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Abstract—The micro-Doppler effect is caused by fast moving
reflectors. This effect may significantly decrease the readability
of the ISAR/SAR images. An L-statistics based method for micro-
Doppler effects removal is proposed in this paper. The L-
statistics approach is performed on the spectrogram, while
the rigid body signal synthesis is done in the complex time-
frequency domain. The proposed method is very simple to use
and produces better results than the other time-frequency based
approaches. In addition to being capable of separating the rigid
body and the micro-Doppler parts, this approach is robust
to the noise influence. It may also separate close rigid body
points, which are not separated in the original radar image. In
the numerical implementation of this approach for the radar
imaging, the computational efficiency is further improved by
using two thresholds. The first threshold determines whether
there is a target signal in a range cell, while the second threshold
determines whether there are micro-Doppler effects in this
range cell. These thresholds could significantly decrease the
computation time in real-time applications. Theory is illustrated
by examples.

Index Terms—Radar imaging, ISAR/SAR, micro-Doppler, L-
statistics, time-frequency analysis, short-time Fourier trans-
form.

[. INTRODUCTION

The micro-Doppler (m-D) effect appears in the inverse
synthetic aperture radar (ISAR) imaging when a target has
one or more fast moving parts [1]-[7]. Similar effect appears
in the synthetic aperture radar (SAR) imaging, as well, [8].
This effect may decrease the readability of radar images.
The frequency content of the m-D signal changes over time
in a wide range. Therefore, the m-D may cover the rigid
body and make it difficult to detect. On the other hand,
the m-D effect, at the same time, carries useful information
about the features of moving parts (type, velocity, size, etc.)
[9]. It is easier to estimate these features if the m-D effect is
separated from the rigid body part of the radar image. Thus,
the extraction of m-D effects from the radar images has
attracted significant research attention. High-resolution lin-
ear and quadratic time-frequency (TF) analysis techniques
have been used for extracting the m-D features. In [8], TF
signatures of oscillating corner reflector are obtained by
using an adaptive optimal kernel in distributions from the
Cohen’s class. The wavelet analysis of helicopter and hu-
man data, along with the TF representation based imaging
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system, is used in [10], [11]. A method for separating the
m-D effect from the radar image, based on the chirplet
transform, has been proposed in [12]. Both, wavelet-based
and chirplet-based procedures are used in [13] to extract
the m-D parameters, such as the rotating frequency of an
antenna in the SAR data. However, the effectiveness of the
chirplet-based methods is dependent on the selection of the
number of chirplets used in decomposition. Its calculation
burden is also high, since the chirplet dictionary could be
extremely large. Recently, two additional techniques for the
target’s rigid body separation from the m-D parts have been
proposed in [14]. The first technique is based on the order
statistics of the spectrogram samples. The second one is
based on the inverse Radon transform processing of the
obtained radar signals. An efficient TF based approach, in
conjunction with the Viterbi algorithm, is proposed in [15]
for the extraction of the m-D features.

In this paper, we use the L-statistics based approach
for the rigid body separation. In order to remove the m-
D effect, we perform the TF analysis within the coherent
integration time (CIT). In our previous approach [14], we
used order statistics and several TF representations with
various windows. The obtained TF representations were
then used to make decision whether a component belongs
to the rigid body or to the fast moving target point. Here,
we use only one window function in the analysis. Order
statistics is performed based on the spectrogram, while
the rigid body signal synthesis is done in the complex TF
domain. This approach is very simple to use and produces
better results than the other approaches. It is also robust
to the noise influence, since it uses the L-statistics, being
known as a robust signal processing tool [16]. The L-
statistics application to the complex STFT leads to a form
of super-resolution representation, as well. It can separate
very close rigid body components, even when that is not
possible by using the standard Fourier transform (FT) over
the entire CIT. The proposed method can be easily adapted
for efficient compensation of a residual, uncompensated,
rigid body acceleration in the presence of the m-D effects.

In order to improve the calculation efficiency, we have
proposed a procedure to establish whether there is any tar-
get return in a considered range bin. Moreover, by bearing
in mind that in the ISAR/SAR analysis only some range bins
may contain the m-D effect, while most of the range bins
are m-D free, in this paper we have defined a criterion for
detecting ranges which contain the m-D effects. The m-
D removal procedure could be performed only for these
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particular range bins.

The paper is organized in five Sections. In Section II,
the radar signal model is presented, including the model of
rigid body points and fast moving reflectors. The drawbacks
of the FT, in the case of fast moving reflector imaging,
are analyzed, as well. The rigid body separation, based on
the L-statistics, is proposed in Section III. It is presented
in a form of an algorithm. The robustness to noise and
high resolution property of the proposed procedure are
discussed here. Simulation and experimental results are
given in Section IV.

II. RADAR SIGNAL MODEL

Consider a continuous wave (CW) radar that transmits
a signal in the form of a coherent series of M chirps [17].
The received signal, reflected from a target, is delayed with
respect to the transmitted signal for ¢; = 2d(t)/c, where
d(t) is the target distance from the radar and c is the
speed of light. This signal is demodulated to baseband, with
possible distance compensation and other preprocessing
operations (such as pulse compression). In order to analyze
the influence of cross-range non-stationarities in the radar
imaging, we will consider only the Doppler part in the
received signal of a point target, in the continuous dwell
time, as it is usually done in the radar literature [17],

s(f) = gef2dwlc )

where o is the reflection coefficient of the target, while
o is the radar operating frequency. The repetition time
of a single chirp will be denoted by T}, while the number
of samples within each chirp is N. The CIT is T, = M T;.
The received signal, for a system of point scatterers, can be
modeled as a sum of individual point scatterer responses,
[17].

A. ISAR Setup

In the ISAR case, the aim is to obtain a high-resolution
image of a target based on the change in viewing angle
of the target with respect to the fixed radar. The common
ISAR imaging models assume that all point scatterers share
the same angular motion, Fig.1(a). Then, the Doppler part
of the received signal, within the m-th radar sweep, cor-
responding to the K rigid body points, can be written as,
[12], [17]:

s(t) = f" UBiejZ[RB(tHxB,-cos(GB(t))+yB,-sin(@B(t)]]wO/c, @)
i=1

where the target’s translation and angular motion are de-
noted by R(f) and 6(¢). For each point we have used
an approximation d;(t) = ,/(R(t)+xi)2+yl? Z R(H)+x; to
obtain dp;(t) = Rp(t) + xp; cos(@p (1)) + yp;sin(@p(t)). Index
g is added to denote the rigid body parameters. The initial
locations of points, in the coordinate system whose origin
is in the center of the target rotation, are (xp;, yp;), Fig.1(a).
For the rigid body points |05(#)| < 1 holds, during the
CIT, following in cosfOp(f) = 1 and sinfp(¢) = Op(f) = wpt,
where wp is the effective body rotation rate, after the

Cross-range

Fig. 1. (a) Geometry of the ISAR system. (b) Geometry of the SAR system

motion compensation. Motion compensation techniques
[12], [18] are employed to remove the influence of the
translation motion, thus we can also neglect the remaining
factor Rg(t) + xp;.

