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Time-Frequency Signal Analysis Based
on the Windowed Fractional Fourier

Transform
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Abstract– A new signal-adaptive joint time-
frequency distribution for the analysis of
nonstationary signals is proposed. It is based on
a fractional-Fourier-domain realization of the
weighted Wigner distribution producing auto-
terms close to the ones in the Wigner distri-
bution itself, but with reduced cross-terms.
Improvement over the standard time-frequency
representations is achieved when the principal
axes of a signal (defined as mutually orthogonal
directions in the time-frequency plane for
which the width of the signal’s fractional
power spectrum is minimum or maximum) do
not correspond to time and frequency. The
computational cost of this fractional-domain
realization is the same as the computational
cost of the realizations in the time or the
frequency domain, since the windowed Fourier
transform of the fractional Fourier transform of
a signal corresponds to the short-time Fourier
transform of the signal itself, with the window
being the fractional Fourier transform of the
initial one. The appropriate fractional domain
is found from the knowledge of three second-
order fractional Fourier transform moments.
Numerical simulations confirm a qualitative
advantage in the time-frequency represen-
tation, when the calculation is done in the
optimal fractional domain. The approach can
be generalized to the time-frequency distribu-
tions from the Cohen class.

I. I������	�
��

Different types of joint time-frequency
distributions are nowadays used in signal
processing in order to extract the character-
istic behavior of a signal. The advantages and
disadvantages of most of the joint represen-
tations are well known. Thus, for example
the appropriate Short-Time Fourier Transform
(STFT) of a multi-component signal is almost
free from cross-terms when the components do
not overlap; meanwhile it does not stress well
the auto-terms. On the other hand, theWigner
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distribution (WD) [1] of such a signal suffers
from the cross-terms, which may even hide
some of the auto-terms. The aim of reduced
interference distributions from the Cohen class
[2], [3], [4] is to find optimal representa-
tions that would significantly decrease the
cross-terms without degrading the auto-terms.
Since frequently-used distributions from the
Cohen class, such as for example the Choi-
Williams, Bertrand, Butterworth, and Born-
Jordan distributions, were designed for a
general signal, they do not correspond to
the optimal signal representation. In order to
construct an optimal distribution, we have to
adapt the distribution’s kernel to a given signal
[5], [6], [7], [8], [9]. Moreover, the adaptation
should not be computationally too consuming,
with minimum possible knowledge about the
signal to be analyzed.

A method for time-frequency analysis of
nonstationary signals, referred to as the S-
method (SM), has been proposed in [10].
Its application produces the weighted Wigner
distribution, or smoothed interferogram. The
resulting distribution is of the WD form,
with significantly reduced cross-terms of multi-
component signals, while the auto-terms are
close to those in the pseudo WD. This method
is based on the STFT, in the initial step.
The same method for signal analysis has been
applied in several variants, in constructing
appropriate time-frequency representations
[11], [12], [13]. One of these forms combines the
STFT values along frequency, for a given time
instant, while the other is based on calculation
in the time direction, for a given frequency.
Both the efficiency of convergence towards the
WD auto-terms and the cross-terms reduction
depend on the orientation of the auto-terms
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in the time-frequency plane. In a general case
the auto-terms might be oriented in a direction
on some angle in the time-frequency plane, in
which case the axes of minimum (maximum)
signal width do not correspond to time or
frequency. These rotated axes, corresponding
to the minimum (maximum) signal width, will
be referred to as the principal axes. Rotation
of the time-frequency distribution kernels has
been proposed in [14] in order to align the
kernels’ preferred axes to the signal’s principal
axes. The resulting time-frequency represen-
tations show a better reduction of cross-
terms without too severely degrading the auto-
terms than the corresponding, original time-
frequency representations.

In this paper we introduce a form of
the SM application on signal analysis in
the fractional (mixed time-frequency) domain.
In order to derive it, the STFT of a
fractionally Fourier transformed signal has to
be calculated. Since the STFT of a signal’s
fractional FT corresponds to the STFT of
the signal itself with the window being the
fractional FT of the initial one, with a subse-
quent rotation of the coordinate system, the
STFT in the most appropriate fractional
domain can be performed without signif-
icant additional computational costs. As an
example, a modified Gaussian window for
the STFT in the fractional FT domain is
derived. After we get the STFT in the
optimal fractional domain, the standard very
simple implementation of the mentioned SM
is performed. As a result of this method appli-
cation we obtain a distribution which preserves
the WD auto-terms and almost cancels the
cross-terms.

