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Abstract—A compressive sensing (CS) approach for nonsta-
tionary signal separation is proposed. This approach is motivated
by challenges in radar signal processing, including separations of
micro-Doppler and main body signatures. We consider the case
where the signal of interest assumes sparse representation over
a given basis. Other signals present in the data overlap with the
desired signal in the time and frequency domains, disallowing
conventional windowing or filtering operations to be used for
desired signal recovery. The proposed approach uses linear
time-frequency representations to reveal the data local behavior.
Using the L-statistics, only the time-frequency (TF) points that
belong to the desired signal are retained, whereas the common
points and others pertaining only to the undesired signals are
deemed inappropriate and cast as missing samples. These samples
amount to reduced frequency observations in the TF domain. The
linear relationship between the measurement and sparse domains
permits the application of CS techniques to recover the desired
signal without significant distortion. We focus on sinusoidal de-
sired signals with sparse frequency-domain representation but
show that the analysis can be straightforwardly generalized to
nonsinusoidal signals with known structures. Several examples
are provided to demonstrate the effectiveness of the proposed
approach.

Index Terms—Compressed sensing, time-frequency analysis,
L-statistics, components separation.

I. INTRODUCTION

C OMPRESSIVE sensing (CS) considers reconstruction of
signals that have sparse basis representations in a certain

transform domain, using an incomplete set of samples [1]–[11].
In many applications, the signals of interest are sparse in the
Fourier-domain. In this case, the application of conditioned
norm minimization, using a reduced number of time-domain
observations, has produced impressive signal reconstructions.
However, other applications, including radar, give rise to non-
stationary signals that are characterized by instantaneous fre-
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quency laws. These signals are not typically narrowband and,
as such, cannot be cast as sparse over the frequency variable.
In this paper, we deal with a class of problems where the

missing samples or observations are not due to Nyquist sam-
pling relaxation, but rather occur as a consequence of attempting
to separate desired from undesired nonstationary signal compo-
nents. If these components highly overlap in time and frequency,
signal separation and desired signal recovery cannot be accom-
plished through conventional methods involving windowing or
filtering. Furthermore, separation in the TF domain becomes
difficult if the respective TF signatures reside over common TF
regions or encounter several TF intersection points. This makes
TF masking difficult and renders TF synthesis methods ineffec-
tive.
A CS approach dealing with nonstationary signals was intro-

duced in [6], [7], with the objective of achieving high resolution
quadratic TF distributions. The underlying assumption is that
multi-component signals with instantaneous frequency charac-
terizations are considered sparse in the joint TF representation.
Instead of using the classical reduced interference kernels with
low-pass filter characteristics [12], [13], a few samples of the
ambiguity function around the origin are selected to constitute
reduced observations [6], and thus forming a ”CS ambiguity
function”. By applying reconstruction algorithms, a sparse
TF representation is achieved with high energy concentration
and reduced cross-terms. Both the approach in [6] and our pro-
posed approach are based on a common premise, namely, the
missing observations are undesired samples, which are removed
from consideration due to interference contribution. However,
the approach in [6], which is based on bilinear TF represen-
tation, does not consider signal separation or recovery. More-
over, the methods based on quadratic distributions, generally
fail to recover signal phase. Rather, data observations selection
is guided in [6] by reduced cross-terms and high TF localiza-
tion, neither of which is a leading motivation in our paper. The
problem statement, formulation and application are quite dif-
ferent: we deal with signal separation when significant signal
components overlap in time-frequency plane. The overlapping
regions in time-frequency plane will not produce cross-terms in
the ambiguity plane that are distant from the origin. In the ambi-
guity function these components, overlapping simultaneously in
both time and frequency will be considered as a single compo-
nent. Ambiguity domain analysis, including the CS, will not be
able to deal with these signal behaviors. In addition, in the pro-
posed approach the signal phases can be recovered accurately.
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The approach presented in [14] attempted at separating sinu-
soidal signals from others by only considering the ambiguity
function points along the zero time-lag. This approach was in-
troduced in the context of direction finding and nonstationary
array signal processing, and does not deal with the CS problem
formulation. Further, it only focuses on chirp signals, as the un-
desired signal components, and is not aimed at signal recovery
or reconstruction.
The main goal of this paper is to use the CS approach to re-

