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Abstract— The complex-time distributions has been used as an 
important time-frequency tool for the analysis of signals 
characterized by the fast-varying instantaneous frequency. 
However, in the presence of impulse noise, the distribution 
performance is seriously degraded, even in the case when the 
robust statistics (such as L-estimation) is applied instead of 
standard distribution calculation. As an efficient solution, we 
propose a combination of compressive sensing reconstruction and 
time-frequency distribution, which will be referred as 
compressive sensing based complex-time distribution.   
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I.  INTRODUCTION  

 
Time-frequency analysis, as a very attractive research area, 

has been intensively developed during the last few decades. As 
a result, various time-frequency distributions have been 
proposed for the analysis of different non-stationary signals 
[1]-[3]. They are used in numerous practical applications in the 
areas of biomedical signal analysis [4], radar signals [5],[6] 
communications, geoscience, multimedia signals processing 
and applications [7]-[10], hardware implementations [11], etc. 
Time-frequency distributions are generally classified into: 
linear (spectrogram), quadratic (the Wigner and Cohen class 
distributions), and higher order distributions (polynomial and 
complex-time distributions) [12],[13]. It is important to 
emphasize that the higher order time-frequency distributions 
have been introduced for non-linear frequency modulated 
signals (higher order phase nonlinearity) to improve the 
concentration and precision of instantaneous frequency 
estimation, in comparison with quadratic distributions.  

Particularly, the complex-time distributions were 
introduced to provide the efficient analysis of signals with 
highly non-stationary and fast-varying instantaneous frequency 
[13]-[23]. During the last decade, different forms of complex-
time distributions have been intensively studied by many 
researchers. Moreover, they have been used in different 
applications dealing with real world signals [19],[20], showing 
improved performance compared to other distributions. It is 
also worth to mention that both the hardware and software 
implementations of complex-time distribution have been 
successfully done [18], [21], allowing real-time processing. 
However, the complex-lag distributions, as well as other higher 

order distributions, are much more sensitive to noise which 
often occurs in real applications [24]. Namely, since the local 
auto-correlation function is obtained as a product of several 
noisy signal terms, the resulting noise will have impulsive 
nature. In this case the standard form of complex-time 
distributions does not to produce successful time-frequency 
representation and IF estimation. Thus, in the presence of 
noise, instead of the standard complex-lag distributions, we 
might use robust approaches such as the L-estimation based 
form [25][26]. The L-estimation concept is based on the alpha 
trimmed filter which can be efficient in noisy environment with 
an unknown noise probability density function. This approach 
assumes discarding the signal samples corrupted by impulse 
noise. However, due to the missing samples, the resulting time-
frequency representation will be spoiled by new noisy effects. 
Therefore, in order to provide an efficient complex-time 
distribution, there is a need to recover the missing samples that 
are discarded to eliminate impulse noise. Nowadays, a very 
popular concept used in sparse signal reconstruction is known 
as compressive sensing, [24], [27]. Namely, it assumes that a 
signal which is sparse in certain transform domain can be 
randomly sampled in another (dense) domain, taking much 
lower number of samples than required by the sampling 
theorem. Then, using the optimization algorithms, the entire 
signal information can be recovered. In our case, the signal will 
not be compressively sampled, but the local complex-lag 
autocorrelation function will miss certain random samples 
discarded due to the noise. Thus, the idea is to employ the 
optimization algorithms to recover the samples of the auto-
correlation function, and to obtain almost an ideal complex-
time distribution.  

The paper is organized as follows. The theoretical 
background on the complex-lag distributions is given in 
Section II. The compressive sensing reconstruction of the local 
complex-lag autocorrelation function is proposed in Section III. 
The experimental evaluation is provided in Section IV, while 
the concluding remarks are given in Section V.  

