
  

Abstract — In this paper, a new approach to estimate 

motion parameters in compressive sensed video sequences is 

proposed. The proposed procedure combines sparse 

reconstruction algorithms and time-frequency analysis applied 

to µµµµ-propagation signal. This concept allows providing precise 

velocity estimation even under a reduced number of randomly 

chosen video frames. The theory is applied and illustrated on 

synthetic and real video sequence. 
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I. INTRODUCTION 

 

Time-frequency analysis has been widely used in the 

applications dealing with non-stationary signals 

characterized by time-varying spectral content [1]-[4]. 

These applications include radars, sonars, communications, 

biomedical and multimedia systems [5]-[10]. In the case of 

3-dimension (3D) video signals, the time-frequency analysis 

is usually considered as a powerful tool for object tracking, 

parameters estimation, optical flow estimation, security 

issues, surveillance, etc. For instance, time-frequency 

distributions were combined with the SLIDE 

(subspace-based line detection) algorithm, [11],[12], to 

provide a high-precision method for estimation of moving 

objects velocities in video sequences [13]-[15]. The video 

frames are firstly projected onto the coordinate axes, and the 

projections are further used to produce the frequency 

modulated (FM) signals. The motion parameters can be 

obtained by estimating time-frequency parameters of these 

FM signals [13]. In order to provide efficient estimation 

results, we need to consider a suitable time-frequency 

distribution that provides high concentration without the 

cross terms. For that purpose, the S-method provides most 

of the desirable properties and improves the performance 

over the spectrogram, without increasing significantly the 

realization complexity [16].  In this paper we consider the 

case when we are left with fewer frames than necessary for 

precise motion parameters estimation. This situation may be 

caused by discarding some distorted frames, or may be a 

consequence of compressive sensing/recording with the aim 

to reduce storage and transmission requirements. Moreover, 

considering the weather factors (i.e., blocking camera lens 

due to heavy rain) as well as video camera maintenance 
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aspects, one cannot always assume a continuous video data 

streaming – thus data loss. Missing frames will produce an 

incomplete projection vector, which will further affect the 

time-frequency representation by introducing certain kind 

of noise [17],[18]. Consequently, it will produce large errors 

during the velocity estimation. In order to provide the 

velocity estimation as in the case of full data set, we need to 

recover the compressive sensed data using reconstruction 

algorithms. Namely, under the certain conditions, the 

signals can be reconstructed from a small number of random 

measurements [19]-[23], whereas the signal must fulfill 

certain conditions, such as sparsity. The information about 

sparse signal is contained in the significantly smaller 

number of coefficients, compared to the total length of the 

signal. When searching for the best sparse approximation, 

we will use the l1 minimization approach which is solved 

using convex optimization algorithms [20],[21].      

 The paper is organized as follows. The motion 

parameters estimation based on the time-frequency analysis 

is presented in Section II. The concept of velocity 

estimation based on the Compressive sensed video 

sequences is proposed in Section III. The experimental 

results are given in Section IV.  

II. MOTION PARAMETERS ESTIMATION IN VIDEO 

SEQUENCES 

 

High precision motion estimation in video-sequences has 

been usually done using the techniques based on the spectral 

analysis methods. Especially in traffic control and safety 

fields, many studies have been dedicated for an accurate 

vehicle trajectory (vehicle motion) generation to derive 

more precise vehicle speeds using video image processing 

techniques [24]-[28]. However, due to the camera 

calibration and data loss issues, speed estimation using 

video image is an on-going research topic. In the case of 

time-varying velocities, the time-frequency analysis has 

been combined with other state of the art methods for 

motion parameters estimation, such as SLIDE algorithm 

[11],[12]. Namely, the velocity estimation problem can be 

solved using the SLIDE and µ-propagation (constant or 

variable). The µ-propagation approach maps the sequence 

of video frames into FM signals (for constant velocity case) 

or signals with highly nonlinear phase (time-varying 

velocity).  

A certain video frame that appears at time instant t and 

contains a moving object can be represented as: 

 ( ) ( ) 0 0, ,   , ( ,  )x yI x y t b x y s x x v t y y v t= + − − − −  (1) 

where s(x,y) represents the moving object, B is background, 

while t is the considered frame. The initial object position is 

(x0,y0) and velocity (vx, vy). Further, we are observing the 
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frame projections onto the axes (without loss of generality 

we can focus on x axis, since the same holds for y axis). 