cover narrowband signals when contaminated with highly non-
stationary signals. In this case, the desired sparse representa-
tion is achieved using the Fourier basis. For narrowband sig-
nals, the unknown signal parameters may include the signal am-
plitudes, frequencies, phases, as well as the number of compo-
nents. However, unlike the standard CS formulations, involving
sparse Fourier domain, here the observations are made in the
TF domain rather than in the time domain. The samples in the
TF domain are selected to favor the sinusoidal signals, which
are both locally and globally sparse. For these signals, a dic-
tionary can be defined which relates the global sparse repre-
sentation in the Fourier-domain to the local spectral sparseness,
when viewed through a short time-window. The undesired non-
stationary signals, on the other hand, may be spectrally sparse
over the same window, but loses their sparseness property when
considered over the entire data record. The local behavior of
both types of signals is revealed by taking the short time Fourier
transform (STFT). The time-frequency regions corresponding
to the nonstationary signals over all windows are identified and
removed from consideration, and therefore, are cast as missing
observations. For a successful removal of these regions, the
L-statistics based analysis [22]–[24] are tailored to the time-fre-
quency representation. The L-estimation filters (L-filters) and
general Huber estimation theory [23] have attracted much at-
tention in the signal and image processing [3], [4]. In order to
be able to deal with impulsive and nonimpulsive noise com-
ponents, the L-estimators are defined as linear combinations of
order statistics [22], [28]. The L-statistics based realizations of
signal transforms and representations are presented in [22], [29],
[32]. Here, we use the L-statistics to separate overlapping and
nonoverlapping time-frequency regions before the CS methods
are applied.
The theory presented in this paper is inspired by numerous

practical applications. For example, in radar signal processing,
micro-Doppler effects can obscure rigid body points [15]–[18],
rendering the radar image highly cluttered and unreadable. In
this case, the micro-Doppler effects are represented by highly
nonstationary signals, while the rigid body points are repre-
sented by sparse Fourier-domain signals (weighted sum of fixed
frequency sinusoids), [15]. A simplified example is presented
in Fig. 1, where the micro-Doppler is induced by four rotating
parts reflecting continuously and several rotating flashing parts.
The sparse (rigid body) signals intersect with the nonstationary
components at various TF points, as evident in Fig. 1. We re-
move a large number of overlapping points or intervals, and re-
tain only those TF observations belonging to the narrowband
signals. Similar situation may, for example, arise in communi-
cations, when narrowband signals are disturbed by a frequency
hopping jammer that is of shorter duration than the considered

Fig. 1. Time-frequency representation of the radar signal, at a given range,
corresponding to five rigid body points, four fast rotating reflectors and several
points reflecting during a short time interval, producing flashes: (a) The absolute
STFT value within the coherent integration time, (b) The sorted absolute STFT
values, along time, for each frequency (cross-range), (c) The matrix showing
available (in white) and omitted (in black) values in the time-frequency plane,
after the L-statistics approach with of omitted values is used. The Hanning
window is used in time-frequency analysis.

time-interval, but may also be overlapping with narrowband sig-
nals within same intervals.
The paper is organized as follows. In Section II, the problem

formulation in TF plane is provided. A separation technique,
based on the L-statistics, is presented in this section. Signal
reconstruction, based on the compressive sensed TF matrices,
is discussed in Section III. Cases of time and frequency varying
windows as well as the cases of overlapping and nonover-
lapping STFTs are presented in the form suitable for the CS
techniques application. Supporting examples are given in
Section IV. Section V is the Conclusion.

