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Performance of Spectrogram as IF
Estimator

LJubiša Stanković, Miloš Dakovíc, Veselin N. Ivanović

Abstract– Exact expressions for the variance
and bias of the instantaneous frequency (IF) es-
timate using a spectrogram are derived. Simple
approximative formulae are provided and the-
oretical results are statistically confirmed.
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The spectrogram is still the most commonly
used tool for time-frequency analysis. It is
known that, when used as an instantaneous
frequency (IF) estimator [1]-[3], the spectro-
gram produces unbiased estimates when the
signal phase is a linear or quadratic function of
time. The variance has been derived under the
condition that the IF variations within the lag
window are small [4]. The variance and bias of
an IF estimate obtained using a spectrogram,
for general frequency modulated signals, are
derived. Special attention is devoted to sig-
nals whose IF variations, within the lag win-
dow, could be considered as linear functions of
time. For this case, a very simple approxima-
tive formula for the variance is given. The rate
of IF changes within the lag window increases
the variance exponentially. The estimation is
unbiased for linear IF changes, while the bias
can be approximated by a linear function for
quadratic IF variations. The derived expres-
sions are checked statistically.

Consider discrete-time noisy signal observa-
tions:

x(nT ) = f(nT ) + ε(nT ) (1)

of the continuous signal f(t) = A(t) exp(jφ(t))
with slow-varying amplitude with respect to
the phase function φ(t), where T is a sam-
pling interval and ε(nT ) is white, Gaussian
i.i.d. noise. The spectrogram of this signal
can be written as:

Sx(t, ω;wh(nT ))
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=
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∞∑

n=−∞

wh(nT )x(t+ nT )e−jωnT

∣∣∣∣∣

2

(2)

where wh(nT ) = w(nT/h)T/h and w(τ) is the
real-valued, symmetric, finite length window
function. Parameter h > 0 denotes the length
of the window, and localizes the IF estimate.

By definition, the IF of the considered signal
is ω(t) ≡ dφ(t)/dt. The value ω(t) is usually
estimated as

ω̂h(t) = arg[ max
ω∈Qw

Sx(t, ω;wh(τ))].

The estimation error is defined as ∆ω̂h(t) =
ω(t) − ω̂h(t). Owing to the presence of noise
ε(nT ), the estimation error ∆ω̂h(t) can be con-
sidered as a random variable, characterized by
its bias and variance.

II. A�����
�

The IF is located at the stationary points of
Sx(t, ω;wh(nT )). To perform estimation error
analysis, we linearize ∂Sx(t, ω;wh(nT ))/∂ω
around the stationary point with respect to the
small estimation error ∆ω̂h(t), phase residue
�φ (third- and higher-order terms in a Taylor
expansion of phase φ(t)), and noise ε:

∂Sx(t,ω;wh(nT ))
∂ω |0 +

∂2Sx(t,ω;wh(nT ))
∂ω2 |0∆ω̂h(t)

+∂Sx(t,ω;wh(nT ))
∂ω |0δ�φ+

∂Sx(t,ω;wh(nT ))
∂ω |0δε = 0

(3)
where |0 indicates that the derivatives are cal-
culated at the point ω = φ′(t), �φ = 0, and
ε = 0. Details can be found in [5]. Note that
the first term in eq.(3) has zero value at this
point. In the second term, we have a deter-
ministic expression:

Df = ∂2Sx(t,ω;wh(nT ))
∂ω2 |0

= −2[Re{Ff (t, φ
′(t); (nT )2wh(nT ))×
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F ∗f (t, φ
′(t);wh(nT ))}−Sf (t, φ

′(t);nTwh(nT ))]
(4)

while the third and the forth terms influence
only the IF estimation bias and variance, re-
spectively. From eq.(3), we can easily obtained
the expression for ∆ω̂h(t). This will be used
for the estimation error analysis.
Variance: Since �φ is not a random vari-

able, it does not influence the estimation vari-
ance, thus from eq.(3) we have

var {∆ω̂h(t)}

= var

{
∂Sx(t, ω;wh(nT ))

∂ω
|0δε

}
/D2

f . (5)

By simple calculation, we can evaluate the nu-
merator expression in eq.(5), resulting in

var {∆ω̂h(t)}

= 2σ2ε[Sf (t, φ
′(t);nTwh(nT ))

T

h
Mw2

0

+Sf (t, φ
′(t);wh(nT ))ThM

w2

2 ]/D2
f (6)

where Re{·} denotes a real part, Ff (t, ω,
wh(nT )) denotes the discrete-time short-time
Fourier transformation of the signal f(t),

Ff (t, ω;wh(nT ))

=
∞∑

n=−∞

wh(nT )f(t+ nT )e−jωnT .

