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An efficient procedure for obtaining time-frequency representations under high influence
of impulsive noise is proposed in this paper. The procedure uses the fast Fourier transform
based algorithm instead of sorting procedures common in the case of various robust time-
frequency representations proposed recently. Concentration measure is used to select a
free parameter of the transform.
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1. Introduction

Spectral analysis of nonstationary signals with the high-
frequency content corrupted by an impulsive noise has
become a very interesting research topic in the past decade.
Several filters robust in both time and frequency domains
have been proposed [1-6]. Commonly, all these techniques
require consuming sorting or iterative procedures for each
instant, or for all frequencies, or even for each point in
the time-frequency (TF) plane. In this paper, we propose an
alternative simple strategy based on the signal normal-
ization. Signal normalization is used as a processing tool
for signals corrupted by impulse noise [7-11]. Normaliza-
tion strategies are already considered in the TF analysis.
The fractional lower order technique is introduced in [12]. In
addition, a similar technique has been proposed for the TF
analysis from the quantum mechanics perspective [13],
and used as instantaneous frequency estimator in [14].
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Here, we consider an alternative normalization strategy
inspired mainly by the problem of inverse filtering in the
digital image processing [15]. The proposed normalization
strategy has a free parameter. A technique for selecting this
parameter, based on the concentration measure for obtain-
ing TF representation (image) of nonstationary signals, is
proposed as well.

The paper is organized as follows. Some of the existing
techniques for TF imaging of nonstationary signals cor-
rupted by impulsive noise are reviewed in Section 2. The
proposed technique is described in Section 3. Numerical
examples are given in Section 4, while Section 5 concludes
the paper.

2. Spectral analysis of signals corrupted by
impulsive noise
Consider a noisy frequency modulated (FM) signal
x(t) = A exp(je (1)) +u(t), M

where v(t) is a white noise that can be impulsive and/or
heavy tailed. Under these terms it is assumed that the
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noise can take values whose amplitudes are of a signifi-
cantly higher magnitude than the signal magnitude |A|.
Common techniques for removing impulsive noise, such as
median-, L- or myriad-based filters, are not efficient in FM
signal filtering [15,2] since they have low pass character-
istics. Their application removes high frequency compo-
nents from the signal. Therefore, research for alternative
techniques becomes a hot issue recently.

Particularly useful techniques are weighted median and
myriad filters admitting negative weights [1,2]. They are
designed with the same logic as classical linear weighted
filters. However, they require a sorting or an iterative
procedure to be performed for each instant of the signal.
This group of filters is sometimes referred to as the robust
filters of FM signals in the time domain.

Another technique is based on the robust DFT evalua-
tion [5,16]. The robust DFT is calculated for each frequency
using nonlinear techniques eliminating impulses and pro-
viding estimate of the standard DFT of the FM signal. Again
these techniques assume sorting or iterative procedures
meaning that they are significantly more demanding than
the standard (fast) DFT based techniques.

Similar problems arise in the case of the TF representa-
tions. There are several alternatives how to evaluate the
TF representations of signals corrupted by impulsive noise
[3,12,17-19]. One possibility is to calculate the robust short
time Fourier transform (STFT) for each point (pixel) in the TF
plane based on the robust DFT algorithms and to use it for
obtaining other robust TF representations [18]. Namely, the
higher-order TF representations can be realized by using the
STFT calculated in the initial stage, avoiding undesired effect
such as the cross-terms. Also, evaluation of the robust TF
representation by filtering auto-correlations of the signal is
more sensitive to impulse noise errors than the signal (or
modulated signal) itself [18].

In general, a robust STFT can be expressed as

STFTR(t, w) = R{x(t + nAt) exp(—jonAt)ine[—N/2,N/2)},
2

where R{} is the robust operator applied on the modulated
signal sequence, At is the sampling period, while N is the
number of samples in the considered window. In the
following we are presenting some of the robust STFT forms.

The robust STFT evaluated using the marginal-median
approach is defined as

STFT ¢/(t, ) = median{Re{x(t + nAT)
xexp(—jo(nAt))ine[—N/2,N/2)}
+j median{Im{x(t +nAT)
xexp(—jo(nAt))ine[—N/2,N/2)}. 3)

To calculate the STFT given by (3), one has to preform the
sorting procedure for each (t, w) pair.

The myriad-based STFT can be evaluated using the
following iterative procedure:

X(t+nAt) exp(—jonAt)
[K2+ [X(t +nAt) exp(—jonAt) —STFTE = V(t, )|?]
3 .
[K2 + |x(t +nAt) exp(—jwnAt) —STFT = V(t, w)[*]

“@

N/2-1
Zn = —-Nj2

STFTO(t, ) =

N/2-1
ZhZ N

with a properly selected initial iteration.

Various robust TF forms can be obtained from the
robust STFT as the initial signal representation. Here, we
consider the S-method (SM) [20]

SMg(t, @) = |STFTR(t, w)|?