II. FORMULATION OF PROBLEM IN TIME-FREQUENCY DOMAIN

The desired signal is assumed sparse in a given basis (in
frequency domain), and as such can be recovered from few
observations. In this respect, we consider the desired signal
to be a weighted sum of unknown number of sinusoids with
unknown parameters. If the undesired and desired signal com-
ponents highly overlap in time and frequency, signal removal or
separation using filtering and windowing techniques becomes
ineffective. Accordingly, data observations, drawn from the
output of either technique, would include large interference
components, preventing accurate reconstruction of desired
signal using norm minimizations. However, if the undesired
signal is localizable in the TF domain, then one can identify TF
points that are free from interference or where the interference
is least significant. CS techniques, based on these TF points,
can then be efficiently applied for sparse signal recovery.
The difficulty of masking out the interference without losing
portions of the desired signal impedes the use of typical TF
synthesis methods for accurate signal recovery [19]–[21].
The analyzed problem can be stated as follows. Let us con-

sider a composite signal,

(1)

where is the stationary and sparse signal part and
is the highly nonstationary part. This kind of signal composition
is inspired by the radar signal returning from moving targets,
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where both a rigid body and micro-Doppler components can be
present. The DFT of this signal can, therefore, be defined as:

(2)

where is the total number of signal samples. Thus,
is stationary and sparse in , whereas is nonstationary
and nonsparse and could assume nonzero values even for all
frequencies . In the above signal model, the sparse and non-
stationary part of signal may significantly overlap in frequency.
Further, certain frequency components in could be
much stronger than their counterparts in ,

(3)

The nonstationary components at some frequencies
could also be much stronger than the signal

components at the desired frequencies, .
Classical spectrum analysis tools, dealing with signals sepa-

ration would prove ineffective in handling signals adhering to
the model in (2), even if we assume that the frequencies of de-
sired signals , are known. For instance, con-
sider an ideal notch filter (its inverse form) applied to a priori
known desired frequency (which is not the case in practice).
When disturbance appears at the same frequency as the desired
component, it cannot be filtered out, even with the use of an
ideal notch filter. In this case, the signal amplitude obtained at
the filter output will have an incorrect value, as will be illus-
trated in the examples.
On the other hand we also assume that the sparse part of the

signal and the highly nonstationary part overlap
in a significant number of time samples, i.e., that for any (or all)
, may hold This renders time-domain signal
separation difficult, if not impossible. It prevents the applica-
tion of the CS algorithms in the time domain. Finally, since we
actually have the full set of data available, we may consider the
application of norm based robust processing, which will again
fail to extract the sparse part due to time and frequency overlap-
ping with sporadically stronger nonstationary part.
The highly nonstationary signal components invite TF signal

representation, which is given by:

(4)

where is a linear TF representation (quadratic represen-
tations give rise to cross-terms). We deal with the general case
where and overlap in a significant number
of points in the TF plane. The significant number of dis-
turbance values in the overlapping regions can be much stronger
than their sparse signal counterparts. The reconstruction of de-
sired sparse signal is considered impossible unless we discard
the overlapping values. Thus, we must disregard a significant
number of TF regions, being left with a much smaller number
of independent data than the original number of input data

. Consequently, a simple TF based time-varying
filtering cannot provide an efficient solution. An effective way
to proceed is to apply the CS methods tailored to the time-fre-
quency problem formulation. Note that satisfactory results will

be obtained as long as the number of available data is signifi-
cantly larger than sparsity of signal ( .
In the TF analysis, we start with the simplest representation

based on the STFT in order to assure some important proper-
ties: (a) A linear relationship between the sparse and observation
domains, (b) Signal localization in the TF domain, preserving
the phase information; (c) No presence of cross-terms which
arise due to the bilinear products in quadratic TF distributions.
In the case of nonoverlapping windows STFTs, the number of
available time-frequency samples stays the same as that of input
signal ( samples). Later, the approach will be extended to the
overlapping window STFTs. In this case, we still deal with
signal samples. In other words, although the problem may ap-
pear as over-determined, a higher number of overlapped STFTs
(compared to nonoverlapped ones) does not mean more avail-
able samples, but rather more available linear combinations of
the same input data samples. This may only affect com-
putation complexity, with some benefits from convergence of
rounded windows used in overlapped STFTs.
It is evident from the above problem description that the main