The previous approximations cannot be applied for fast
rotating (moving) points, since their angular position 0(¢)
can significantly change during the CIT. Index r will be used
for fast moving points. Assume that there are P fast rotating
points, which rotate around their central points (xro;, Yroi)
with radii Ag;. Coordinates of these points are described
by xp = Xgroi + Arisin(@r(r)) and yp = yroi + Ar; cos(Or(1)).
Thus, the resulting coordinate changes of these scatterers
are:

I
p
Vp

cosBp (1)
—sinfp (1)

sinfpg(t)
cosBOg(1)

Xp
Yp

3

Assume now that the rotation speed of the i-th fast rotating
point is wg;, with Or;(f) = wg;t. With the previous approx-
imations for the rigid body values, after compensation for
R(t) and xgg;, we have:

d;(t) = yroiwpt + Ag; sin(wpg; ). )

The received signal, including both the rigid body points
and the fast rotating m-D points, can be written as:

K
s() = ) opeltyrienienle 5)
i=1
P . .
+ Z (TRiejz[yROin t+Api sm(wR,-t)]wo/c'
i=1

A similar form of the received signal is obtained in the
case of vibrating points. If a reflecting point vibrates, around
a central point (xgo;, Yroi), along a line parallel to the
line-of-sight, with frequency wy;, reaching the maximum
amplitude Ag, from the central point, then we get the form
as (5), with the last phase term Ag; sin(wg; t) being replaced
by Ap;sin(wy;f). Thus, the vibrations can be analyzed in the
same way as the rotations. The m-D points may not make a
whole period within the CIT, or may be aperiodic in nature.
Any other arbitrary motion can easily be described within
the previous framework, by using x, = Xgo; + X4rp(f) and
¥p = YRroi + Yarp(t) in (3). The theory presented next, can be
used in these cases, as well.

Since we will consider only the Doppler component part
in the received signal, the analysis of the radar signal
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reduces to one-dimensional signal (5) and its FI, S(Q) =
FT{s(?)}, analysis. In the discrete form, the FT reads:

M-1 .
Sty =Y s(iye /2mikIM, 6)
i=0

Its squared absolute value |S(k)|? is called the periodogram.
If we calculate the FT of the signal corresponding to one
point of the rigid body in (5), we get

Spi(Q)) = FT{gBiejZJ/Bintwo/c}

20
=2n0Ri0(Q— TOCUB}’BL')-

It is a delta pulse at the position proportional to the cross-
range coordinate yp;. The delta pulse position depends not
only on the radar parameters, that are constant, but also
on the rotation speed wp.

The Doppler part of the radar signal that corresponds to
an arbitrary moving point is a frequency modulated signal
with the instantaneous frequency

2
Qpi(D) = % [Yroiws + d(Xarp(£)/d1], @

with approximations as in the derivation of (4) and (5). Note
that relations (2) and (3), without any approximation, can
be used in simulations, instead of the presented compact
form (5) that is appropriate for the qualitative analysis. For
pure rotation, we have d(x,,(t))/dt = Arjwg; cos(wg;t).

The constant part in (7) corresponds to the center of the
fast moving point. It is proportional to the rigid body rota-
tion speed, yro;wp. However, for the rotation the resulting
rate wg; = 0%, (1) of this point is significantly higher than the
rotating rate of the rigid body wp. Corresponding instanta-
neous frequency is Qg; (1) = 2%[yRol'wB+ARl~wR,'cos(wR,~t)].
The radar image of the fast rotating reflectors spreads
over a frequency interval, defined by the instantaneous
frequency changes 2woAg;wg;cos(wg;t)/c. The frequency
interval width is proportional to the rotating speed and the
target geometry. The scale factor for the radar image of the
rotating reflector is wg;. It is different from the scale factor
of the radar image of the rigid body wp. Thus, the relative
locations of the fast rotating parts are in a different scale
with respect to the rigid body points. The ratio of the scales
is F = wpg;/wpg. In order to obtain the radar image, with the
rigid body and rotating reflectors, depicted as if they do not
perform rotation, we should separate them, reconstruct the
FT of rotating reflectors, re-scale it so that it is with the
same scale as the FT of the rigid body, and put it back in
the FT of the rigid body.

The presented analysis could be generalized on any fast
movement within the CIT, including cases when the m-
D part assumes the form of linear frequency modulated
chirps. As long as the instantaneous frequency changes of
the m-D points are faster than those of rigid body points
(in an ideal case the last one should not change), the theory
that we will present next, could be applied.

B. SAR Setup

Consider a SAR setup, as in Fig.1(b). First assume that
the radar movement is parallel to the imaged terrain. This
position of the radar will be described by the elevation
angle 8 = 0. Denote the radar speed as Up and assume that
it moves in a direction of the x, axis of the coordinate
system, Ug = Ufoo. Assume that the line-of-sight is in the
direction of y, axis, with unity vector l?y()- The distance of
the radar to the center of the imaged terrain is denoted by
ﬁo = Rofyo. At one instant, the radar movement corresponds
to the rotation of the terrain, with respect to the radar, with
LT)B = l_é() X l_jR = ROVR_{ZQ-

Now assume that there is only one stationary reflecting
point, located at (xo;, Yoi,20;).- Taking into account that
the image plane with the reflecting point rotates with @p
around the central point, point movement (trajectory) can
be described by a simple rotation matrix. Consequently, the
signal s;(#) reflected from this point, bearing in mind that
the distance Ry is much greater than any reflecting point
coordinate, can be written as:

si(H) =Zo; o/ (= X0isin(@p D) +yo; cos(wp t))wo/c, ®

where the constant phase terms exp(j2woRp/c) is omitted.
In the sequel, we will use equality sign in (8) for simplicity
of notation.

In general, if the radar is at 6 # 0, we have a new
coordinate system, related to the radar, in which the initial
positions of the reflecting points are rotated for 6 an-
gle around the x, axis, Fig.1(b), as xo; (@) = xp;i, y0i(0) =
Yo0i cos(8) — zp; sin(0) and zp;(0) = yp; sin(0) + zg; cos(f). The
rotation in this coordinate system, then remains the same
as for 6 =0, with rotation vector &g = R;’y X le?x =Ry leTZ =
U)B@?z. The resulting rotation is: x;(f) = xp;jcos(wpgt) +
Y0i (@) sin(wpg 1), y;i(£) = —Xp; sin(wpg ) + yoi (0) cos(wpe ) and
zi (1) = yp; sin(0) + zp; cos(B). The signal s;(¢) is of the form

s,‘(t) — o.iejZ(—insin(ng 1+[yoi cos(B)—zU,-sin(G)]cos(ngt))wolc. )

Assume now that in addition to the pure rotation, caused
by radar movement, the point has a fast arbitrary move-
ment around (xo;, Yoi, Z0i), described by x; () = xo; + Xar5(1),
Vi(8) = Yoi + Yarp () and z;(t) = zo; + z4,p (1), where index 4,p
is used to denote such a movement. With approximation
wpgt < 1, appropriate distance compensation and by ne-
glecting constant phase terms, we get

Si(t) ~ UiejZ[—xo,-ngt+[ya,b(t)cos(@)—za,h(t)sin(H]]]wO/c.