II.  THEORY 

 
In the case of signals with highly non-stationary phase 

function, the concentration in the time-frequency domain 
depends on the rate of IF variations, as well as on the 
distribution order and form. Hence, the complex-lag 
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distributions have been introduced [13]-[15] to deal with 
signals whose instantaneous frequency varies fast, even within 
a few samples. The N-th order time-frequency distribution 
with complex-lag argument has been defined as [16]: 

 ( )
/2

1

( , ) , , , ,N

N
j

i i
i

CTD t t a b e dωτω τ τ
∞

−

=−∞
= ℵ∏∫  (1) 

where, 
( ) ( )

( , , , )
( ) ( )

a jb a jbi i i i

i i
i i i i

t a b x t x t
N a jb N a jb

τ ττ
+ − +

   ℵ = + −   + +   
 
The distribution order is an even number denoted by N. In 
practical applications, the signal with complex-lag argument is 
calculated by using the signal with real argument as follows: 
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where ( )X ω is the Fourier transform of x(t). The parameters 

ai and bi define the symmetrical complex points on the unit 
circle [16]. The presence of signal terms with symmetrical 
points ±(ai+jbi) eliminates all even phase derivatives from the 
spread factor. By a suitable choice of distribution order, some 
odd phase derivatives can be removed as well.  
As one of the most interesting and commonly used cases of 
complex-lag distributions, let us observe the distribution 
defined by the following set of parameters: 
  

N=4, a1=1, b1=0, a2=0, b2=1. 
 
The corresponding form of the complex-lag distribution is 
given by the following relation: 
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the spread factor is obtained as:  
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Note that, the dominant term in the spread factor is of the fifth 
order which assures an ideal concentration for signals with 
polynomial phase up to the fourth order. Therefore, the 
distribution (3) provides significant concentration 
improvement with respect to the quadratic distributions, where 
the spread factor contains even the third phase derivative, but 
also improvements compared to the polynomial distribution 
(of the same order N=4).  
The discrete form of the complex-lag distribution (3) which is 
used in practical applications is given by: 
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where R(n,m) denotes the complex-lag autocorrelation 
function:  

1( , ) ( ) ( ) ( ) ( ) ( )j jR n m w m x n m x n m x n jm x n jm− −= + − + − , 

parameters n, k and m denotes discrete time, frequency and lag 
coordinate, respectively, while Ns is the number of samples 
within the window w.  

 

III.  COMPRESSIVE SENSING L-ESTIMATE COMPLEX-TIME 

DISTRIBUTIONS 

 
In the case of noisy signals, the local complex-lag 
autocorrelation function R(n,m) will be affected by an 
impulsive noise even when the signal is corrupted with 
Gaussian noise only. Thus to provide an efficient analysis in 
the presence of impulse noise, we apply the L-statistics for 
each n=ni to define the L-estimate higher order distributions: 
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 Sorting is done in non-decreasing order, while the coefficients 
are given by: 
 ( 2), [1, ( 2)]lp Ns Ns l Ns Nsα α= − − ∈ − − , (7) 

while pl is zero otherwise. Parameter α takes values within the 
range [0,1] and defines the amount of samples that will be 
discarded. More samples we discard, stronger degradation we 
introduce in the resulting complex-time distribution. 
 In other words, we actually start from the fact that the L-
estimation applied to time-frequency distribution removes 
impulses, but may cause other serious drawback by 
introducing another noise due to the discarded samples. The 
new compressive sensing concept provides the possibility to 
recover the missing samples and to avoid this side effect. 
Thus, in the sequel we show that the performance of the 
common L-estimation approach can be significantly improved 
by adopting CS reconstruction algorithms [28]. 
  In CS, the signal, which is sparse in certain transform 
domain, can be reconstructed from a small set of 
measurements by using convex optimization algorithms. The 
sparse signal to be recovered can be sparse in its own domain 
or in some of the transform domains (DFT, DWT, DCT, etc). 
In general, a signal which is K sparse in a specific domain can 
be completely characterized by M measurements (M>K) with 
M<<N, where N is the number of samples imposed by the 
Shanon-Nyquist theorem. In that sense, the remaining samples 
are used for CS reconstruction of autocorrelation function R, 
which will lead to the CS based complex-time distribution.  
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A. Compressive sensing approach to complex-lag distribution 

 
 Let us observe a discrete–time data set R of length Ns (in 
our case R is the local complex-lag autocorrelation function). 
Any signal can be represented in terms of basis vectors as 
follows [27]:  
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where iℜ  represents the transform domain coefficient, iψ  is a 

basis vector, ψ denotes NsxNs transform matrix whose 

columns are basis vectors. If only K transform coefficients 
from ℜ  have non-zero values, we can say that R is K-sparse 
in transform domain defined by ψ .   

