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Abstract— The complex-time distributions has been used as an
important time-frequency tool for the analysis of ggnals
characterized by the fast-varying instantaneous frguency.
However, in the presence of impulse noise, the ditution
performance is seriously degraded, even in the casehen the
robust statistics (such as L-estimation) is appliednstead of
standard distribution calculation. As an efficient solution, we
propose a combination of compressive sensing recongtion and
time-frequency distribution, which will be referred as
compressive sensing based complex-time distribution
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I INTRODUCTION

Time-frequency analysis, as a very attractive nesearea,
has been intensively developed during the lastdegades. As
a result, various time-frequency distributions hakeen
proposed for the analysis of different non-statignsignals
[1]-[3]. They are used in numerous practical aggilans in the
areas of biomedical signal analysis [4], radar &ig5],[6]
communications, geoscience, multimedia signals gesiag
and applications [7]-[10], hardware implementati¢hs], etc.
Time-frequency distributions are generally classifiinto:
linear (spectrogram), quadratic (the Wigner and edohblass
distributions), and higher order distributions (pamial and
complex-time distributions) [12],[13]. It is impantt to
emphasize that the higher order time-frequencyridigtons
have been introduced for non-linear frequency metedl
signals (higher order phase nonlinearity) to improthe
concentration and precision of instantaneous fregue
estimation, in comparison with quadratic distribos.

Particularly, the complex-time distributions were
introduced to provide the efficient analysis of nsils with
highly non-stationary and fast-varying instantarefsequency
[13]-[23]. During the last decade, different formiscomplex-
time distributions have been intensively studied roany
researchers. Moreover, they have been used inratiffe
applications dealing with real world signals [12Q], showing
improved performance compared to other distribatidh is
also worth to mention that both the hardware arftivaoe
implementations of complex-time distribution haveseb
successfully done [18], [21], allowing real-timeopessing.
However, the complex-lag distributions, as welbteer higher

order distributions, are much more sensitive tos@oivhich
often occurs in real applications [24]. Namely,csirthe local
auto-correlation function is obtained as a produfcseveral
noisy signal terms, the resulting noise will havepulsive
nature. In this case the standard form of complee-t
distributions does not to produce successful tirgtfency
representation and IF estimation. Thus, in the ges of
noise, instead of the standard complex-lag didiobg, we
might use robust approaches such as the L-estimatsed
form [25][26]. The L-estimation concept is basedtbe alpha
trimmed filter which can be efficient in noisy ersmment with
an unknown noise probability density function. Thjgproach
assumes discarding the signal samples corruptemnpylse
noise. However, due to the missing samples, thétieg time-
frequency representation will be spoiled by newsndaffects.
Therefore, in order to provide an efficient comptiene
distribution, there is a need to recover the mgsmmples that
are discarded to eliminate impulse noise. Nowadaysery
popular concept used in sparse signal reconstruci&nown
as compressive sensing, [24], [27]. Namely, it assithat a
signal which is sparse in certain transform domeém be
randomly sampled in another (dense) domain, takingh
lower number of samples than required by the sangpli
theorem. Then, using the optimization algorithnie entire
signal information can be recovered. In our cdse stgnal will
not be compressively sampled, but the local comlagx
autocorrelation function will miss certain randorangples
discarded due to the noise. Thus, the idea is tpl@mthe
optimization algorithms to recover the samples hed auto-
correlation function, and to obtain almost an ideainplex-
time distribution.

The paper is organized as follows. The theoretical
background on the complex-lag distributions is givim
Section Il. The compressive sensing reconstruaifahe local
complex-lag autocorrelation function is propose&éatction Il1.
The experimental evaluation is provided in Sectidnwhile
the concluding remarks are given in Section V.