For a special case of rotation in the xyOyy plane, with
xi(£) = xo; + A;sin(wg, 1), ¥i (1) = yoi +A; cos(wg, 1) and z;(f) =
0, the corresponding instantaneous frequency is

ow

2 WR,
Qi(f) = %[—xm - Aiw—R’sin(wRi 1) cos(0)].

BO

(10)

In this way, we have modeled an experiment with
a pendulum caused m-D in the SAR, when 0,(f) =
oncos(\/@t), with 6,0 being the pendulum maximal
angle and g is the gravity acceleration. For a pendulum
with the center located at (0,0,]) oscillating in xOy plane
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we can derive yq,p(£) = Isin0, (1), zqrp(1) = I-1cos0, (1) and
Xarp(t) =0.

In simulations, the original form (9), without approxima-
tions, may produce more accurate results.

We can conclude that, in the following analysis, the ISAR
and the SAR setup can be considered in a unified way.

III. TIME-FREQUENCY ANALYSIS AND L-STATISTICS

A simpler way to localize the signal behavior in shorter
intervals, within the CIT, is in applying a window function to
the standard FT. The resulting short-time Fourier transform
(STFT) is defined as

[o0]

STFT(t,Q) =f s(w(t - t)e_jmdr, 11
—00
or in a discrete form
M-1 o
STET(m,k) = Y. s(iw(i—m)e I2mkM (12)

i=0

where w(i) is a window function used to truncate the
considered signal. The squared absolute value of the STFT
is called the spectrogram. In most of the provided examples,
we will use a Hann(ing) window. The window width is M,,,
w(i) #0 for —-M,/2 <i < M,/2-1. In our applications,
the window is zero padded up to M, the same number
of samples as in (6), so that we have the same frequency
grid in the STFT as in the FT. Then, we can later easily
reconstruct the FT, without interpolation, with the concen-
tration close or equal to the concentration of the original
FT. We know that, by using a lag window w(i) in the STFT,
the concentration in frequency is reduced, as compared to
the original FT (6). For example, if the lag window width is
My, then the concentration of a sinusoidal signal is reduced
M/M, times, i.e., the STFT-based ISAR/SAR image of a rigid
body point (the main lobe of the FT of a sinusoid) would
be approximately M/M,, times wider than the original FT
based image of the same reflecting point. We will also refer
to this effect as: the concentration being M/M,, times lower
in the STFT than in the original FT.

A. Restoring the High FT Concentration from the STFT

The concentration could be restored to the original one
by summing all the low concentrated STFT (complex) values
over m. Since we calculated STF T (m, k) with the window of
the width M, there are two possibilities for its summation:
(a) For all time instants 0 < m < M — 1, when the signal
s(i) has to be zero-padded for —-M,,/2<i<0and M<i<
M+ M,,/2-1; (b) For instants M,,/2<m < M-M,,/2, when
zero-padding of s(i) is not used. Reconstruction formula,
for the case when the signal is not zero-padded, is

M-My 12
Y. STFT(m,k)= (13)
m=My, /2
M-1 M—-My, 12 .
Z S(i) Z w(l_m) eszﬂlk/M
i=0 m=M,/2

M-1 .
=Y s(hwi (e 2THHM =g, (k).
i=0

In the case when the STFT is calculated for each time
instant (time step one in the STFT calculation), the resulting
window wj (i) is constant, w;(i) = const, for M, —1<i<
M- M, for any window. It means that during the most of
the CIT interval we have the normalized resulting window
w; (i) being close to the rectangular one, with a small
transition at the ending M,, points. The FT of the window
obtained during the process of reconstruction produces
a concentration very close to the full range rectangular
window case (i.e., no window). It means that we will be
able to reconstruct the FT with a concentration close to
the one in the original FT (6), by using low concentrated
STFTs, calculated with narrow windows. In this way, we
will restore the high concentrated radar image, although we
used low concentrated STFT in the analysis. The transition
at the ending points of w;(i) can be easily overcome by
zero padding the analyzed signal s(i) with M,,/2 samples on
both sides, (as explained before). Then, the pure rectangular
window w; (i) would be obtained, for any window w(i).
The analysis is not restricted to the step one in the STFT
calculation. The same resulting window would be obtained
for a step equal to a half of the window width (M,,/2) and
a Hann(ing), Hamming, triangular or rectangular window.
The same is valid for steps equal to M,,/4, M, /8, etc.

In order to explain how this mechanism of restoring
the original concentration, by summing low-concentrated
images, works, consider s(t) = exp(jwot). Its FT is a delta
pulse S(Q) =276(Q—wp). The STFT of this signal produces

STFT(t,Q)=W(Q-wo)exp(j(Q—wp)). (14)

Let us now analyze the result of summing the STFT values
over f:

For Q = wg, constant values of W(0) will be integrated
over an infinite time interval, with the phase exp(j(Q -
wo) 1) = exp(j0), producing [°o STFT(t,Q)dt — oo for Q=
wo.

For any other Q not equal to wy, i.e., when Q = wy+0,
6 # 0, we will have the integration [ W(0)exp(j0t)dt =
W) [, exp(jOr)dt = 0. Therefore, all values for Q # w, are
averaged out to zero by summation of the low concentrated
STFTs over time.

The discrete form of (14), is

M-1
Sky=Y Wik- ko) e 27 m(k=ko) /M

m=0

(15)

with the same conclusions as in the continuous case. Values
of S(k), when the signal is not zero-padded, are close to
(15).

B. Basic Idea for the Separation of a Rigid Body and Fast
Rotating Part

The presented mechanism of restoring the original con-
centration of the FT, in conjunction with the knowledge of
the TF behavior patterns of fast moving and rigid scattering
points, lead us to an algorithm for the m-D free, highly
concentrated, radar image. The rigid body and the fast
moving points behave differently in the TF representation
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Fig. 2. Simulated radar signals which correspond to a rigid body reflector
with op =1 and a rotating reflector with reflection coefficient op = 0.8:
a) Absolute value of the STFT, b) Sorted STFT values, c¢) The original FT,
and d) The reconstructed FT. Simulated radar signals which correspond to
a rigid body reflector with og =1 and a rotating reflector with reflection
coefficient o = 15: e) Absolute value of the STFT, f) Sorted STFT values,
g) The original FT, and g) The reconstructed FT.

of the returned radar signal, within the CIT. The rigid body
signal is almost constant in time (stationary), while the fast-
varying m-D part of the signal is highly non-stationary. This
part of signal keeps changing its position in the frequency
direction.