challenge lies in properly selecting the signal observations in
the STFT domain, avoiding all disturbances, and in establishing
a linear relationship between TF and Fourier domain. A tech-
nique that could be adapted for this kind of problems is based
on the L-statistics. The L-statistics has been already used for re-
alizations of signal transforms and representations when signal
is heavily corrupted by impulse noise. Here, the L-statistics is
adapted to properly select time-frequency regions. It involves
sorting out data samples along time axis for a given frequency
and then removing some of them. If we have only the nonsta-
tionary component at specific frequency in TF representation,
it is clear that eliminating the highest values along that fre-
quency would actually eliminate the undesired nonstationary in-
terference. For the frequency lines with contributions from both
the nonstationary interference and the desired sparse sinusoidal
components, the highest values would correspond to common
or overlapping regions. Removing most of the highest values
along the frequency line will remove the interference contribu-
tion as well. Another possible case is when the nonstationary
and sparse signals are of the same order of amplitude, but the
opposite phases produce low values at the intersection points.
In this case, the solution is to remove some of the lowest values,
in addition to the highest ones. As such, we avoid interference
contamination by keeping the middle part of sorted values. The
L-statistics is applied to separately for each frequency

:

(5)

where denotes the L-estimation operator, while the parame-
ters and are defined as . It means that for
each instead of the original points, , we
are left with a certain arbitrary set of time intervals where trans-
formation values are used in further calculation:
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These intervals will be referred as the frequency dependent ar-
bitrary positioned time intervals. The signal values that appear
within these intervals can be considered as available CS mea-
surements, containing the stationary and sparse part of the signal
only. Namely, after the L-statistics we have:

(6)

where the L-statistics outputs belonging to the non-
stationary and sparse components are denoted as
and respectively. Note that, is negli-
gible, while represents the available sparse signal
TF values. For example, using the L-statistics with

omitted values, for a given , implies that
the total duration of intervals where
the sparse signal TF values are available, for a given frequency,
is just of the original observations.
The proposed theory can be easily generalized for other do-

mains where the signal is sparse. The Fourier transform domain
is just one possibility, corresponding to a weighted sum of sinu-
soids whose number and parameters are unknown. In general, it
is sufficient that the behavior of this part of signal is with known
structures (and sparse in any other domain). For example, if we
can assume that changes linearly along frequency in the
TF plane with a rate then we can easily adjust the method to
be used with:

(7)

The same holds for any other known structures, up to the un-
known set of parameters.

III. RECONSTRUCTION BASED ON THE CS METHODS

Consider a discrete-time signal of the length and its
discrete Fourier transform (DFT) . The STFT, with a rect-
angular window of the width is:

(8)

In a matrix form, it can be written as:

(9)

where and are vectors:

(10)

and is the DFT matrix with coefficients:

Considering nonoverlapping contiguous data segments, the next
STFT will be calculated at instant as follows:

The last STFT at instant (assuming that is
an integer) is:

Combining all STFT vectors in a single equation, we obtain:

(11)

In order to avoid confusion with notations, we will emphasize
again that represents a scalar STFT value at a
given time and frequency , while the boldface notation

with one argument and one index represents the
vector of STFT values (at frequencies for a given instant ).
Finally, boldface notation without arguments denotes
vector of STFT values for all frequencies and all instants
The STFT vector is

and the coefficients matrix is formed as:

(12)

where is a matrix with all 0 elements. The vector
is the signal vector , since:

(13)

Expressing the above vector in the Fourier domain,

(14)

where denotes the inverse DFT matrix of the dimension
and is the DFT vector, we have:

...
...

(15)

Accordingly, the relation between the STFT and DFT values can
be written as follows:

(16)

Matrix maps the global frequency infor-
mation in into local information in . By removing a
set of TF points using L-statistics, as discussed in Section II,
only few elements in the observation vector remain.
This is accomplished as follows. For each frequency , a set
of the STFT values in time is formed as:

(17)
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After sorting the elements of , we obtain the new ordered
set of elements:

such that

(18)

A percentageQ of the high and low value elements are removed
from consideration. As previously explained, these values cap-
ture most of the interference TF samples. The remaining STFT
values belong to the desired signal.
Denote the vector of available STFT values by .