[Il.  THEORY

In the case of signals with highly non-stationaryage
function, the concentration in the time-frequencymein
depends on the rate of IF variations, as well asttmn
distribution order and form. Hence, the complex-lag
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distributions have been introduced [13]-[15] to |dedth
signals whose instantaneous frequency variesdast) within
a few samples. Th&-th order time-frequency distribution
with complex-lag argument has been defined as [16]:
® N/2 ,
CTD, (t,&)= [ []O(t.7.3 b )e ' dr,

—o0 I=

@)

where,

IR .
0,7, b )—X(t"w) X(t_N(aﬁjh)]

The distribution order is an even number denoted\byn
practical applications, the signal with complex-Eagument is
calculated by using the signal with real argumenfiolows:

~(g+jb)

K@+ )0 = [ X@e 4@ de @)

where X (w) is the Fourier transform of(t). The parameters
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Ng/2-1 LT
CTD,(nk)= > Rnme “ | (5
m=-Ng/2

where R(n,m) denotes
function:

R(n, m) =w(m)x(n+m)x *(n-m)x ! (n+ jm)x! (n— jm),
parameters, k andm denotes discrete time, frequency and lag

coordinate, respectively, whilds is the number of samples
within the windoww.

the complex-lag autocorrelation

lll.  COMPRESSIVE SENSINCGL-ESTIMATE COMPLEX-TIME

DISTRIBUTIONS

In the case of noisy signals, the local complex-lag
autocorrelation functionR(n,m) will be affected by an
impulsive noise even when the signal is corrupteith w
Gaussian noise only. Thus to provide an efficierdlysis in

a andb, define the symmetrical complex points on the unith€ Presence of impulse noise, we apply the Lstesi for

circle [16]. The presence of signal terms with sysmcal

points t@+jb;) eliminates all even phase derivatives from the

spread factor. By a suitable choice of distributiwder, some
odd phase derivatives can be removed as well.

As one of the most interesting and commonly usest$af
complex-lag distributions, let us observe the thistion

defined by the following set of parameters:

N=4, a]_:l, b1:0, a2:0, b2:l

The corresponding form of the complex-lag distributis
given by the following relation:

0

_ Ty -1 T\ -j Oy i U\ —jor
CTD,(t,w) = | X(t+=)x"(t—=)x"(t+|j=)x' (t—j—)e dr.
a(L@)= [ X+ X)X -1

3
the spread factor is obtained as:

Q1) = O OO+ ).
' 45 49

! 40111

Note that, the dominant term in the spread fact@f ithe fifth
order which assures an ideal concentration foratggymvith
polynomial phase up to the fourth order. Therefatee
distribution  (3) provides significant  concentration
improvement with respect to the quadratic distiing, where
the spread factor contains even the third phaseadive, but
also improvements compared to the polynomial distion
(of the same ordeM=4).

The discrete form of the complex-lag distributi@®) {hich is
used in practical applications is given by:

eachn=n; to define the L-estimate higher order distribuson

Ns
LCTD(ny, k) =Y pLCTD; (0 .k), (6)
1=1

Sorting is done in non-decreasing order, whiledbefficients
are given by:
p =Ns-a(Ns-2), |0[1,Ns—a (Ns-2)], @)

while p; is zero otherwise. Parametetakes values within the
range [0,1] and defines the amount of samples wlktbe
discarded. More samples we discard, stronger datjcexdwe
introduce in the resulting complex-time distributio

In other words, we actually start from the fadttthe L-
estimation applied to time-frequency distributioemoves
impulses, but may cause other serious drawback
introducing another noise due to the discarded mnghe
new compressive sensing concept provides the plitysiio
recover the missing samples and to avoid this siffiect.
Thus, in the sequel we show that the performancehef
common L-estimation approach can be significantiprioved
by adopting CS reconstruction algorithms [28].

In CS, the signal, which is sparse in certaimgfarm
domain, can be reconstructed from a small set
measurements by using convex optimization algothithe
sparse signal to be recovered can be sparse dwitsdomain
or in some of the transform domains (DFT, DWT, DETG).
In general, a signal which I sparse in a specific domain can
be completely characterized by measurementdM>K) with
M<<N, whereN is the number of samples imposed by the
Shanon-Nyquist theorem. In that sense, the ren@gisamples
are used for CS reconstruction of autocorrelatiomcfion R,
which will lead to the CS based complex-time digttion.

by
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A. Compressive sensing approach to complex-lag distribution

Let us observe a discrete—time dataRef lengthNs (in
our caseR is the local complex-lag autocorrelation function)
Any signal can be represented in terms of basisovea@s
follows [27]:

R=Y"" Dy =y0, ®)
where [0; represents the transform domain coefficight,is a
basis vector, ¢ denotes NxNs transform matrix whose
columns are basis vectors. If onky transform coefficients
from O have non-zero values, we can say Ras K-sparse
in transform domain defined by .
Signal measurements belong to the domain wherealsigive
“dense” representation. Despite the dimensionakijuction

(M<Ng), information needed to recover signal
preserved, if the procedure satisfies certain ¢mrdi. Firstly,

the measurement matrigg must be incoherent with the basis
matrix ¢ . The coherence between two matrices measures ths

largest correlation between any two elements ofioest and
it is defined as follows:

max

max f(@ )] ©)

where ¢ and ¢; are row vector and column vector of the

@) :\/@k

and ¢ matrices. The coherence has values in the range:

1< u(pyy)<~Ns, (10)
and its value increases as the elements of twoicesatare
more correlated. Lower coherence betwegeand ¢ leads to

a smaller number of measurements required to recthee
entire signal. This number can be estimated asovisl

M =cK log(Ns/K), (11)
wherec is a constant. The case of interest is when thebeum
of the required measurements is much smaller theanength
of the signal. If themeasurement vector is denotedyashen

is well
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technique is based on finding the sparsest solatig¢h4). It is
shown that optimal results are provided by usintnupation

techniques based on thé, —minimization. Hence, the
optimization problem is defined as:
e min|||]||Il subjectto y =41, (14)

where R is a solution of the minimization problem, whereas
the |; —norm of vector is defined by:

N
00, =220l

The minimization problem is solved using the prirdal
basis pursuit method [27]. As a result we obtaie Eourier
transform vector O of local complex-lag auto-correlation
coefficientsR. For each time instant we obtain one vedibr

which the resulting high quality distribution islled the CS
based complex-lag distribution.

IV.  NUMERICAL EXAMPLES

In order to illustrate the efficiency of the propdsapproach,
us consider the signal in the form:

e A2
x(t) =150 1601 4 )ty wherev is the impulse noise.

The complex-time distribution is calculated for thegginal
(non-noisy signal) and for the noisy signal. Furththe L-
estimate form of the complex-time distribution islaulated
(60% of strongest samples are discarded and aninamg the
noisy samples). Finally, the proposed CS based oatpne
distribution is applied. The results are shown ig. B, for a
single time instant. It is obvious that the disttibn calculated
using noisy samples is useless for the analysis1/i. The L-
estimate form of the CTD (LCTD) is given in Fig 1where
new noisy effect appears as a consequence of missin
samples. Finally, the CS based CTD is shown in E
Furthermore, the L-estimate form of the complexetim
distribution (for all time instants) is given ing-2.a, while the
proposed form is shown in Fig 2.b. It can be obsérthat the
proposed CS based complex-time distribution sigaiftly
improves the results of the L-estimate form (Fig). 2

200
we can write: 100
100
Ymx1 = BaxnsRusxds (12) 50 Wmm
where ¢ is measurement matrix which is in our case defined 05 %0 100 eh 50 100
by the positions of non-noisy signal samples. Tloirier a) b)
basis matrix is used. From (8) and (12) follows: 100
50 50
y=oR=g =6l (13) WWW
The system of equations defined by (13) consistsMof e 0 100 Eh 50 100
equations with Ns unknowns. Therefore, the system is c) d)

undetermined NI<<Ny) and has infinite humber of solutions.
In order to obtain optimal solution, optimizatiotgarithms
are used. There are many optimization techniquexhE

Fig 1. a) standard CTD, of non-noisy signal, b) standard CTD of noisy

signal, c) L-estimate form of the CTDQ, d) CS based CTDR
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b)
Fig 2. a) L-estimate CTD, b) Proposed CS CTR

V. CONCLUSION

Compressive sensing is applied to reconstruct thesing

complex-lag autocorrelation samples, which appesr aa

consequence of L-estimation approach in noisy cuomdi.
The L-estimation removes the impulse noise by angtthe

noisy samples, but in the same time produces negatfects
which can be seen as additional noise in the tirguency
domain. It has been shown that CS can effectivetpmstruct

missing samples of the complex-lag autocorrelatiorction,
which leads to the highly concentrated spectraleggntation.
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