
tors presented. For example, in the analy-
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TABLE V

D
������� TFR� ��#������ ����� �� ��� �
���� ��������� TFR� ������	���.

Approach TFR
Concentration measures Optimization of various TFDs [120], [122],[150]-[155]. Also

signal dependent TFR analysis based on the FRFT [156]-
[158], the LPFT [159]-[162], and the Radon-Wigner trans-
form [163].

Reassignment methods STFT, wavelet transform, pseudo Wigner distribution,
smoothed pseudo Wigner distribution, RID [125]-[128], S-
method [164].

Signal dependent kernels
or windows

Signal dependent kernels/basis for various representations
[165]-[170]. The optimal choice of the window length based
on the asymptotic formulae for the variance and bias is used
for: the pseudo Wigner distribution [171]-[174], L-Wigner
distribution [175], robust M-periodogram [176], spectrogram
[177].

Fig. 8. Illustrative pattern scenarios in the TF domain: (a) patterns occupying the same time band; (b)
patterns occupying the same frequency bands; (c) patterns partly occupying the same frequency band, but
not intersecting; (d) patterns overlaping on some time and frequency bands.
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sis of some heart sounds, it has been noticed
that the S-transform provides visual represen-
tation emphasizing the morphological differ-
ences amongst the sounds with a sharper time-
frequency concentration than the STFT or the
continuous wavelet analysis [192], [203]. Does
it mean that the S-transform is the optimal
feature extractor for heart sounds? Not neces-
sarily, since some feature extractors from Co-
hen’s class can also provide a sharp TF concen-
tration of the same sounds, if the effects of the
cross terms are eliminated [229]. In addition to
the choice of a suitable feature extractor, this
approach has other limitations. First, it is not
an automated decision process. It relies on
human expertise, and also requires some ini-
tial training to recognize the differences among
patterns. Furthermore, consecutive classifica-
tions require human intervention. Hence, they
are difficult to be implemented as a stand alone
software/hardware product. Needless to say,
such decision process is prone to human errors.

The second approach to feature classifica-
tion relies on an automated feature classifier,
which makes independent decisions. Such a
classifier makes the decision based on features
represented in terms of energy concentration.
The decision making process is usually based
on statistical differences among patterns [230]
- [256] or distance measures among patterns
[257] - [262]. The statistical differences among
patterns can be measured in several ways such
as correlation [248], [256], linear discriminant
analysis [241], mutual information [242], to
name a few. It should noted that the choice of
a feature extractor can have significant influ-
ence on the final results: some are better, and
some are worse [248] [256]. The implementa-
tion of distance measures as feature classifiers
can be viewed as a mathematical extension
of the classification based on visual inspec-
tion. The extracted patterns are simply clas-
sified based on the “distances” from the given
templates for different classes. The choice of
feature extractor is spread across the spec-
trum of the extractors presented in Section
II, such that the signal decomposition based
TFRs [259], [261], Cohen’s TFRs [258], [259],
[260], [262] and the signal dependent TFRs
[257] can all be used.

The feature classification based on statis-
tical differences or distance measures can be
seen as a favourable approach. A logical ques-
tion is which of these classifiers can lead to the
most accurate results. The answer is rather
difficult. The accuracy depends on applica-
tions. Choosing an effective template often
requires familiarity with the problem. Also,
accuracy depends on the choice of feature ex-
tractor used.

References sorted according to different
fields of applications, which use the energy
concentration in the TF domain as features are
summarized in Table VI. The columns repre-
sent the four types of feature extractors. It is
interesting to note that some feature extrac-
tors such as the rotated TFRs have limited
fields of applications.

An example with two simple templates is
used to show the advantage of the TF based
classifiers over their time domain counterparts.
The time domain and the TF domain rep-
resentations of the templates are depicted in
Fig. 9. The templates have identical low
frequency content. The transients present
in the signal denote two different phenom-
ena, which are desired to be classified. TF
boundaries of the transient parts are given by
T1 = {(t, ω) : t ∈ [0.54, 0.6], ω ∈ [120π, 180π]}
and T2 = {(t, ω) : t ∈ [0.55, 0.65], ω ∈
[100π, 160π]}, respectively. Furthermore, each
phenomenon consists of three short dura-
tion sinusoids with frequencies within the fre-
quency boundaries defined by the templates.

Unknown signals are generated with equal
probability of belonging to either class. These
signals have the same low frequency content
as the templates. The frequencies of the three
short duration sinusoids are generated with
uniform probability for the given sets. The sig-
nals are classified with the time-domain based
Euclidean distance and the TF domain based
Euclidean distance [257]. The distance be-
tween the signals and templates are calculated.
The classification is done based on the shortest
distance between the signals and the respective
templates. An error rate, defined as the incor-
rect classification of the unknown signal, is cal-
culated for 10000 trials. The results show that
the time domain classification produces an er-
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TABLE VI

R������	�� ������ �		���
�� �� ����
	��
��� ��� ������� �����	���� ����.