In order to find the fractional domain
associated with the principal axes, and to
find the corresponding STFT, the analysis
of fractional FT moments is applied. In
particular, we suppose that an optimal
fractional domain corresponds to minimum
signal width, i.e., minimum second-order
fractional FT moment. Calculation of this
moment can be done analytically, based on
three known moments for different fractional
FT domains. The proposed approach is
demonstrated on examples.

II. S����-�
�� F���
�� ��������� 
�
��� ���	�
���� FT ����
�

The STFT has been introduced for better
time-localization of the frequency contents of
a signal x(t), by using a suitable window g(t):

STx(t, f)=

∞∫

−∞

x(t+ to)g
∗(to)e

−j2πtofdto. (1)

Certainly, for filtering a pure sinusoidal signal,
one needs a wide window, while for filtering
of a delta-pulse like signal, a narrow window
has to be applied. This rule also holds for the
analysis of very wide-spread and very narrow
signals, respectively. So, we can adjust the
window if the signal shape is known. Suppose
now that the minimum signal width does
not correspond to the time or the frequency
direction, as is the case for the signal illus-
trated in Fig. 1. Then we can see that
an affine transformation of the phase plane
leads to an optimal (for example, minimum
width) signal representation. In this paper we
restrict ourselves to pure coordinate rotation.
In general the performance of filtering opera-
tions in the fractional Fourier domain was
proposed in [15].
In order to represent a signal in a new

coordinate system, we use the fact that
rotation in the time-frequency plane corre-
sponds to fractional FT of the signal. The
fractional FT of a function x(t) can be defined
as [16]

Rα
x(u) = Xα(u) =

∞∫

−∞

K(α, t, u)x(t)dt, (2)

where the kernel K(α, t, u) is given by

K(α, t, u) =
ejα/2√
j sinα

ejπ
(t2+u2) cosα−2tu

sinα . (3)

Note that, in particular, X0(u) = x(u),
Xπ(u) = x(−u), and that Xπ/2(u) corre-
sponds to the normal FT of x(t). Note
moreover that, with the rotation-type
relationship (cf. Fig. 1)
(

t
f

)
=

(
cosα − sinα
sinα cosα

)(
u
v

)
, (4)
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Fig. 1. Illustration of a signal whose principal axis in the time-frequency plane does not correspond to either
time or frequency.

we have the following relationship for the
fractional FT kernel:

K(α, to, u− uo)e
j2πuove−jπuv

=
[
K(−α, uo, t− to)e

j2πtofe−jπtf
]∗
. (5)

Let us consider the STFT STαx (u, v) in the
fractional domain α of a signal x(t), defined
as the STFT STXα

(u, v) of the fractional FT
Xα(u) with the window g(u):

STαx (u, v) = STXα
(u, v)

=

∞∫

−∞

Xα(u+ uo)g
∗(uo)e

−j2πuovduo (6)

=

∞∫

−∞

Rα
x(u+ uo)

[
R0g(uo)

]∗
e−j2πuovduo.

From relationship (5) we get (cf. [16, Section
IV])

e−jπuv
∞∫

−∞

Rα
x(u+ uo)

[
R0g(uo)

]∗
e−j2πuovduo

=e−jπtf
∞∫

−∞

R0x(t+ to)
[
R−αg (to)

]∗
e−j2πtofdto,

(7)
and from the latter identity we conclude that
the STFT STαx (u, v) in the fractional domain
α can as well be calculated directly as a
normal STFT of the signal x(t) while using a
window that is the fractional FT of the initial
window g(t), followed by the rotation (4) of
the coordinate system:

STαx (u, v) =

ejπ(uv−tf)
∞∫

−∞

x(t+ to)
[
R−αg (to)