Hence, we can write: 

0 0 0

( , ) ( , ) ( , )
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x y x
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P x t I x y b x y

s x x v t y y v t B x S x x v t

= = +

+ − − − − = + − −

∑ ∑

∑
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Assuming that the background is constant, its influence is 

eliminated by calculating the derivative of projection with 

respect to t: 
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In order to provide velocity estimation, we define the 

signal in the form: 

 �
0( ) ( )

j x
x

x

z t P x x v t e
µ= − −∑ , (4) 

whose instantaneous frequency corresponds to moving 

object velocity. In order to estimate the instantaneous 

frequency, the time-frequency analysis should be applied to 

z(t). Particularly, it has been shown that the Wigner 

distribution (WD) can provide efficient results. It is a 

quadratic time-frequency representation that is given by: 

 ( , ) ( / 2) ( / 2) .
j

WD t z t z t e
ωτ

τ

ω τ τ −= + −∑  (5) 

Therefore, the problem is recast as the instantaneous 

frequency estimation in the time-frequency domain. In 

practical applications, it is more suitable to use the 

S-method instead of the Wigner distribution, since it does 

not produce the cross-terms in the case of multicomponent 

signals and it is more suitable in noisy case (which is often 

encountered when dealing with real video sequences). The 

S-method is defined as follows: 

 
*

( , ) ( , ) ( , )

L

i L

SM t STFT t i STFT t iω ω θ ω θ

=−

= + −∑ , (6) 

where 2L + 1 is the frequency window width, (*) is the 

complex conjugate, while STFT(t,ω) is the short-time 

Fourier transform: 

 ( , ) ( ) ( )
j

STFT t w z t e
ωτ

τ

ω τ τ −= +∑ , (7) 

with w(t) being the window function. 

III. VELOCITY ESTIMATION BASED ON COMPRESSIVE 

SENSED VIDEO SEQUENCES   

 

In most applications, signal acquisition at high sampling 

rates requires large data storage and transmission capacities. 

Therefore, it would be very feasible if we can sample at 

lower rates and reconstruct the signal later for the analysis. 

It can be especially interesting and useful in different video 

applications, such as surveillance, where it is needed to store 

and transmit large number of frames during a long time 

period. Moreover, considering significant amount of traffic 

surveillance cameras on the roadway, the proposed method 

will promote “smart” use of current infrastructure. The 

concept of compressed sampling/sensing lies in the 

mathematical foundation that it is possible to reconstruct a 

sparse (or almost sparse) signal from a small set of randomly 

chosen samples using the powerful convex optimization 

algorithms (computationally efficient convex programming 

[21]). In the sequel we consider the compressive 

sensing/recording of video sequences. Note that the 

compressive sensing can be efficiently applied to each video 

frame in order to reduce significantly the number of 

acquired pixels (and consequently the number of frames). 

Since each frame is processed independently, this belongs to 

the compressive image sampling and reconstruction. 

Instead, we consider the possibility to acquire just a small 

random set of frames in time and to assure motion 

parameters estimation from that incomplete set of frame.    

 Consider the subset of frames: 

 ( , , ) ( , , )J x y T I x y t⊂  (8) 

for a set of random time instants 1 2{ , ,..., }MT T T T= , while 

{ } ,card t N N M= > . This further means that the 

projection vector, i.e. µ-propagation vector, contains a small 

incomplete set of samples. Hence, instead of the whole 

signal z(t), we actually have a small set of M measurements 

z(T). Since, we need to calculate the STFT for velocity 

estimation, for each windowed signal part i.e. for each 

instant Ti, we might actually observe the measurement 

vector in the form: 

 ( ) ( ) ( ),i i iT w z T for T Tτ τ= + ∀ ∈y . (9) 

 

The Fourier transform of y(Ti) will result in low quality 

STFT, which is not suitable for analysis anymore. 

Therefore, it is necessary to use the compressive sensing 

reconstruction algorithms to recover the missing samples 

starting from the available measurements. For the sake of 

simplicity, we will omit the notation Ti in the sequel. 

Nevertheless, the procedure should be identically repeated 

for each available time instant. By using the compressive 

sensing notations, we may write [19],[20]: 

 

 y =Φx , (10)       

where x=w(τ)z(t+τ) represents the original (in our case the 

desirable) windowed µ-propagation vector, while ΦΦΦΦ 

describes the random measurement matrix. Furthermore, the 

signal N∈x �  can be represented in Fourier basis 

{ } { }1 1

k
NN j

k k
e

ω τ

= =
Ψ = , using the weighting coefficients Sk: 

 
1

N

k kk
S

=
= Ψ∑x . (11) 

The previous relation represents the inversion of (7), where 

Sk corresponds to the STFT coefficients for certain 

, 1,...,iT T i M∈ = . In the vector form, it can be written as: 

 ,x = ΨS  (12) 

where Ψ  is a full rank N×N matrix. From (10) and (12)  we 

can rewrite: 

 y=ΦΨS=AS . (13) 

The aim is to reconstruct x or equivalently its spectral 

representation S from the incomplete set of measurement y. 