Signal measurements belong to the domain where signal have 
“dense” representation. Despite the dimensionality reduction 
(M<Ns), information needed to recover signal is well 
preserved, if the procedure satisfies certain conditions. Firstly, 
the measurement matrix φ  must be incoherent with the basis 

matrix ψ . The coherence between two matrices measures the 

largest correlation between any two elements of matrices and 
it is defined as follows: 
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where kφ  and jψ are row vector and column vector of the φ  

and ψ  matrices. The coherence has values in the range: 

 1 ( , ) ,Nsµ φ ψ≤ ≤  (10) 

and its value increases as the elements of two matrices are 
more correlated. Lower coherence between φ  and ψ  leads to 

a smaller number of measurements required to recover the 
entire signal. This number can be estimated as follows:
  
 log( / ),M cK Ns K≥  (11) 

where c is a constant. The case of interest is when the number 
of the required measurements is much smaller than the length 
of the signal. If the measurement vector is denoted as y, then 
we can write: 
 x1 x x1,M M Ns Nsy Rφ=  (12) 

where φ  is measurement matrix which is in our case defined 

by the positions of non-noisy signal samples. The Fourier 
basis matrix is used. From (8) and (12) follows: 
 
 .y Rφ φψ θ= = ℜ = ℜ  (13) 

The system of equations defined by (13) consists of M 
equations with Ns unknowns. Therefore, the system is 
undetermined (M<<Ns) and has infinite number of solutions. 
In order to obtain optimal solution, optimization algorithms 
are used. There are many optimization techniques. Each 

technique is based on finding the sparsest solution of (14). It is 
shown that optimal results are provided by using optimization  
techniques based on the 1l − minimization. Hence, the 

optimization problem is defined as: 

 �

1
min ,

l
subject to y θℜ = ℜ  = ℜ  (14) 

where �ℜ  is a solution of the minimization problem, whereas 
the  1l − norm of vector ℜ  is defined by: 
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The minimization problem is solved using the primal-dual 
basis pursuit method [27]. As a result we obtain the Fourier 
transform vector ℜ of local complex-lag auto-correlation 
coefficients R. For each time instant we obtain one vector ℜ , 
which the resulting high quality distribution is called the CS 
based complex-lag distribution.   

IV.  NUMERICAL EXAMPLES 

 
In order to illustrate the efficiency of the proposed approach, 
let us consider the signal in the form: 

4 2150 60( ) ( )j t j tx t e tπ π ν+= + , where ν is the impulse noise. 

The complex-time distribution is calculated for the original 
(non-noisy signal) and for the noisy signal. Further, the L-
estimate form of the complex-time distribution is calculated 
(60% of strongest samples are discarded and among them the 
noisy samples). Finally, the proposed CS based complex-time 
distribution is applied. The results are shown in Fig. 1, for a 
single time instant. It is obvious that the distribution calculated 
using noisy samples is useless for the analysis, Fig 1.b. The L-
estimate form of the CTD (LCTD) is given in Fig 1.c, where 
new noisy effect appears as a consequence of missing 
samples. Finally, the CS based CTD is shown in Fig 1.d. 
Furthermore, the L-estimate form of the complex-time 
distribution (for all time instants) is given in Fig 2.a, while the 
proposed form is shown in Fig 2.b. It can be observed that the 
proposed CS based complex-time distribution significantly 
improves the results of the L-estimate form (Fig. 2b). 

       
Fig 1. a) standard CTD4 of non-noisy signal, b) standard CTD4 of noisy 
signal, c) L-estimate form of the CTD4, d) CS based CTD4 
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a) 

 
b) 

Fig 2. a) L-estimate CTD4, b) Proposed CS CTD4 
 

V. CONCLUSION 

 
Compressive sensing is applied to reconstruct the missing 
complex-lag autocorrelation samples, which appear as a 
consequence of L-estimation approach in noisy conditions. 
The L-estimation removes the impulse noise by omitting the 
noisy samples, but in the same time produces negative effects 
which can be seen as additional noise in the time-frequency 
domain. It has been shown that CS can effectively reconstruct 
missing samples of the complex-lag autocorrelation function, 
which leads to the highly concentrated spectral representation.  
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