For the illustration, let us assume that the signal is
returned from one point of a rigid body scatterer and
one point of a fast rotating (m-D) scatterer. We analyze
two cases with different strengths of the m-D reflection.
In the first case, the reflection coefficient of the rigid
body is op =1, while the reflection coefficient of the fast
moving scatterer is or = 0.8. The STFT representation of the
resulting signal is shown in Fig.2(a). The second case is with
a strong m-D, or =15 and the same op as in the previous
case. The STFT representation of this signal is shown in
Fig.2(e). In both cases, the rigid body part is at a constant
frequency for all ¢ within the CIT, while the fast rotating
part changes frequency. If we perform sorting over the time
axis, as in Figs2(b,f), we will not change the result of the
summation in (13) since it is a commutative operation. By
summing the STFT values over time, from either of these
two plots, presented in Fig.2(a,b) or Fig.2(e,f), we will get
the original FT of the corresponding signal Fig.2(c,g). Note
that any value of o from (and including the case without
m-D) ogg =0 up to og > op will not significantly change
the pattern.

The basic idea for separating the rigid body and the
fast rotating part is in the sorting of STFT values of the
returned radar signal along the time axis, within the CIT.

Since the rigid body return is stationary, the sorting pro-
cedure will not significantly change the distribution of its
values. However, the fast-varying m-D part of the signal is
highly non-stationary, occupying different frequency bins
for different time instants (in the case of flashes it exists for
some time-instants only). Its existence is short in time, for
each frequency, over a wide range of frequencies. Thus, after
sorting the STFT along the time axis, the m-D part of the
signal has strong values over a wide frequency range, but
for a few samples only. By removing several large amplitude
values of the sorted STFT, for each frequency, we eliminate
most or all of the m-D part of the signal. Summing the rest
of the STFT values over time we will get the rigid body radar
image. The sinusoidal m-D pattern, presented in Fig.2, is
just an example of such a signal. This idea can be applied
on any non-stationary signal form. The m-D part of a signal
is non-stationary by definition.

Let us consider a set of M (or M — M,, if the signal is not
zero-padded) elements of the STFT, for a given frequency
k,

Sx(m)={STFT(m,k),m=0,1,..,M—1}.

After sorting Sy(m) along the time, for a given frequency
k, we obtain a new ordered set of elements ¥ (m) € Si.(m)
such that |W(0)| < |¥ (D] = .... < ¥ (M-1)|. Of course, the
addition is commutative operation, so if we use the whole
set, we get

Y STFT(m,k)= ) ¥i(m)=Sk).

M-1 M-1
m=0 m=0

In the L-statistics form of this summation we will, for
each k, omit M — My of the highest values of ¥ (m) and
produce the L-estimate of S(k), denoted by Sy (k), as

MQ—I
Spky= "), Yi(m)

m=0

(16)

where Mg =int[M(1 - Q/100)] and Q is the percent of
omitted values.

To illustrate this procedure, we eliminated 40% of the top
amplitude values of the STFT from the previous example.
In this way, we completely eliminated the m-D component
from the TF representation. We are left with 60% of the
low amplitude values of the STFT, that contain only the
rigid body. The FT reconstruction is performed based on
these values only. The reconstructed FTs for the cases of a
weak and a strong m-D are shown in Fig.2(d,h), respectively.
The FT of the rigid body is in both cases successfully
reconstructed by summing 60% of the sorted STFT samples,
remained after m-D separation. Note that the result is not
significantly influenced by the value of o, since the points
corresponding to the m-D signature are removed, meaning
that their values are almost not important.

In the data analysis, this approach, based on elimination
of a part of data, before analyzing the rest of the data, is
known as the L-statistics [16].
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1) Analysis of the Missing Values: Since we have elimi-
nated some of the TF representation (TFR) values, we will
analyze the influence of incomplete sum in (13). This is the
same theory like the L-statistics theory applied to the noisy
or non-noisy data, [16].

Assume that only points in m € Dy are used in summa-
tion:

Su(k)= ) STFT(m,k), 17

meDy
where, for each k, Dy is a subset of {0,1,2,..., M — 1} with
Mg elements.

Within the framework of the previous analysis, it
means that there will be a highly concentrated compo-
nent S(k) surrounded by several low-concentrated values
Y mep, STET(m, k). Note that the amplitude of STFT (m, k)
is M times lower than the amplitude S(k), since S(k) is
obtained as a sum of M values of the STFT. In general, by
removing let say (M—Mg) values in m, we will get one very
highly concentrated pulse, as in S(k), and (M — M) values
of low-concentrated components of the type STFT(m,k),
being spread around the peak of S(k) and summed up by
different random phases. Only the peak value is summed
in phase. Consider:

1. Case for k = ko corresponding to the position of the
rigid body point: At this frequency, all terms in the sum (15)
are the same and equal to W(0). Thus, the value of Sy (k)
does not depend on the positions of the removed samples.
Its value is Sy (ko) = Mo W (0).

2. Case for k =1+ kg, where [ #0: Removed terms in (15)
are of the form x;(m) = W(l)e/2"™!/M They assume values
from the set ®; = (W(Del2rmliM 1y —0.1,2,..., M — 1}, with
equal probability, for a given [. The statistical mean of these
values is E{x;(m)} =0 for [ #0, resulting in E{Sy(I+kg)} =0.

The resulting statistical mean for any k is

E{Sp(k)} = MW (0)6 (k — ko).

The higher order statistical analysis of this process could be
performed in detail, but it is out of the scope of this paper.
Here, the influence of the number of missing points to the
concentration of the reconstructed FT will be illustrated by
an example, Fig.3. Here we consider a constant frequency
signal, without m-D. Its FT is calculated and presented in
Fig.3(a). Then the FT is reconstructed based on 25%,50%
and 75% of the low amplitude values of the STFT for each
k. We can see that even by taking a small number of STFT
points, we still keep a strong peak, since it is summed in
phase, Fig.3(b),(c),(d).

2) Noise Influence: It is well known [16] that the L-
statistics is a tool for robust time-frequency analysis. The
robustness comes from the fact that the L-statistics based
calculation avoids highest values, which are the most in-
fluenced by noise. Therefore, we may expect that by using
the L-statistics we will not degrade the radar imaging per-
formance in the case of noise. By using the L-statistics we
will eliminate a part of the signal, that is summed in phase
in the FT, but we will also eliminate the signal values that
are mostly corrupted by noise. Thus, with the elimination
of the m-D we will improve the overall performance in the

) )
° kel
2 2
= =
& &
€) (b)
0 50 100 150 200 250 0 50 100 150 200 250
© )
Ee] Ee]
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Ay © @
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frequency frequency
Fig. 3. The FT of a sinusoidal signal: (a) Original, (b) Reconstructed by

summing 75% of the smallest STFT values, for each k, (c) Reconstructed by
summing 50% of the smallest STFT values, (d) Reconstructed by summing
25% of the smallest STFT values.

noisy signal cases, as well. In the case of impulse noise,
we may expect significant improvement, even in the case
without m-D, with a pure rigid body. The effect of noise
is statistically analyzed within the simulation study of this
paper.