The corresponding matrix , relating the sparse DFT vector
to is formed by omitting the rows corresponding

to the removed STFT values. Each row corresponds to one time
and frequency point . We maintain that the reduced ob-
servations, the sparse DFT domain, and the linear relationship
provide the necessary ground of a CS problem. The goal is to re-
construct the original sparse stationary signal, since it produces
the best concentrated DFT . Therefore, the corresponding
minimization problem can be defined as follows:

(19)

Thus, based on the values of , the missing values
can be reconstructed such as to provide minimal .
This is a well known CS problem formulation which can be
solved, if the recovery conditions are met, by using, for ex-
ample, the primal-dual CS algorithm, [1], [2]. It will be shown
that the amount of discarded samples allowing recovery is not
very restrictive for performance, as long as the corrupted sam-
ples are discarded and sufficient information about the desired
signal remains.
Norm is used in minimization of (19) as a simpler form

for the realization than the form that would simply count the
number of nonzero components. The norms with
are used for the optimization of the time-frequency representa-
tion parameters in [12].

A. Time and Frequency Varying Windows

A relation similar to (16) can be obtained if the STFT has
a time-varying window length. Assume that we use a window
length for the instant and calculate

Then, we skip signal samples. At , a
window of samples is used to calculate

, and so on, until the last one
is obtained. Assuming that

, we can write:

...
...

(20)

or , where

...

Again for the available STFT values of denoted by
, the CS matrix is defined by using the corre-

sponding rows of . The problem has an identical form
to (19), and can be solved using norm signal reconstruction
techniques.
As an example of time-varying windows, consider the form

that assumes very short windows at early instants and then in-
creases window width [30], [31]. It means that for ”early sam-
ples” we have the best time-resolution, without frequency res-
olution. This is achieved with a one sample window. That is,
at , the best time resolution is obtained with
, . For an even number
the same should be repeated for the next sample, , i.e.,

. At the time instant ,
we decrease the time resolution and increase the frequency res-
olution by a factor of 2. It is achieved by using a two sample
window in the STFT, , so we have

. For the next instant, , we again increase the
frequency resolution and decrease the time resolution by using
a window of the length , Con-
tinuing in this way up to we obtain

...
...

where

...
...

...
...

. . .
...

The CS matrix for this transform is obtained by omitting the
rows corresponding to the unavailable (corrupted) STFT values
from the full transformation matrix . The problem,
again reduces to (19).
If we consider a signal with samples, then its TF plane can

be split into a large number of different tiles for the nonoverlap-
ping STFT calculations. Let denotes the number of ways
(patterns) an plane can be tiled. Then it can be readily
shown that using diadic windows the approximative formula for

is, [24]:

(21)

where stands for an integer part of the argument. For
example, for we have 5272 different ways to split TF
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plane into nonoverlapping time-varying TF tiles. For general
time-varying windows . The STFT may use fre-
quency-varying windows as well. Then, for a given frequency
the constant window widths in time are used. Combining
time-varying and frequency-varying windows we get hybrid
TF-varying tiling. For any pattern that can satisfy recovery
conditions, a reduced STFT observation vector can be defined
by eliminating some tiles. The problem again lends itself to
formulation (19).
In the cases with time and frequency varying windows the

frequency grid changes as well. By appropriate interpolations
in time and frequency the data can be adjusted for presenta-
tion in a constant TF grid. In the case of strong nonstationary
disturbances, instead the L-statistics application for a given fre-
quency, it is easier to apply the L-statistics on the whole ana-
lyzed set in order to remove the largest STFT values, corrupted
by a strong disturbance. The sparse signal components are then
recovered from the remaining/available STFT values, provided
that they contain sufficient information for recovery. A special
case of this kind of analysis, with , is presented in [11]
for a separation of the stationary sparse part of the signal from
a strong impulsive noise disturbance.
We may also use the STFT form dual to (8). It can be calcu-

lated using the signal’s DFT:

(22)

The forms that correspond to frequency-varying windows, dual
to the ones for the time-varying windows (20), can be defined:

(23)

where is the DFT vector and
are large enough that information about is contained

in sufficient number of observations, after some STFT values
are removed. The CS form is obtained by using remaining STFT
values along with the corresponding rows in the transformation
matrix.