]∗
e−j2πtofdto

(8)
where u, v and t, f are related by (4).
Let us consider the Gaussian window g(t) =

exp(−πct2), for which the fractional FT reads

Rαexp(−πct2)(u) =

ejα/2√
cosα+ jc sinα

e
−πcu2 1+tan

2 α−j(c−c−1) tanα

1+c2 tan2 α

(9)
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In the particular case c = 1, the Gaussian
window is an eigenfunction of the fractional
FT and the filtering with such a window
in the fractional domain corresponds to a
rotation of the STFT representation. In
general there is a large class of window
functions — eigenfunctions — of the fractional
FT, which produce a rotation of the STFT
for all or only a certain number of angles
α. Thus, for example, the Hermite-Gauss
functions Ψn(t) = exp(−πt2)Hn(

√
2πt), where

Hn(t) are the Hermite polynomials, are eigen-
functions of the fractional FT for any angle
α, while the function

∑∞
n=0 aL+MnΨL+Mn(t),

where an are arbitrary coefficients, is an eigen-
function of the fractional FT only for α =
2πk/M .
Consider first a very simple case of the

linear-FM signal

x(t) = e(jπpt
2+j2πqt) (10)

and assume that the Gaussian window
exp(−πct2) would be the optimal window for
filtering the pure harmonic signal exp(j2πqt).
In order to find the optimal parameters of the
Gaussian window (9) for filtering the linear-
FM signal (10), we will turn to the fractional
Fourier domain. If we apply the modulation
theorem [16]

Rα
x(t) exp(j2πqt)(u) =

Rαx(t)(u− q sinα)ej2πq cosα(u−q sinα/2)

to the fractional FT of the chirp signal
exp(jπpt2),

ejα/2√
cosα

√
1 + p tanα

ejπu
2 p−tanα
1+p tanα ,

we conclude that the fractional FT of
the linear-FM signal (10) becomes a pure
harmonic signal with frequency q cosα for
the fractional angle α = arctan p, and a
delta-pulse located at the position q sinα for
the fractional angle α = π/2 + arctanp. By
returning to the time domain we obtain that
the optimal Gaussian window for the linear-
FM signal (10) takes the form
[
R−αg (u)

]∗
= Rα

g∗(u)

= Ae
−πcu2 1+p

2
−j(c−c−1)p

1+c2p2 , (11)

cf. Eq. (9) for the fractional angle α =
arctan p.
In real-world problems a signal is not

pure linear-modulated. It can even be multi-
component. Nevertheless, if the instanta-
neous frequencies of the signal components
are changing slowly in the direction of a
certain line in the time-frequency plane (we
will refer to this line as the principal axis),
we can find fractional domains where the
signal is better concentrated or more spread.
In order to find these fractional domains
with minimum computational costs, leading
to possible improvements in time-frequency
representations, we will use the fractional FT
moments of the signal.

III. S
���� �
��� ���
���
�� ����
���	�
���� FT �������

It is known that the signal width in the
time or the frequency domain can be estimated
from its second-order central moments. Analo-
gously, the signal width in the fractional
domain is related to the second-order central
fractional FT moments [17].
The second-order central fractional FT

moment pα is defined by

pα =

∞∫

−∞

|Rα
x(t)|2(t−mα)

2dt = (wα −m2
α),

(12)
where the first-order moment

mα =

∞∫

−∞

|Rα
x(t)|2tdt

is related to the center of gravity of the
fractional power spectrum and where

wα =

∞∫

−∞

|Rαx(t)|2t2dt

is the second-order moment. The first-order
moment mα in a fractional domain defined by
an arbitrary angle α can be calculated from
the relationship

mα =m0 cosα+mπ/2 sinα, (13)
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where m0 and mπ/2 are the first-order
moments in the time and the frequency
domain, respectively. Also, any second-order
moment wα can be obtained from three other
moments wβ, wγ, and wµ, say, if the angles β,
γ, and µ are not the same, and the difference
between them is not equal to π [17]. Let us
choose three second-order moments: w0, wπ/2,
and wπ/4. Then using the results from [17], we
have:

wα = w0 cos
2 α+wπ/2 sin

2 α

+[wπ/4 − (w0 +wπ/2)/2] sin 2α. (14)