Application Signal
Decomposition

TFR

Cohen’s TFR Rotated TFR Signal Depen-
dent TFR

Biomedical
Signal Analy-
sis

[182] [183] [184]
[192] [195] [197]
[200] [202] [203]
[210] [225] [227]
[231] [235] [248]
[249] [250] [251]
[252]

[179] [180] [181]
[185] [186] [190]
[191] [193] [206]
[229] [232] [258]

[196] [208] [239]
[242] [257]

Mechanical
Signal Analy-
sis

[188] [189] [198]
[204] [207] [209]
[220] [221] [222]
[226] [228] [236]
[255] [261]

[205] [214] [215]
[216] [220] [233]

[194] [212] [223]

Power Systems
Analysis

[213] [240] [243]
[244]

[218] [262]

Speech and
music process-
ing

[254] [259] [247] [259] [241] [259]

Radar and
sonar signal
processing

[201] [217] [230] [187] [199] [211]
[238] [245] [253]
[260]

[219] [246]

ror rate of approximately 33 %. The TF clas-
sifier produces an error rate of approximately
11 %, which is three times smaller than the
time domain classifier.

IV. F������ E����	�
�� E����
A�����
�: A� A���
	��
�� E������

�� IF E��
���
��

It is well known that the choice of a fea-
ture extractor affects the classification accu-
racy. The effects can be as simple as a limited
resolution obtained by a representation, but
can be as complicated as nonlinearities of IF
of a signal. To diminish these effects different
representations have been introduced as shown
throughout Section II. However, the question
still is how accurately a representation can ex-
tract energy concentration. The answer to this
question lies in the error introduced by the ex-
tractor in the classification process. Therefore,
it is desirable to understand the estimation er-
ror introduced by a TFR in order to approxi-

mate the minimum classifier resolution.
The rest of this section provides a descrip-

tion of an approach that examines the extrac-
tion accuracy of TFRs. The focus is on the IF
estimation based on the maximum of energy
concentration. However, for the sake of com-
pleteness, a quick overview of other TF based
estimation methods is given as well. Interested
readers should refer to [263] and [264] for de-
tails.

A. Estimation of IF Using TFA

In some applications, the accurate estima-
tion of the maximum of energy concentration
is important for two reasons. First, it is well
known that the location of the maximum en-
ergy concentration in the TF domain corre-
sponds to the IF of a signal [9]. Second, the
IF can be used as a mean to classify different
phenomena (e.g. [239]).

The problem of estimating the IF using the
TF techniques has been studied extensively
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Fig. 9. Time domain and the TF domain representations of two templates: (a) time domain representation of
the first template; (b) time domain representation of the second template; (c) TFR of the first template;
(d) TFR of the second template.

in past years [70], [90], [142], [171], [172],
[174],[175], [177], [265]-[307]. The IF can be
estimated as a first moment of the TFR

ω(t) =

∫ +∞
−∞

ωTFx(t, ω)dω
∫+∞
−∞

TFx(t, ω)dω
(36)

or based on the position of the maximum value
of the energy concentration in the TF domain
as

ω(t) = argmax
ω

[|TFx(t, ω)|] . (37)

The first moment provides an unbiased es-
timate of the IF of a signal [268],[276]. The
presence of additive noise leads to the serious
degradation of the first moment estimate. It
may have a high statistical variance even at

high values of input SNR [269]. The first mo-
ment estimate is not affected by the multiplica-
tive noise [300]. The maximum value estimate
is greatly affected by the multiplicative noise
when the power spectral density of the noise
has a maximum at a frequency other than DC
[300].

The maximum value estimate is hence used
for the signals contaminated with the additive
noise. It is based on the detection of a distrib-
ution maxima positions. This estimate is also
prone to some estimation errors. The sources
of estimation error are:
• bias;
• random deviation of the maxima within the
auto-term caused by a small noise;
• large random deviations due to false maxima



TIME-FREQUENCY FEATURE REPRESENTATION USING ENERGY CONCENTRATION 175

detection outside the auto-term caused by a
high noise.

In [171], authors have developed an ap-
proach to examine effects of the first two es-
timation errors for signals contaminated with
the additive noise. They showed that the esti-
mator bias and variance are highly signal de-
pendent. Also, the bias generally caused by
the IF non-linearity is proportional to a power
of the lag window length. The variance caused
by the noise is a decreasing function of the
lag window length. Thus, the bias-to-variance
trade-off exists, producing the minimal mean
squared error. The effects of large random
deviation due to false maxima detection out-
side the auto-term caused by the high noise
are considered in [289],[304]. This error occurs
when some points outside the signals’ auto-
term surpass values inside the auto-term, due
to the influence of a relatively high noise. It
has been shown that this kind of error, when it
appears, dominates over other sources of error.

The approach based on the examination
of the estimation error due to bias and ran-
dom deviations within auto-term has also been
used to examine the IF estimator based on
the maximum of the energy concentration for
various TFRs such as the L-Wigner distrib-
ution [175], spectrogram [294], reduced inter-
ference distributions, the L-class, and signal-
dependent optimal TFRs [297], shift covariant
class of quadratic TFDs [302], the S-method
[301]. This approach is also extended to a com-
bination of multiplicative and additive noise
for pseudo Wigner-Ville distribution [291], and
similar results are obtained. However, when
the standard deviation of the multiplicative
noise is larger than its mean, the noise can
deteriorate the phase of the signal significantly
making the use of TF techniques difficult [286].