B. Overlapping STFT Case With Constant Windows
In general, for a signal of duration we may use an

arbitrary window of an arbitrary duration. The time step
in the STFT calculation may also be arbitrary. The STFT in

terms of the signal’s DFT reads:

(24)

where

and the matrix coefficients are defined by:

A matrix notation of the STFT, with a step in time, is:

...
...

...

(25)
Note that each STFT is actually a weighted linear combina-

tion of signal samples. These combinations are linearly indepen-
dent only in the nonoverlapping STFT case. In the case of over-
lapping STFT the same signal samples are used to calculate sev-
eral STFT values. Thus, they are not independent. For instance,
using a step instead of , we get STFT values, where
the same samples are involved in four (overlapping) different
STFTs. This further means that if just one sample is corrupted
by a disturbance, several TF values will be removed in a row.
In order to eliminate the nonstationary part of the STFT, con-

taining we remove of the STFT values, for each
frequency. Then we proceed to try to solve the CS problem sim-
ilar to (19) with corresponding and .
If we want to keep the frequency grid in the STFT as in the

original DFT of the signal then the windows should be zero-
padded up to , with in (24). The zero-padding will
provide that for each signal component with a constant fre-
quency on the DFT grid, there is a frequency-direction line
in the time-frequency plane where its STFT values have the
same and constant phase for all considered instants. Calculating
the STFT in this way, will increase the number of equations.
However, an efficient CS solution may be obtained using the
orthogonal matching pursuit methods with the initial recovered
signal values obtained by setting the missing STFT values to
zero, [15], [34].
As an example of overlapping windows, consider one prac-

tically interesting and commonly used case of the overlapping
STFT calculation with a Hanning window of length and time
step . Here, we will write a direct matrix formulation by
splitting the STFT into two nonoverlapping forms. The STFT
with a Hanning (or any other window) may be written in a ma-
trix form as follows:

(26)

where is a diagonal matrix with the window values
on the diagonal, , . In ad-
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dition, we introduce the first STFT with a half of the window
length, as:

(27)

with and
, for . Here, is a diagonal matrix,

In the same way, the last STFT, with half of the window, is
defined as:

where denotes a diagonal matrix:
, while

Now it is possible to split the calculation into two sets. The
first nonoverlapping set is:

(28)

where and denote matrices, extended from
transformation and windows matrices and , respec-
tively, as in (11)–(13). The other, nonoverlapping, set is:

(29)

where and are just notations for the matrices

...
...

...
...

and

...
...

...
...

The first and the last blocks are made by using half size matrices
and denotes corresponding STFT vector

...

The inversion (important to get a result free of the block effects)
follows from (28), (29):

(30)

Similar inversion relation holds for the Hamming and triangular
windows. It can be extended, in straightforward way, to other
time steps of , according to the overlap
and add method. For the time step of the inversion relation
holds for any window form.
The CS convenient formulation of the overlapping case is:

(31)

where is used. The CS matrix is obtained by omit-
ting interference STFT values. In general, the values in
and are related to neighboring time instants. How-
ever, it should be noted that there is a time instant in the middle
of each window that belongs only to one of these STFTs, cal-
culated for various instants. Thus, theoretically, in this case it
is possible to get all independent STFT values. For example,
this is the case of a random signal with white (statistically
independent) pulses at , . In general, a dis-
turbance can be large in one STFT, at one frequency, while in
the neighboring STFT it could be significantly reduced, at the
same frequency. By using overlapped STFTs, we may improve
time resolution of the separation.