 

For that purpose, we need to solve the underdetermined 

system of M linear equations with N unknowns. Since, this 

system may have infinitely many solutions, in compressive 

sensing applications we are interested in the sparsest one. In 

that sense, the optimization algorithms based on 0� - norm 

minimization should be employed. In practical applications, 

it is replaced by 1� - norm, leading to a near-optimal 

solutions [20]: 

 � �

1

min . .s tS y =AS
�

. (14) 

The above minimization can be solved by using convex 

optimization algorithms. As a solution, for each considered 

time instant, we obtain the reconstructed STFT of 

windowed signal part. The resulting compressive sensing 

based STFT is used to calculate the S-method according to 

(6) and then to estimate the instantaneous frequency, i.e. the 

object velocity.  

IV. EXAMPLES 

 

Example 1: Let us observe the simulated video sequence 

with 100 frames, where the object is moving through the 

frames sequence having noisy background, Fig. 1. The 

frame size is 256×256 pixels, while the object size is 8×8. 

The initial object position is (x0, y0) = (15,9). For the first 50 

frames velocity is (vx, vy) = (2.3,2.2), while in the next 50 

frames (vx, vy) = (1.5,1.2). Assume that we only have 40% of 

frames, while 60% of frames are missing (due to the 

compressive sensing/recording). We determine the variable 

µ-propagation vector, which in the case of compressive 

sensing (CS) will have only 40% of samples. 

 

   
  

Fig. 1. Synthetic video sequence frames: 5, 35,  80 

 

The S-method is calculated in two ways: 

a) Direct calculation using available samples, which is 

usually known as initial form (Initial S-method) and it is 

shown in Fig. 2.a. 

b)  Calculation by applying Compressive sensing based 

reconstruction in the STFT domain. The corresponding 

result is Compressive sensing based S-method (CS based 

S-method), Fig. 2.b. 

Based on the Initial S-method and CS based S-method the 

instantaneous frequency is estimated using argmax. The 

instantaneous frequency estimation is shown in Fig. 3.  As 

shown in Fig. 3, it is clear that the estimation based on the 

initial S-method calculated from the incomplete set of 

samples may produce serious errors, while the CS based 

representation produce precise results. Namely, the MSE 

between the estimation result obtained from original full 

data S-method and Initial S-method is 38 dB, while the MSE 

for the estimations based on full data S-method and CS 

based S-method is 0.12 dB.  

 
Fig. 2. Time-frequency representations of µµµµ-propagation vector: a) 

Initial S-method, b) CS based S-method 

 

 
 

Fig. 3. Velocity estimation using: a) Initial S-method, b) CS based 

S-method 

 

Example 2: In this example we will consider a real world 

sequence, illustrated by a few frames in Fig 4. The 

µ-propagation vector is calculated using the same 

percentage of frames as in the previous example. The Initial 

S-method and the CS based S-method are shown in Fig. 5. 

The estimation results are compared in Fig. 6, where we can 

observe that the CS based S-method significantly improves 

the estimation results produced from the initial S-method. 

   

   

   
 

Fig. 4. Frames of real video sequence: 15, 55, 75, 85  

 



 

 
Fig. 5. The time-frequency representations of variable µ-propagation 

vector (contour plots): a) Initial S-method, b) CS based S-method 

 

 
a)           b) 

Fig. 6. a) Original velocity estimation, b) velocity estimation using 

initial S-method (green line) and CS based S-method (blue line) 

V. CONCLUSION 

An application of reconstruction algorithms to the 

time-frequency representation of µ-propagation vector is 

considered. Due to the compressed sensed video sequence 

the µ-propagation vector is left with small random set of 

samples, and can be hardly used for estimation of moving 

object velocity. The missing samples should be therefore 

recovered using a convex optimization algorithm that 

returns a reconstructed full data set. The time-frequency 

representation obtained after recovering missing data is 

close to the original full data set representation, and thus, 

can be efficiently used for instantaneous frequency 

estimation corresponding to the video object velocity. 

Future research includes a comprehensive multi objects’ 

velocity analyses by applying real-world traffic data stream 

under congested and non-congested conditions. This will 

help support further transferability of proposed CS method 

in other engineering fields.     
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