V. R������ ��� F����� P�����	�
#��

This paper provides an overview of methods
dealing with energy concentration in the TF
domain. The scope of the paper is restricted to
only the methods that are based on analytical
algorithms, that is, artificial intelligence based
algorithms have not been considered for space
reasons.

The theoretical developments behind the

different extractors are comprehensive. Based
on the reviewed literature it is difficult to
foresee major contributions changing the field
drastically in years to come. Our expecta-
tion is that most of the focus will be given to
higher order representations briefly mentioned
in Section II-2. These transformations provide
high concentration representations of the sig-
nals with higher order IF modulations. Their
significance will be especially pronounced in
fields like spectroscopy, radar signal analy-
sis, optics, and biomedical signal processing in
years to come.

On the contrary to feature extraction, fea-
ture classification in the TF domain still lacks
comprehensive development. The variety of
practical problems requiring different classifi-
cation approaches limits the development of a
unifying classification framework. For exam-
ple, a classifier performing well in one appli-
cation may not necessarily provide good re-
sults in another. However, at least for similar
problems stemming from different applications
fields comprehensive studies should be carried
out to compare different existing classification
approaches. In such a way, some benchmark
performances can be established against which
future contributions can be compared.

An expansion of TF methods in different
applications are expected to dominate the fu-
ture contributions. Let’s refer back to Table
VI. The classical methods based on signal
decomposition approaches and Cohen’s class
are widely used in different application fields.
However, it is interesting to note the rare
applications of rotated and signal dependent
TFRs. It does not necessarily mean that such
representations do not provide valid results.
For example, it is expected to see increased ap-
plication of rotated TFRs in speech and music
processing, biomedical signal processing and
mechanical vibrations analysis. Some prob-
lems stemming from such applications actually
require the employment of such advanced TF
transforms. Similar situations can be seen for
signal dependent representations.

VI. C��	���
���

The TFA provides a powerful framework for
the extraction and classification of nonstation-
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ary phenomena in signals as shown in this pa-
per. This paper summarized research results
using energy concentration as a feature in the
TF domain in a period from early 1990s until
now.

Choice of feature extractors in the TF
domain, and the feature classifier is highly
application-dependent. There is no single
TFR that can be claimed to be “the opti-
mal”for all applications. It can be concluded
that:

• The signal decomposition based TFRs are
implemented in applications when it is not de-
sirable to deal with the cross terms imposed
by TFRs that are based on Cohen’s idea. The
STFT and the wavelet analysis, even though
widely applied, do have limitations. Some
newer techniques such as the S-transform, the
MFT, the STHT or the STHRT provide a
framework which enables an improved concen-
tration of the signals in comparison to stan-
dard techniques.
• The feature extractors based on Cohen’s
idea are more suitable when high resolution
representation of the feature is required. How-
ever, the implementation has to be carefully
considered. The kernel function should be op-
timized for the given application in order to
diminish the effects of cross terms. This ker-
nel optimization process can represent an ad-
ditional computational burden, which is an ad-
dition to that of signal decomposition tech-
niques.
• The rotation of the TF plane is used to
ensure that the principal axis of the analy-
sis is aligned with the principal axis of the
signal components. Several approaches have
been introduced to implement such rotation:
fractional Fourier transform, linear polynomial
Fourier transform and Radon-Wigner distri-
bution. It has been shown that the Radon-
Wigner distribution corresponds to the mag-
nitude square of the FRFT of the signal, while
the LPFT is a broad generalization of the
FRFT.
• The signal dependent TFRs overcome po-
tential shortcomings of fixed mapping repre-
sentations, which can yield optimized repre-
sentations only for limited classes of signals.
These signal dependent representations can

yield higher energy concentration for wider va-
riety of signals. Furthermore, these represen-
tations have higher computation cost associ-
ated with them. The signal dependent repre-
sentations can be realized in several ways.

The signal classification using the energy
concentration in the TF domain as features is
a well researched area, and based on the work
of this paper, the following can be concluded:
• The TF based classifiers are more accurate
than time- or frequency-domain based classi-
fiers.
• The TF based classification can be per-
formed either by the visual inspection of en-
ergy concentration patterns, or by automated
processes relying on the measures of distances
between the signals and the corresponding
template.

As an application example, the framework
for the IF estimation error analysis based on
the maximum energy concentration is exam-
ined as well. Such a framework is important
for applications using the IF in the classifica-
tion of different phenomena.

This paper provides a concise summary of
the work in this field in recent years. The
results indicate that the TF domain signal
processing using energy concentration as a fea-
ture is a very powerful tool and has been ap-
plied to many fields of applications. It is ex-
pected that further research and applications
of existing schemes will flourish in the near fu-
ture.
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