3) High-Resolution Property: Consider the L-statistics ap-
plication on two very close rigid body points:

s(t) = e J2WBi=Aypiwgtwolc | o= j2(ypi+Aypiwptwolc

with a very small Ayp; so that in the FT of the signal S(Q),
calculated over the entire CIT, we can not distinguish these
components. Since the resolution in the Doppler direction
is Rpopp =27/ T, it means 2Ayg; ~ 27/ T.

It is surprising, but if we use low concentrated STFT and
the proposed L-statistics, we will be able to separate these
components. The STFT of these components is

STFT(t,Q) =
W(Q+ (ypi — AyBl.))e*jﬂfe*j(yBi*AyBi)t

+W(Q+ (ypi + AyBl.))e—ije—j(yBi+AJ’Bi)t

with normalized frequency Q for 2wowp/c=1.

Note that the STFTs of the components are phase
shifted for A@(f) = 2Ayp;t. Even for small 2Ayp; ~
2n/T, the phase shift changes are of the order Ag(?) ~
2/ T, x T,. It means that it could easily change, dur-
ing the CIT, between 0 and m or even more. Then,
there will be time instants in |STFT(t,Q)| when the
individual STFTs are summed in phase, i.e., when
ISTFT(t,Q)| = |W(Q+(yBi—AyBi))+W(Q+(y3i+AJ/Bi))|.
Then the signal components can not be separated. How-
ever, there will be also the instants in the STFT when
the components are with opposite phase, |[STFT(t,Q)| =
|W(Q+ (yBi — Aygi)) — W(Q+ (ysi + Ayg;))|, so that the sig-
nal components are clearly separated. We can see that in
the first case the values of [STFT(¢,Q)| will be higher than
in the other case. By using the L-statistics approach the
higher values will be eliminated, while the lower values,
that are well separated, will remain. Thus, we may achieve
high signal resolution by using the low concentrated STFT
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and the L-statistics, even in the case when the separation
is not possible in the original FT over the whole CIT.

C. Adaptive Percentage of Missing Values

There are two possible approaches to establish the
threshold for the elimination of the m-D:

The first approach is to assume a fixed threshold for the
entire ISAR/SAR image: for example, removing Q[%] highest
values for each frequency, by knowing that this will not
disturb significantly the obtained image.

A more sophisticated approach is to calculate the adap-
tive threshold for each range. The adaptive threshold can
be obtained based on the L-statistics. To use the L-statistics
approach, we will sort the STFT values for a given range and
a given frequency. If there is a m-D, then, after sorting the
STFT values, there is a region of an increase of the sorted
STFT values, Fig.4 (upper part). Thus, if we sum the sorted
STFT values over frequency, we will get a function:

A(m) =Y ¥ (m)*. (18)
k

Now, we can find the reference level R; based on the mean
of 10% of the low ampliude samples, i.e., based on M/10
values of the sorted ¥ (m), Ry = Ty, Mlg 110A(m)/M,With
Ty, being a parameter, usually from rz_ll";,, =2 to Ty, = 10.
For example, T, =2 means that we will use all the values
in the sorted Wi (m) whose squared values are up to, for
example, 2 times greater than mean of 10% lowest squared
values. Then Q is found as the percent of A(m) below R;.
In the case when there is no m-D it means that we will use
all the values, since the stationary values are close to the
mean of the lowest values for all time instants. If there is
a m-D then the value outside of the stationary points will
start to increase sharply and the summation will stop. The
results are not too sensitive to these values, since A(m) is
a fast increasing function when the m-D starts to appear,
Fig.4 (lower part).

In our previous work [14], we have used the L-order
statistics. In all phases of the applications, we have used
various order statistics of the absolute values of the STFT
with various window widths. Here, we use only one window
function for the analysis. Then, after sorting the absolute
STFT values and defining (by simply assuming, for example
Q =50%, or calculating an adaptive threshold) the Q, we
return back to perform all the calculations in the complex
STFT domain. In this way, we obtain a very simple and
efficient model for the calculation, while the results are
improved with respect to those obtained by the procedure
proposed in our previous work.

D. Algorithm for the Micro-Doppler Effects Removal

The simplest way to use the proposed method is in
applying the L-statistics approach to all range bins, with
a constant threshold, for example Q =50%. In this case the
m-D will be separated, while the rigid body will not be
degraded. In the case of impulse noise we will benefit from
this procedure in each bin. Also, if there are close rigid body

B
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index
Fig. 4. Sorted STFT values, |¥ k(m)|, with a colorbar (upper). The values

of A(m), obtained by summing the squared values of the sorted STFT
along the frequency, with the adaptive threshold R; obtained based on
the average value of 10% of its smallest values - thick horizontal line
(lower).

components, then this approach will help to resolve them,
as it is described earlier. However, this way of calculation
increases the calculation complexity.

In radar data analysis, only a part of the range bins may
contain the m-D, while most of them will be m-D free.
We can improve the calculation complexity by defining a
procedure to avoid processing of the range bins where we
can conclude that there is no target return or there is no m-
D part of signal. If there is an m-D point, then a constant or
adaptive threshold for the L-statistics application in the m-
D removal could be used in order to separate the m-D, while
most of the rigid body part of signal is preserved. If there
is no m-D in the considered range bin, then processing
for this range is not necessary. If the FT is already well
focused, or if there is no returned target signal in the
considered range bin, then the FT can be used as it is.
Of course, this classification procedure is optional, and we
will not lose anything in the radar image quality if we
apply the presented method in some bins with already
focussed image or where there is no target return. Thus, the
thresholds in the next procedure may be chosen in quite a
conservative way, to be sure not to miss any bin with m-D,
allowing false m-D detections.

The range bins classification procedure will be presented
as an algorithm.

The algorithm consists of the following steps:

Step 1: Detect whether there is a returned target signal in

the considered range bin, by using
max{|S(k)|} > ¢, 19)

where € = 0.02max{|S(k,[)|} in the noiseless case or ¢ =
max{0.02max{|S(k,1)|},2v/c/M} in the presence of noise
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(here S(k,I) is the 2D FT of the received signal, i.e., full
radar image matrix for all ranges and cross-ranges, while
S(k) is the radar image for a given range bin). The standard
deviation o of noise in the radar image, for a given range
bin, can be estimated as [19]:

3 median{|Re{S(k)} —Re{S(k-1)}|, k=2,.., M}
- 0.6745v/2

for the real part of S(k). The same applies for the imaginary
part. If there is no target in the returned signal, do not
perform the following steps and take S(k) as the radar
image for the considered range bin. If there is a target
signal, continue.

Step 2: Detect whether there are any m-D effects in the
considered range bin:

_ max{|S(k)l}

~ mean{|S(k)|}
The previous relation is the simplest concentration mea-
sure. In the case of a highly concentrated signal, R is close
to M, while for a low concentrated signal, this value is
close to 1. We say that the signal is well concentrated (rigid
body only) if R > 10. This threshold was successfully tested
for various scenarios and multi-component signals. If the
signal is well concentrated take its FT S(k) as the radar
image for the considered range bin. If the signal is not well
concentrated, continue.