Taking into account Eqs. (12), (13), and
(14), we conclude that three fractional
FT power spectra define all second-order
central moments pα, which characterize the
signal widths in the corresponding fractional
domains:

pα = (w0 −m2
0) cos

2 α+ (wπ/2 −m2
π/2) sin

2 α

+[wπ/4 −m0mπ/2 − (w0 +wπ/2)/2] sin 2α

= p0 cos
2 α+ pπ/2 sin

2 α

+[wπ/4 −m0mπ/2 − (w0 +wπ/2)/2] sin 2α.
(15)

In order to find the fractional domain where
the signal has an extremal (minimum or
maximum) width, we study the behavior of the
derivatives of pα. It is easy to see from Eq. (15)
that the first derivative of pα,

dpα
dα

= (pπ/2 − p0) sin 2α

+ [2(wπ/4 −m0mπ/2)− (w0 +wπ/2)] cos 2α,

equals zero for those angles αe for which

tan 2αe =
2(wπ/4 −m0mπ/2)− (w0 +wπ/2)

p0 − pπ/2
.

(16)
Since the fractional FT is periodic in α with
period 2π (except for a possible factor −1) and
satisfies the half-period relation Rα+π

x (t) =
Rα
x(−t), the signal width takes a minimum

and a maximum value once over the region
α ∈ [0, π). From the behavior of the second
derivative of pα for α = αe, d2pα/dα2 |α=αe =
2(pπ/2 − p0)/ cos 2αe, we conclude that the

signal reaches its minimum width for that
value αe for which cos 2αe has the same sign as
pπ/2− p0; the other value of αe in the interval
[0, π) then corresponds to the maximum width.
Thus, the appropriate fractional domain where
the signal is best concentrated or most widely
spread, can be found from the knowledge of
only three fractional power spectra.

IV. S-������ (SM) 
� ��� ���	�
����
����
�

In the previous sections we have discussed
the method how to perform the STFT in the
most optimal way for a given signal. It can be
achieved by choosing an appropriate window
and an appropriate fractional domain. In this
section we consider the discrete realization
procedure, according to the SM, which leads to
a representation close to the sum of the WDs
of each signal component separately.
Consider a multi-component signal

x(t) =
M∑

i=1

xi(t).

Its pseudo WD, defined by

PWDx(t, f) =

∞∫

−∞

x(t+ τ/2)x∗(t− τ/2)

× g∗(τ/2)g (−τ/2) e−j2πτfdτ,
has the form

PWDx(t, f) =

M∑

i=1

PWDxi(t, f) +
M∑

i=1

M∑

k=1,k �=i

PWDxi,xk(t, f);

note that the normal WD arises for g(t) =
1. In most applications, the aim of time-
frequency analysis is to get a distribution
that contains only the sum of auto-terms∑M

i=1 PWDxi(t, f) without the cross-terms
PWDxi,xk(t, f). It is also known that the WD,
among all other quadratic signal-dependent,
time-frequency distributions, has the best
auto-term concentration. In most cases the
reduced interference distributions are obtained
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at the cost of significant auto-terms degra-
dation.
The pseudo WD can also be expressed in

terms of the STFT as

PWDx(t, f) =

∞∫

−∞

STx(t, f + θ/2)ST ∗x (t, f − θ/2)dθ.

Based on this definition of the pseudo WD, the
SM for time-frequency analysis is based on the
relation [12], [18]

Px(t, f) =

∞∫

−∞

STx(t, f+θ/2)z(θ)ST
∗
x (t, f−θ/2)dθ, (17)

where the additional frequency window z(θ)
is used to exclude the interference pattern
between frequency-misaligned versions, while
it should be wide enough to provide complete
integration over auto-terms of the STFT
ST (t, f). Note that, in comparison to [10], [11],
[12], we use a slightly different definition for
the SM-based analysis, in order to get a nicer
equivalence to the WD. It is easy to see that
if z(θ) = 1 we get the pseudo WD, while
for z(θ) = δ(θ) we obtain the time-varying
spectrogram. If the width of z(θ) is somewhere
in between, we can expect, as it was proved in
[11] and [12], that the corresponding distrib-
ution combines the nice properties of both the
spectrogram and the WD. It is known that the
spectrogram does not suffer from cross-terms,
in contrast to the WD where the cross-terms
are very emphatic. On the other hand, the
spectrogram has a significant leakage due to
the window usage, which is less exhibited in
the case of the WD. By choosing an appro-
priate function z(θ), the sharpness of the WD
can be preserved and the cross-terms will be
reduced or even completely removed. For that
to be the case, the lag window in the STFT has
to be such that the components of the STFT
are not far from the instantaneous frequencies
of the signal components, in order to obtain
fast convergence inside z(θ).