IV. NUMERICAL EXAMPLES

1) Example 1: Consider a desired signal that consists of four
stationary sinusoids:

(32)

in nonstationary disturbances. The disturbances are of the form
of short duration modulated signals (some of them are at the
same frequencies as the stationary sinusoids):

(33)

including four components whose changes of frequencies
follow a sinusoidal law. The data in time domain is shown in
Fig. 2. The STFT is calculated for and .
The spectrogram of the data is presented in Fig. 3(a). After the
L-statistics is performed on the sorted STFT values (Fig. 3(b))
and of the largest values are removed along with of
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Fig. 2. Signal composed of a stationary part (sparse in frequency domain) and
nonstationary part.

Fig. 3. a) STFT of the composite signal (spectrogram), b) Its sorted values, c)
CS mask corresponding to the L-statistics based STFT values, d) STFT values
(spectrogram) that remain after applying the L-statistics on the absolute values
of the STFT.

the smallest values, the CS form of the STFT is obtained. The
CS mask corresponding to the L-statistics based STFT values
is shown in Fig. 3(c). The CS spectrogram values (that remain
after the L-statistics based removal) are shown in Fig. 3(d).
The signal reconstruction is performed based on the STFT

values from Fig. 3(d). Compared to the DFT of the data in
Fig. 4(a), the reconstructed DFT shown in Fig. 4(b) is equal to
the original DFT, preserving amplitude and phase.
The proposed method is compared with the results pro-

duced by an ideal case of notch filter (its inverse form), with
the assumption that the signal’s frequencies we are looking
for are a priori known. The filter’s frequency response for
sinusoidal signal is in the ideal case.
The response includes all values along the considered fre-
quency, producing wrong amplitude estimate as follows:

, as in Fig. 4(a),
instead of the true one which is in the considered example:

Fig. 4(b). In other words, the starting
instant is the Fourier transform in Fig. 4(a), which is quite
affected by the disturbances and thus even in the considered
idealized case, results with a high error are obtained. Note that
zero-frequency is at .

Fig. 4. Fourier transform of the original composite signal (a). The recon-
structed Fourier transform by using the CS values of the STFT, corresponding
to sparse part of the composite signal (b).

Fig. 5. Signal composed of a sparse part and nonstationary part, with additional
transient impulses in time, including three strong pulses.

2) Example 2: The desired sparse signal from the previous
example is considered, with short duration pulses and strong
transient signals as disturbances. The data is depicted in Fig. 5.
This case can be presented within the CS framework using the
TF domain. The STFT of the original signal (spectrogram) is
shown in Fig. 6(a). After the L-statistics approach is performed
on the sorted STFT values with of the largest values and

of the lowest values being removed , the result
is presented in Fig. 6(b), which amounts to the CS form of the
STFT. The omitted STFT values are indicated in Fig. 6(c). The
reconstruction is performed based on the CS values of the STFT
given in Fig. 6(d).
The DFT of the sparse part of signal is obtained, Fig. 7 (c),

with both the amplitude and the phase preserved. The DFT of
original signal is presented in Fig. 7 (a). The DFT obtained by
using the norm, in lieu of the norm when solving (19) is
shown in Fig. 7(b).
In the sequel, we use the same example to demonstrate a

low sensitivity of the proposed algorithm to the choice of .
Namely, a very wide range of can be successfully used in
the applications. Thus, the CS algorithms will provide efficient
signal reconstruction as far as most of nonstationary distur-
bances are removed. However, if we omit more than 85%-90%
of values, we do not have enough information for signal re-
construction. The influence of various values of has been
measured by the MSE between the desired and reconstructed
Fourier transform. The results are shown in Fig. 8 (for the
proposed -based CS and for the reconstruction). Observe
that the MSE decreases as the amount of removed disturbances
increases, being almost negligible between and
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Fig. 6. (a) The STFT of the composite signal with impulse disturbances in time
domain (spectrogram). (b) Its sorted values. (c) The CS mask corresponding
to the L-statistics based STFT values (d) The STFT values (spectrogram) that
remain after applying the CS mask on the absolute values of the STFT.

Fig. 7. (a) The Fourier transform (DFT) of: The original signal. (b) The signal
reconstructed by using the norm, on the set of data after L-statistics is applied
in time-frequency domain. (c) The reconstructed Fourier transform by using the
proposed method with the CS values of the STFT.