Step 3: Remove the m-D effects and reconstruct the FT
of the reflectors that correspond to the rigid body in the
considered range bin. Remove the values of the STFT that
are higher than the threshold and for each frequency sum
the rest along the time. Take the obtained FT Sy (k) (17) as
the radar image for the considered range bin.

, (20

Ore

IV. SIMULATION STUDY
Example 1: The proposed method is tested on a signal
with one rigid body point and four sinusoidally modulated
components (used to model rotating reflectors),

K
s(m)=0p)_exp{jysim} 21)

i=1

P
+0og ) expijlyroim+ Ag;sin(wgim+ @)1},
i=1

with K=1, P=4, og=1, or=3, yg1 =0.4m, Ag; =[96, 48,
64, 24], wgr; = /128, yro; =7 and ¢; =0, for i =1,2,3,4.
The STFT of this signal is presented in Fig.5(a). The m-D,
although moderate, significantly covers the rigid body;, i.e.,
the part of the constant frequency component is almost in-
visible in the sinusoidal patterns. The sorted STFT is shown
in Fig.5(b). Then, the highest STFT values are removed,
for each frequency in the reconstruction phase. A constant
threshold, with Q =60% is used here. The FT reconstructed
from the remaining STFT samples is shown in Fig.5(d). The
rigid body is successfully reconstructed in the presence of
the m-D. The original FT of the analyzed signal is given in
Fig.5(c).

Example 2: Here, we analyze a signal with 10 compo-
nents: K =5 components with constant frequency (used to

g ﬁ g
= £
E) @ M ()
frequency frequency
o) o)
° °
2 2
=1 =1
& &
© (d
0 50 100 150 200 250 0 50 100 150 200 250
frequency frequency
Fig. 5. (a) The STFT of a signal consisting of one rigid body component

and four sinusoidally modulated components. (b) The sorted STFT of the
same signal. (c) The original FT of the signal. (d) The FT of rigid body,
reconstructed by summing the STFT values remaining after sorting and
eliminating samples that correspond to the m-D effect.

model rigid body reflectors) and P =5 sinusoidally modu-
lated components (used to model rotating reflectors), (21)
with: o =1, or =15, yp; = [1.97, 1.957, 27, 2.057, 2.17],
Apri = [150, 300, 200, 440, 200], wg; = [7w/256, w/512, /256,
/512, m/256], ygo; =0 and ¢; =10, —n/3, n/6, —2n/3, 0],
for i =1,2,3,4,5, M =1024 and M,, = 64. The STFT of this
signal is shown in Fig.6(a). The constant components, that
correspond to the rigid body, are not well separated in the
TF plane. Moreover, they are covered by the sinusoidally
modulated patterns which represent the m-D effects of the
rotating reflectors. If we sort the STFT values along time
axis, then the representation of the rigid body parts does not
change, since it is constant during the whole CIT, Fig.6(b).
On the other hand, the fast rotating parts occupy only a
small time intervals over a wide region of frequencies. They
lie in high value regions of the sorted transform. Thus, they
will be eliminated by removing the highest STFT values, for
each frequency. An adaptive threshold, with T}, =5 is used
here. The results are not sensitive to the value of Tj,. The
reconstructed FT, obtained by summing the rest of the STFT
(17) along the time is shown in Fig.6(d). We can clearly see
five peaks that correspond to the five rigid body reflectors.
The original FT is shown in Fig.6(c). It cannot be used even
to determine the number of components in the analyzed
signal.

Helicopter Data Analysis

Example 3: In this example, we first present a new
simulation approach to the data of a German Air Force
Bell UH-1D Helicopter known also as ‘Iroquois’ presented
in [14]. Here, the simulation is performed according to
the variable flashing reflection coefficients, rather than
just by using a mathematical form that would produce
the data as in [1]. Several effects are emphasized in the
TFR Fig.7(a). The stationary patterns along the time-axis
correspond to the rigid body reflection. The motion of
two main blades is modeled by two rotating reflectors,
producing sinusoidal FM signals with a large magnitude
in the frequency direction, (23). The main rotor flashes are
simulated by signals producing lines that connects extreme
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Fig. 6. (a) The STFT of a signal consisting of five rigid body components

and five sinusoidally modulated m-D components (b) The sorted STFT of
the same signal. (c) The original FT of the signal. (d) The FT of rigid body,
reconstructed by summing the STFT values remaining after sorting and
eliminating samples that correspond to the m-D effect.

points of the sinusoidal FM signal, along the time axis. The
smaller pulses that can be seen on the right-hand side of
Fig.7(a) correspond to the tail rotor flashes, and they are
simulated here by taking into account the physical meaning
of its appearance. Namely, these flashes correspond to the
periodic alignment of the main and tail rotors to maximally
reflect the radar signal when they are normal to the line-of-
sight. Therefore, we use here an angle dependent reflection
coefficient

o(t) =exp(=30[sin2mt/Tror)l), (22)
where the reflection takes value 1 when ¢ = kTgo:/2 and
|sin(27t/ Tror)| = 0, while for other t, 30|sin(27wt/ Trot)l
assumes high values and the reflection coefficient is small.
Note that other effects that can be observed in a radar
image, including multi-path, are not considered here.

The simplified model of the reflected UH-1D signal can
now be written as

s(8) = xp16 (1) + xpor (1) + Xp1_m (1) + xpL_1(1),

where xgrig(t), xgor(?), xrr_m(#) and xpr 7(f) represent
signals caused by the rigid body, rotation of the main rotor,
and the main and tail rotor flashes, respectively. The signal
is considered within the interval of 400ms, sampled with a
rate of At =1/48ms. Four sinusoidal components, caused
by the rigid body, are at the frequencies —10.3kHz, —2.5kHz,
2.3kHz and 2.7kHz. Two components at —0.4kHz and
0.4kHz correspond to the modulated time tones commonly
added to the data tape [23]. The sinusoidal FM signals,
corresponding to the rotation of the main rotor blades, are
modeled as

ejZHAROT sin(2nt/ TroT)

Xror(t) = ororl (23)

+e—j27‘[AROT sin(2mt/ TROT)]
M

where ogor = 10, Tror = 175ms and Agor = 529.19. The
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Fig. 7. (a) The STFT of a simulated signal of a German Air Force Bell

UH-1D Helicopter. (b) The sorted STFT of this signal. (c) Original FT of
the signal. (d) The FT of the rigid body, reconstructed by summing the
lowest absolute STFT values. (e) The FT of the rigid body, reconstructed
by the proposed method.

main and tail rotor flashes are modeled as

xor 2p{8) = 25122‘:3k+64
FL_M & 7128

. 27t
x €08(25.98k sin(—)),
175

—30Isin(27¢t/175)|

and

xpr (D) =25 122{? o~ 30Isin(211/35.8)| ,(j(2.66ksin(4n1/35.8)))
k=64

The signal is corrupted by a moderate Gaussian noise. To

compare our simulation with the real one (for the m-D and

rigid part values ratio) refer to [1], [23].