An SM application could also be based on
time-direction combined STFTs. It is then
based on the form [11], [12]

∞∫

−∞

STx(t+θ/2, f)z(θ)ST ∗x (t−θ/2, f)e−j2πfθdθ.

(18)
Which one of the previous two forms (17)
and (18) would produce better results depends
on the signal. If the auto-terms in the STFT
are well concentrated along the frequency
direction, then the form (17) would be the
better choice, and vice versa.
As it has been discussed in the previous

section, concentration of the STFT can be
improved for signals whose principal axes are
not the time and frequency axes, but fractional
axes in directions defined by α and α+π/2. We
have already found that for a given signal there
exists a fractional domain where the STFT can
be performed in an optimal way. Finding the
domain where the signal is best concentrated
is based on the fractional FT moments. We can
expect that the application of the SM in that
particular domain will be the most efficient
one. There, the FT of the signal’s fractional
FT occupies the narrowest range. The SM in
this fractional domain is based on [19]

Pα
x (t, f) =

∞∫

−∞

STαx (u, v + θ/2)z(θ)STαx
∗(u, v − θ/2)dθ,

(19)
where STαx (u, v) and the relation between
(u, v) and (t, f) are defined by Eqs. (6) and (4),
respectively. Using the rotational properties of
the STFT, Eq. (7), we can rewrite Eq. (19) as

Pα
x (t, f) =

∞∫

−∞

STx(t+ (θ sinα)/2, f + (θ cosα)/2)z(θ)

× e−j2πfθ sinαST ∗x (t−
θ sinα

2
, f − θ cosα

2
)dθ,

(20)
from which it is clear that the SM in
the fractional domain corresponds to the
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SM applied simultaneously in the time and
frequency domains. The two special cases (17)
and (18) follow as special cases from Eq. (20)
for α = 0 and α = π/2, respectively.

V. D
�	���� ����

The analog form (20) suggests that the
discrete form of the SM application in an
arbitrary domain can be calculated based
on the original signal’s STFT. However, the
values of the STFT arguments do not corre-
spond to the discretization grid: the STFT
values should be calculated by using interpo-
lation for each time-frequency point, and a
given α. A much simpler calculation is based
on Eqs. (6) or (8) and (19). After the angle
α has been determined, for which the second-
order fractional FT moment is minimum, see
Eq. (16), the discrete fractional FT of the
signal Xα(n) (or of the window) is calculated.
The discrete STFT then reads [cf. Eq. (6)]

STαx (n, k) =

N
2 −1∑

m=−N
2

Xα(n+m)g∗(m)e−
jmk2π

N .

The discrete SM is of the form [cf. Eq. (19)]

Pα
x (n, k) =

N/2−1∑

m=−N/2

STαx (n, k +m)z(m)STαx
∗(n, k −m)

or
Pα
x (n, k) = |STαx (n, k)|2

+2Re

{
Nz∑

m=1

STαx (n, k +m)STαx
∗(n, k −m)

}

,

(21)
where we have tacitly assumed a real, rectan-
gular window z(m) with width 2Nz + 1.
Therefore, the SM-based calculation can be
understood as calculation of the spectrogram
in the domain defined by α, and its improving
by terms 2Re{STαx (n, k+m)STαx

∗(n, k−m)}
towards the rotated WD quality of auto-
terms. Taking just a few of these spectrogram-
correcting terms around the time-frequency
point under consideration, we immediately
start improving the auto-term concentration,
while the cross-terms will appear when we

start taking values from other auto-terms.
Taking Nz = N/2 we get the rotated WD.