Higher powers of the total noise variance σ2ε
are disregarded, and the fact that the window
wh(τ) is real and symmetric is used. In eq.(6),
Mw
k denotes the kth moment of the window,

Mw
k 	

∫∞
−∞

w(τ)(τ)kdτ . The moments Mw2

k

are calculated for the squared window w2(τ).
Variance for linear FM signal: Consider

a linear FM signal with constant amplitude
A(t) = A, and phase φ(t) = at2/2. Eq.(6)
becomes

var {∆ω̂h(t)} = σ2ε

×

∣∣∣∣∣

∞∑

n=−∞

wh(nT )e
ja(nT )2/2

∣∣∣∣∣

2
ThMw2

2

2A2D2
a

(7)

where

Da = Re{
∞∑

n=−∞

(nT )2wh(nT )e
ja(nT )2/2

×
∞∑

n=−∞

wh(nT )e
−ja(nT )2/2}.

Parameter a appears in the exponent in eq.(7),
so we can assume that an approximative for-
mula for eq.(7) can be found as σ2ε exp(P (a)),
where P (a) is a polynomial in a. Coefficients
of the polynomial P (a) can be obtained by ex-
panding ln(var {∆ω̂h(t)}) into a Taylor series
around a = 0. Since P (a) contains even pow-
ers of a only, if we take its first two terms we
obtain

var {∆ω̂h(t)}

	
σ2εT

2|A|2h3
Mw2

2

(Mw
2 )

2
exp(Cwa

2h4) (8)

where

Cw =
1

4
[(Mw

2 /M
w
0 )

2 +Mw
6 /M

w
2 − 2Mw

4 /M
w
0 ]

is a window w(τ) dependent parameter. The
relative error of approximation in eq.(8) is
1 − exp(O(a4h8)), where O(·) is the Landau
symbol.

Eq.(8) is an approximation of eq.(7) for
small values of a. An approximative formula
for large values of a can be obtained by apply-
ing the stationary phase method [1] in eq.(6).
Using the facts that

Ff (t, ω;w(τ))

	 Aw(
ω − at

ah
) exp(j(ωt−

ω2

2a
))
√
2πj/a,

and

∂2Ff (t, ω;w(τ))/∂ω
2 = −Ff (t, ω; τ

2w(τ)),

we have

var {∆ω̂h(t)} 	
σ2ε
|A|2

Mw2

2

4π(w(2)(0))2
Th7a5 (9)

where w(2)(0) is the second derivative of the
window function w(τ) at τ = 0.
Bias: The bias of the estimator is the ex-

pected value of the error ∆ω̂h(t). By evaluat-
ing the third term in eq.(3), we obtain:

bias(∆ω̂h(t)) = −2 Im{Ff (t, φ
′(t);nTwh(nT ))

×F ∗f (t, φ
′(t);wh(nT ))}/Df . (10)
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Fig. 1. IF variance obtained: a) theoretically by eq.(7) (solid line), and approximately by eqs. (8) (dotted line),
and (9) (dashed line); b) theoretically (dashed line), and statistically (solid line). Values of the IF direction
a, normalized with the maximal frequency ωm = π/T , are shown in the x-axis.

In the case of constant and linear FM sig-
nals, the bias is equal to zero. For signals with
quadratic IF f(t) = A exp(jbt3/6), eq.(10)
can be expanded into a Taylor series around
b = 0, and we get the linear function of b,
bias(∆ω̂h(t)) ∼= b(h2Mw

4 /(6M
w
2 ). The approx-

imation error is O(h8b3) +O(t2h6b3).

III. E������ ��� C��	���
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The signal f(t) = exp(jat2/2) is considered
for various values of parameter a. The sam-
pling interval is T = 1/256, and 64 point Han-
ning window is used (h = 1/4). The total noise
ε(nT ) variance is σε = 0.1. Spectrograms are
calculated in 256 points. The variance is time
independent in this case, so the time instant
t = 0 is considered.

Fig. 1a) shows variances obtained from
eq.(7) (solid line), and from approximative
formulae in eq.(8) (dotted line) and eq.(9)
(dashed line). For small values of a eq.(8)
gives appropriate results, while for large a
eq.(9) gives good approximation. The high-
est value of a for which eq.(8) can be used is
Cwa

2h4 < 5. This value is a lower limit for
eq.(9). For very small Cwa

2h4 < 1/5, nar-
row windows or small a, the variance can be
treated as a constant [4]. The values of a, nor-
malized with the maximal frequency for the
sampling interval T, are shown on the x-axis
an = a/ωm = aT/π. Fig. 1b) shows theo-
retically and statistically obtained variances.

The statistically obtained variance is calcu-
lated as a mean value of 2048 different real-
izations. The agreement between theoretically
and statistically obtained data is very high.

Note that the variance values in Fig. 1
are calculated for a Hanning window with 64
points. If we used 32 points with the same
sampling interval, i.e. h = 1/8, then the x-axis
would be rescaled by a factor of 1/22, mean-
ing that we can assume that the variance is
constant up to the normalized a = 4/5 	 1,
and that eq.(8) can be used up to a = 20. Of
course, a wider window means axis rescaling in
the opposite direction. For the analyzed sig-
nal, the bias is zero.
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