. Namely, in this range of the disturbances are
negligible, while we still have enough useful information for
the CS based reconstruction. Further increase of ( )
increases the MSE due to the lack of signal information re-
quired for the efficient CS algorithm application. Thus, we
may conclude that a good choice will be the highest value of
for which the CS reconstruction still can be used. Robust

transforms, calculated on the whole set of data (including the

Fig. 8. MSE between the desired and reconstructed FT obtained using the pro-
posed -based approach (solid line) and -based approach (tick line), for dif-
ferent values of parameter . The MSE value normalized by the number of
samples is presented.

application of the norm in such analysis) are studied in [22],
[32].
The result with norm is obtained as a least squared solution

of the previous minimization problem (19). The norm on the
data set that remains after the L-statistics is applied. It can be
written in the form:

with

where denotes Hermitian transpose. It is clear that the MSE is
significantly decreased when using the CS, Fig. 7. The results
obtained with norm could be used as an initial representation
in the orthogonal matching pursuit CS algorithms. The results
from [15] could also be used as the initial representation in this
sense.
In this simulation example, a simple aposteriory check of the

accuracy was possible since the exact signal values are known.
The exact recovery of a sparse signal is considered using the re-
stricted isometry property (RIP), [33]. The sufficient condition
for recovery is defined by using the squared norms (energies)
of the sparse signal and the available measurements. In general,
the exact recovery depends on the signal and samples (measure-
ments) positions. For example, a single discrete sinusoid can ex-
actly be recovered using just a few of its samples, with a high
probability. However the exact recovery is not guaranteed, even
for a very large number of available samples. For example, with
512 out of 1024 samples (taking every other sample), we will
not be able even to detect a high frequency discrete sinusoid. A
simple stochastic analysis of the results can be performed simi-
larly as in [34].
3) Example 3: In general, if a disturbance component covers

all considered time interval, and if it is not quasi-stationary, then
an appropriate window function should be used to localize the
disturbance in frequency. It will provide that (6) is satisfied at
least for some instants. The case with a Hanning localization
window, in the overlapping STFT calculation, is considered in
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Fig. 9. The Fourier transform (DFT) of: (a) The original composite signal. (b)
The reconstructed Fourier transform by using the proposed method with the CS
values of the STFT.

this example. The data and the reconstruction results are pre-
sented in Fig. 1 (used as an illustration for the paper motivation).
The sparse signal is given in the form:

with . The disturbance consists of four sinusoidally
modulated signals and 22 shorter duration signals of the form

Different am-
plitudes are assumed for 22 components all in the range between

and , with durations (defined by ). Some of
the disturbance terms appear at the same frequency as the
signal (stationary) components. Additive noise with standard
deviation is present as well. The STFT is calculated
by using Hanning window of the width . A Hanning
window, zero-padded up to the full signal length, could also be
used to provide a fine frequency grid in the time-frequency anal-
ysis, [15]. The STFTs are calculated with the step , i.e.,
with a half of the overlapping window. The STFT absolute value
is presented in Fig. 1(a). The values are sorted and the L-statis-
tics is performed (Fig. 1(b))) with discarded samples.
The CS mask is presented in Fig. 1(c), while the result of ap-
plying the CS method to the STFT (with CS mask) are shown
in Fig. 9.

V. CONCLUSION

The problem of recovering stationary narrowband signals
contaminated by strong nonstationary signals was addressed.
The reduced observations are computed at selected TF points.
This selection is provided through the L-statistics which dis-
cards the TF points believed to belong to the interference or the
undesired signal components. With the desired signal of sparse
frequency domain representation, the problem can be cast as
compressive sensing aiming at the recovery of narrowband
signals in interference using reconstruction algorithms. The
matrix relating the sparse DFT vector of the desired signal to
the observation vectors of selected STFT points, was defined

for both overlapping and nonoverlapping data segments. Gener-
alizations to the time-varying and frequency-varying windows
were provided. The proposed technique was successfully ap-
plied for the reconstruction of multiple sinusoids corrupted by a
complex nonstationary disturbance, including impulsive noise.
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