VI. N����
	�� �������

Consider the signal

x(t) = e−(3t)
8{ej(192πt2−8 cos(4πt)/π)

+ej(64πt
2+8cos(4πt)/π)}

sampled at T = 1/256. A Hanning lag window,
with Nw = 128 samples, is used for the STFT
calculation. The values of the second-order
central moments [normalized with respect to
the zero-order moment

∫∞
−∞

|x(t)|2dt] are p0 =
1, pπ/2 = 1.38, and pπ/4 = 0.07 . According
to Eq. (16), and using the fact that p0 < pπ/2,
we get αe = 41◦. The second-order moment
in this direction is smaller than in any other
direction: p41◦ = 0.057, while the second-
order moment in the orthogonal direction is
the largest: p−49◦ = 2.01. Now the fractional
FT of the signal for the angle α = αe − π/2 =
−49◦ can be calculated by using the discrete
fractional FT algorithms, or just by using the
inversion property of the rotated WD. The
next step is to calculate the STFT of the
fractional FT and to use it in Eq. (21).
The results of this analysis are presented

in Fig. 2. The standard WD is shown in
Fig. 2a. The SM-based distribution, calcu-
lated by the standard definition, i.e., along
the frequency axis, with Nz = 10 correcting
terms, is presented in Fig. 2b. We see that
some cross-terms already appear, although the
auto-terms are still very different from those
in the WD in Fig. 2a. The reason lies in the
very significant spread of one component along
the frequency axis. Fig. 2c shows the WD of
the fractional FT for α = −49◦, obtained as
the optimal angle for this signal; note that it
is just a rotated version of the original WD.
The SM-based distribution on the fractional
FT is presented in Fig. 2d. We can see that,
as a consequence of the high concentration of
the components along the optimal fractional
angle, we almost achieved the goal of getting
the auto-terms of the WD without any cross-
terms.
Note that if the signal is already well-

concentrated in time or in frequency, then
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the proposed procedure will also produce
the standard calculation directions as special
cases.
Similar results are obtained with the signal

x(t) = e−(3t)
8

[e(jφ(t)+50πt) + e(jφ(t)−50πt)]

φ(t) =

t∫

−∞

15π arcsinh(100t) dt

and the same discretization parameters as in
the previous example, see Fig. 3.

VII. G������
!��
��

The presented approach can be generalized
to the kernels from the Cohen class of time-
frequency representations [2], [3], [4],

Cx(t, f) =
∫∫ ∞

−∞

Φ(to, fo)Wx(t− to, f − fo)dtodfo, (22)

where Wx(t, f) is the WD and Φ(t, f) is the
kernel in the time-frequency domain.
In many cases the kernel Φ(t, f) shows a

preferred behavior in the time and/or the
frequency direction. The degree of cross-term
reduction (and degrading of the auto-terms)
then depends on the way in which the WD
is oriented in the time-frequency plane. If
the orientation is along the time and/or the
frequency direction, the kernel may act as
expected; in the case of a different orientation,
the effect of the kernel is not optimal [7]. In
[14] we therefore suggested to rotate the kernel
in such a way that its preferred axes coincide
with the principal axes of the WD. Note that,
although the rotated distributions may not
satisfy the common marginal properties, they
satisfy generalized ones [9].
In the case of the SM application in the

fractional domain, with Cx(t, f) = Pα
x (t, f),

the kernel in the Wigner domain reads

Φ(t, f) =Wg(−t,−f)Z(−[t cosα− f sinα]),

where Wg(t, f) is the WD of the window g(t)
and Z(f) is the FT of the window z(θ), while
its double Fourier transform

Φ̄(τ , ν) =

∫∫ ∞

−∞

Φ(t, f)e−j2π(νt−fτ)dtdf,

which acts as a multiplier function in the
ambiguity domain, takes the form

Φ̄(τ , ν) =
∫ ∞

−∞

Ag(−τ + θ sinα,−ν + θ cosα)z(θ)dθ,

where Ag(τ, ν) is the ambiguity function of the
window g(t). Note that for z(θ) = δ(θ) the
multiplier function reduces indeed to the one
of the spectrogram, Φ̄(τ , ν) = Ag(−τ ,−ν), as
we remarked before. For z(θ) = 1 it reduces to