The proposed algorithm for the rigid body separation
is applied to the simulated helicopter signal. The sorted
STFT is shown in Fig.7(b). We can see that the STFT values
corresponding to the rotating parts are in the high value
region. The reconstructed FT is shown in Fig.7(e). All 5
reflectors that correspond to the rigid body are successfully
recovered. The original FT is presented in Fig.7(c), while the
reconstructed FT obtained by summing the absolute values
of the remaining STFT samples is presented in Fig.7(d).

High-Resolution Analysis

Example 4: Two very close rigid body reflectors in the
presence of m-D effects are simulated in this example

— e—j201nm/M —j205tm/M j58cos(2nm/M)’

s(m) +e +10e

where M = 256 samples are used. The window with M,, =32
zero-padded to M is used for the STFT calculation. The
STFT of the analyzed signal is presented on Fig.8(a), while
the sorted STFT is presented on Fig.8(b). It can be seen
in Fig.8(a), that there are time instants when the STFTs of
the close components are summed with opposite phase,
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Fig. 8. (a) The STFT of a signal consisting of two very close components
with constant frequency and one sinusoidally modulated component. (b)
The sorted STFT of the same signal. (c) The original FT of the signal. (d)
The FT of rigid body, reconstructed by summing the lowest STFT values.

and they appear as separated. On the other hand, when
the close components are summed in phase, they are not
separated. Moreover, as it can be seen from the sorted STFT,
presented in Fig.8(b), when the STFTs are summed in phase,
the resulting STFT is higher. Consequently, by removing the
highest values of the STFT, the remaining lower values are
well separated; thus, the close components are separated.
The FT reconstructed by summing over time 50% of lowest
samples of the STFT, is shown in Fig.8(d), while the original
FT is shown in Fig.8(c). We can see that the separation of
the close components is achieved by the proposed method,
although it is not possible in the original FT (the distance
between two maxima positions is biased).

Noise Influence Analysis

Example 5: One stationary reflector and one m-D reflec-
tor are considered. Complex valued, white Gaussian noise
&(t), with variance o2, is added

s(m) = e—]O.?Snm + 0R6158cos(2nm/256) +e(p),

where oy is the reflection coefficient of the m-D reflector.
The noise variance is varied within a wide range 0 < g2 <72
(from the case without noise up to the case when noise
dominates), with step 1. For each variance value from this
range, 1000 Monte Carlo simulations are performed. In each
realization, we have found a position of the maximum
in the L-statistics based estimate of the FT, S;(k). Then,
the error is calculated as a difference of this position
and the true signal frequency. The mean absolute error is
calculated for each variance for 1000 realizations and the
mean absolute error is plotted for various noise variance
values. For the rigid body FT reconstruction we used, for
each frequency, 50% of the smallest STFT values in the L-
statistics summation.

We start with the case of pure stationary point or =0,
to see how the L-statistics approach, with 50% of values,
influences the results. It is well known that the FT transform
is theoretically the best (ML) estimator for a pure sinusoid
in Gaussian noise. The corresponding mean absolute error
is depicted in Fig.9. The solid line corresponds to the
proposed method, while the dashed line corresponds to the

<]
5 80
g e0f
g 4o
§ 20t — Proposed method | |
s . - - Origina FT
0 10 20 30 40 50 60 70
Noise variance
Fig. 9. Mean absolute error as a function of noise variance calculated

for the case of one rigid body reflector without m-D. The solid line
corresponds to the proposed method, while the dashed line corresponds
to the full FT.

full FT. The FT is well reconstructed with the proposed L-
statistics based method and the estimation results are not
degraded with respect to the full FT, in this simple case,
when the FT is the ML estimator.

We have analyzed noise influences in the case of op =
5, as well. For the noiseless case, the STFT is shown in
Fig.10(a), while the sorted STFT is shown in Fig.10(b). The
original FT is presented in Fig.10(c). The FT reconstructed
by summing, for each frequency, 50% of the lowest STFT
samples is shown in Fig.10(d). The same plots for the case
of 02 =4.5, SNR = -6.53dB are shown in Fig.10(e-h). The
signal to noise ratio (SNR) is calculated as the rigid body
part of the signal to the noise ratio, in all cases. We can see
that the proposed method successfully reconstructs the FT
of the rigid body in the presence of m-D and noise.

The mean absolute error of the proposed method and the
original FT is shown in Fig.10(i). The proposed method does
not only reconstruct the FT successfully, but also eliminates
the m-D effect and outperforms the original FI, whose
estimation performance is degraded by the m-D effect.

Example 6: We analyzed one more case of one stationary
reflector and one m-D reflector in the presence of noise.
Here, the m-D reflector is stronger and closer to the station-
ary one. The corresponding signal is of the same form as in
the previous example, but with o g = 10, while the rigid body
reflector signal component is at the frequency fp =0.125Hz.
The same statistical analysis and reconstruction procedure
as in the previous example are performed.

For the noiseless case, the STFT is shown in Fig.11(a),
while the sorted STFT is shown in Fig.11(b). The original FT
is presented in Fig.11(c). The FT reconstructed by summing,
for each frequency, 50% of the lowest STFT samples is
shown in Fig.11(d). The same plots for the case of ag =4.5,
SNR = -6.53dB are shown in Fig.11(e-h). We can see from
Fig.11(d) and Fig.11(h) that the performance of the pro-
posed method does not degrade even in the case of strong
m-D reflector positioned close to the rigid body reflector; in
this case, the stationary and m-D components are crossing
in the STFT, Fig.11(a) and Fig.11(e). The proposed method
continues to successfully reconstruct the FT of the rigid
body in the presence of noise, Fig.11(h), while the FT is not
even able to indicate that there is a rigid body reflector, at
all, Fig.11(g).
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Fig. 11.  One rigid body reflector and one close m-D reflector. Noiseless

(a—d): (a) The STFT absolute value, (b) Sorted STFT, (c) The original FT, (d)
Reconstructed FT. A realization of noisy case with 0% =4.5 (e-h): (e) The
STET absolute value, (f) Sorted STFT, (g) The original FT, (h) Reconstructed
FT. (i) Mean absolute error as a function of noise variance in 1000 noisy
realizations.

The mean absolute error of the proposed method and
the original FT are shown in Fig.11(i). From the presented
statistics, we can confirm that, even in the presence of noise
and close reflectors with strong m-D effects, the proposed
method successfully reconstructs the FT of the rigid body,
while the original FT completely fails to indicate the rigid
body existence.