Φ̄(τ, ν) =

∫ ∞

−∞

Ag(−τ+θ sinα,−ν+θ cosα)dθ

= G−α(−[τ cosα− ν sinα]/2)

×G∗−α([τ cosα− ν sinα]/2),

with Gα(u) being the fractional FT of the
window g(t); and for α = 0 we then get
again the pseudo WD with G0(t) = g(t). The
details of the derivation are presented in the
Appendix.
Other Cohen class distributions (Butterworth,

generalized exponential, and Zhao-Atlas-Marks)
have been treated in a previous paper [14]. For
all these distributions, but in particular for the
SM-based distribution, we conclude that the
reduction of cross-terms without too severely
degrading the auto-terms, is better for the
aligned kernels than for the non-aligned ones.

VIII. C��	���
��

A method for the analysis of nonstationary
signals is presented. It is based on the repre-
sentation of the signal in the fractional domain
where it has minimum/maximum second-order
fractional FT moments. The signal is repre-
sented in the new fractional time-frequency
domain by the windowed fractional Fourier
transform. Concentration of this transform is
then improved by using the S-method. The
theory is illustrated on two examples with
signals which do and do not intersect in the
time-frequency domain.

A�����
�

The rotated kernel for SM-based distributions

From the WD definition we can write the
relationship

x(t1)x
∗(t2)
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Fig. 2. a) Wigner distribution of the signal, b) The SM-based distribution calculated in the frequency domain, c)
Rotated WD (WD of the fractional FT), d) The SM-based distribution calculated in the “optimal” fractional
frequency domain.

=

∫ ∞

−∞

Wx((t1 + t2)/2, f)e
j2πf(t1−t2)df. (23)

The STFT is [see Eq. (1)]

STx(t, f)=

∫ ∞

−∞

x(t+ τ)g∗(τ)e−j2πfτdτ. (24)

The generalized SM-based distribution is
defined by Eq. (20). After substitution of
Eq. (24) into (20) we get

Pα
x (t, f) =

∫∫∫ ∞

−∞

x(t+θ sinα/2+t1)x
∗(t−θ sinα/2+t2)

× g∗(t1)g(t2)z(θ)e
−j2π(f+θ cosα/2)t1

× ej2π(f−θ cosα/2)t2e−j2πfθ sinαdt1dt2dθ.

By using Eq. (23) and the substitutions t1 =
t0 − t/2 + τ/2, t1 = t0 − t/2 − τ/2, and after
some transformations, we get

Pα
x (t, f) =

∫∫ ∞

−∞

Wx(to, fo)dtodfo

×
∫ ∞

−∞

g∗(to− t+
τ

2
)g(to− t−

τ

2
)ej2π(fo−f)τdτ

×
∫ ∞

−∞

z(θ)ej2πθ{(fo−f) sinα−(to−t) cosα}dθ

=

∫∫ ∞

−∞

Wx(to, fo)W
∗
g (to − t, fo − f)

× Z([to − t] cosα− [fo − f ] sinα)dtodfo.

The kernel in the time-frequency domain (the
smoothing function for the WD) is thus given
by

Φ(t, f) =Wg(−t,−f)Z(−[t cosα− f sinα]),

whereas in the ambiguity domain the kernel
reads

Φ̄(τ , ν) =

∫∫ ∞

−∞

Φ(t, f)e−j2π(νt−fτ)dtdf

=

∫ ∞

−∞

Ag(−τ+ θ sinα,−ν+ θ cosα)z(θ)dθ.

Note that for z(θ) = δ(θ) the multi-
plier function reduces to the case of the



TIME-FREQUENCY SIGNAL ANALYSIS BASED ON THE WINDOWED FRACTIONAL... 309

Fig. 3. a) Wigner distribution of the signal, b) The SM-based distribution calculated in the frequency domain, c)
Rotated WD (WD of the fractional FT), d) The SM-based distribution calculated in the “optimal” fractional
frequency domain.

spectrogram, Φ̄(τ, ν) = Ag(−τ ,−ν). On the
other hand, for z(θ) = 1 and α = 0 we get the
pseudo WD with G0(t) = g(t).
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