Non-Compensated Rigid Body Acceleration

Example 7: In this case an accelerating rigid body target
is considered and examined. The received radar signal that
corresponds to an accelerating target in the ISAR systems
is a linear FM signal. Similarly, in SAR systems the target
motion may induce linear frequency modulation in the
received radar signal [17]. Therefore, we simulated three
rigid body reflectors as three linear FM components with
the chirp-rate a. In order to show that our algorithm will
not remove only the m-D induced by vibrating and rotating
targets, here we have also used a more complex form of
the m-D. In this example, we will show that the algorithm
is robust to the effects of acceleration.

case (a—d): (a) The STFT absolute value, (b) Sorted STFT, (c) The original
FT, (d) Reconstructed FT. A realization of noisy case with a% =45 (e~
h): (e) The STFT absolute value, (f) Sorted STFT, (g) The original FT, (h)
Reconstructed FT. (i) Mean absolute error, in 1000 noisy realizations, as a
function of noise variance.

The STFT of the analyzed signal is presented in Fig.12(a).
We can clearly see that, as a result of the acceleration, the
TFR of the rigid body part of the signal is not stationary
during the time. Consequently, it is difficult to separate
it from the m-D in the sorted STFT, Fig.12(b). Namely,
if we perform the m-D separation by removing 50% of
the highest STFT samples, as we did in the examples
where there was no need for the motion compensation,
we would reconstruct the FT of the rigid body as presented
in Fig.12(d). Here, we have removed a significant part of
the rigid body points, as well.

In the analysis of the rigid body with uncompensated
acceleration, we should first compensate the remaining
acceleration. This is not possible in the original signal, since
the m-D signatures prevent us from properly compensating
the remaining acceleration. However, the application of
the proposed method for the m-D removal can solve this
problem, as well. We will use the Local Polynomial Fourier
Transform (LPFT)

o0

. 2
s@wE - He I+ gp

LPFT(t,Q) = f (24)
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instead of the STFT, where the term exp(—jat?) is used to
compensate the linear frequency modulation of the rigid
body part of the signal, LPFT(¢t,Q) = FTis(m)e 97 w(r -0}
The parameter «a is not known in advance, but we know that
it can take values from a set A = [—@max, ¥max], Where amax
is the chirp rate corresponding to the maximal expected
acceleration (positive or negative), [24]. In this example we
used A =[-2:0.25:2]. Now, & can be estimated as the value
from the set A for which we obtain the highest concen-
tration of the reconstructed rigid body (compensated FT)
based on the LPFT and the L-statistics, with, for example,
Q = 50%. The reconstructed FT, by using 50% of the lower
LPFT values, will be denoted by Sy, 4 (k) . Its concentration is
calculated using the time-frequency concentration measure
[25],
M-1 p
H(a) = ( Y \SL,a(k)l””) : (25)
k=0
with p = 1. The LPFT, calculated with the estimated optimal
value of & = 1.25, which results from H(a), is shown in
Fig.12(e). The linear frequency modulation is compensated
by & in (24). Thus, with optimal & we have components
with almost constant frequency in the TFR representation
of the rigid body reflectors. In this way, we have successfully
reconstructed the rigid body and removed the m-D part, as
it is presented in Fig.12(h). The procedure is not too sensi-
tive to d. Very good results are obtained with neighboring
values @ =1.0 and & =1.5.

Note, that it would be impossible to estimate the chirp-
rate @ from the original signal, without employing the
proposed algorithm for the m-D removal.

Real Data Application

Example 8: The proposed algorithm is tested on real data
in this example. The examined data were collected using an
X-band radar operating at 9.2 GHz, [15]. The first real data
represent three corner reflectors rotating at approximately
60 RPM (rotation per minute) and the rigid body observed
by the radar with 7, = 1kHz. The STFT of the returned
signal, for the given range bin, is shown in Fig.13(a). After
sorting the STFT over time Fig.13(b), the constant frequency
component corresponding to the rigid body becomes more
visible, since the time varying frequency content is spread
over many frequencies, for each frequency bin. The rigid
body is separated from the m-D and its FT is successfully
reconstructed by using 50% of the lowest STFT values, as
shown in Fig.13(d). If we compare it to the FT of the original
signal, Fig.13(c), we can see the improvement in the rigid
body presentation.

In the second example, the real radar data corresponding
to two outside corner reflectors, rotating at approximately
40 RPM (all facing radar) with rigid body, are analyzed. The
same radar as in the previous example is used, while the
reflectivity of rigid body is much higher than those of the
rotating reflectors. The STFT representation of the observed
signal is shown in Fig.13(e). The sorted STFT is shown
in Fig.13(f). The original FT is shown in Fig.13(g). The
reconstructed FT, obtained by summing 50% of the lowest
STFT values is presented in Fig.13(h). We have successfully
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Fig. 12.  Accelerating rigid body with a complex form of the mD. (a)

TFR of the signal without motion compensation. (b) Sorted TFR of the
original signal. (c) Original FT of the analysed signal. (d) Reconstructed
FT of the accelerating rigid body without motion compensation. (e) TFR
of the signal after motion compensation. (f) Sorted TFR of acceleration
compensated signal. (g) The FT of the original signal with motion com-
pensation. (h) Reconstructed FT of the accelerating rigid body with motion
compensation.

removed most of the m-D. Moreover, we may use the
removed STFT samples in order to estimate features of
rotating reflectors. Here, we have used a logarithmic scale
to present the reconstructed values, since the m-D values
were very low.

V. CONCLUSION

The micro-Doppler effect appears in the ISAR/SAR im-
ages in the case when there are fast moving reflectors
in the observed scene. The m-D can severely decrease
the quality and readability of the obtained radar image.
Its detection and removal is very important for obtaining
focused image of the rigid body. In the paper, an algorithm
for the m-D removal and reconstruction of the rigid body
image is proposed. It is based on the L-statistics. Although
the L-statistics are already applied by the authors for a
similar purpose, the algorithm proposed here is simpler and
produces better results. The reconstruction is performed by
using only one complex STFT, rather than using several
STFTs (with absolute values) and order statistics combi-
nation, as it was done in the previous work. Since the
proposed algorithm is based on the L-statistics, being a tool
for robust signal analysis, it is robust to the effects of noise.
Also, it can behave as a high-resolution algorithm, since it
can separate close rigid body points. In order to improve
the computational efficiency, an adaptive threshold is used
to distinguish among STFT samples that correspond to
the rigid body and moving parts. Moreover, two additional
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Fig. 13. Real radar data corresponding to a rigid body and three corner

reflectors rotating at ~ 60 RPM (a—d). (a) the STFT. (b) Sorted STFT. (c)
The original FT and (d) the FT reconstructed by summing over 50% of the
lowest STFT samples. The same procedure is repeated for real radar data
corresponding to a stronger rigid body and two corner reflectors rotating
at ~40 RPM (e-h). A logarithmic amplitude scale is used in subplots (g)
and (h).

thresholds are incorporated in the algorithm. The first
threshold detects whether there is a returned radar signal
in a range bin, while the second threshold detects whether
there exist m-D effects in a range bin. Consequently, the
procedure for the m-D extraction could be performed
only for the range bins where the m-D effect is detected;
that could lead to the overall computational savings. A
procedure for the reconstruction of rotating points FT in
the case of flashes is proposed. Through the examples, it is
shown that the proposed algorithm successfully separates
the rigid body and the m-D effects.
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