L
+2Re{ > STFFR(t,w+lAm)Sm",§(t,m—lAw)},
I=1

where 2L+1 is the frequency window length and Aw is
the difference between two consecutive samples on the
frequency grid in the TF plane. For L=0, the robust SM is
equal to the robust spectrogram (square magnitude of
STFT), while for L—N/2, the robust Wigner distribution
(WD) is obtained. Relatively small Le[1,10] significantly
improves concentration of the spectrogram but without
cross-terms that appear in the WD. In the same way the
SM can be extended to other higher-order TF representa-
tions, since all of them can be realized using the STFT [18].
Evaluation of the robust TF representation requires a
computationally efficient form of the STFT robust to
the impulsive/heavy tailed noise in the initial step. This
implies an alternative to the sorting or iterative procedures
in order to obtain both fast and accurate TF representa-
tions of signals corrupted by impulsive/heavy tailed noise.

3. Signal normalization

Consider the following normalized signal:

X(t)

Y= X[ ©)
When x(t) is a monocomponent non-noisy signal, (5) becomes
y(t) =exp(j¢(t)) and has the same instantaneous frequency
(IF) w(t) = ¢'(t) as the original signal x(t), without a proper
information on the signal amplitude. However, usually the IF
of a signal is more important feature. Based on the IF we can
later estimate the signal amplitude. One particular strange
situation is that this normalization for signal with varying
amplitude will give signal with unit amplitude. In the case of a
signal corrupted by a Gaussian noise, the analysis of resulting
noise after normalization (5) is performed in [8,9]. For the
signal-to-noise ratio SNR > 5 dB we cannot expect big differ-
ence in the resulting SNR with respect to the signal x(t).
Samples that are not corrupted by impulsive noise are
proportional to the original samples. Thus we have a similar
situation like in the additive Gaussian noise case. Samples
corrupted by impulses have unitary amplitude with random
phase (probably + /2 or 0). Variance of this noise is
proportional to the percentage of impulses [21]. This noise
has no impulsive characteristics.

However, the primary concern in the application of the
signal normalization comes in the case of multicomponent
signals. Consider a two component signal

x(t) = A1 exp(jo1 (1)) +Az exp(jpz (1)) O]
Amplitude of x(t) is equal to

X1 = /A% +43 +2A14; COS (¢ (D) — (). %

For example, for A; =A; and ¢, (t) — ¢,(t) = (2k+ 1)z, where
k e Z, the obtained amplitude is equal to zero. The normal-
ization in this case is even not possible or it is giving
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Fig. 1. A multicomponent signal with a zero-amplitude interval (first row) and its normalized version (second row). The signal with a strong impulsive

noise (third row) and its normalized version (fourth row).

unexpected results such as significant increase of the variance
of additive noise.

A similar strategy has already been used in the TF
analysis with lower order distributions to reduce the noise
in intervals where the signal spectral variations are not
high [14]. For signals corrupted by impulsive noise, the
fractional lower order distributions are proposed in [12].
Under the fractional lower order it was considered as
a signal

x(t)
(x()1*

Yo = ®)
where a [0, 1]. However, form (8) is not addressing the
main problems associated with (7) what can cause the
same undesired effects in the TF analysis. Also, as it will
be shown later, criterion of maximal concentration in the
TF plane for signals with some amount of impulsive noise
produces a=1 as the most robust value almost in all trials.

Therefore, in this paper we propose an alternative
normalization function given as

V()= X0
\VIX(O)1 + €2

where ¢ is the transform free parameter. For e—0, (9) is
proportional to y@(t), a— 1, while, for £ — oo, the produced
signal (or transform) is proportional to the original signal
x(t) (or transform). The parameter ¢ is used to preserve the
phase variations for multicomponent signals as well as to
enable dealing with situations when the signal amplitude

®
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tends to zero, |x(t)| = O (see Fig. 1). It will be shown later
that the proposed normalization strategy offers better
set of possible transforms than the fractional lower order
technique.

Remark. A similar idea is exploited in [15] to design
inverse filters for image deblurring.

Once the normalization strategy has been proposed, we
can calculate the standard TF representations for the normal-
ized signal. In order to perform that task, we will start from
the robust STFT

N/2-1
SIFT.(t,w)= Y,  y.(t+nAt)exp(—jwonAt) (10)
n=-N/2

and improve its concentration toward the higher order TF
representations using the robust SM:

SM.(t, w) = |STFT .(t, )|

+ 2Re{ i STFT.(t, @+ 1Aw)STFT(t, 0 — lAw)}.
1=1
In this way, the robust STFT is evaluated using the FFT
algorithms, while the SM is evaluated using the existing
scheme that is rather efficient for small L (common in
practice). Note that the same technique can be performed
for the fractional lower order signal.

The remaining question is related to selection of ¢ since
quite different results could be obtained for various values
of e. Small values of & produce results that are robust to
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impulse noise but, at the same time, it could produce
unrealistic image with respect to amplitudes of signal
components as well as possible effects related to increas-
ing overall Gaussian noise influence in some regions in the
TF plane for the moderate level of input noise. Large values
of ¢ would produce results similar to the standard TF
representations.

The common technique for selecting the transform free
parameter in the TF representation is based on the con-
centration measures. Some of these measures, based on
the ratio of the TF representation higher order norms, are
proposed in [22]. Measures are reviewed and compared in
[23], where a possibility of lower order norms is proposed
as well. Here, we consider the following measure:

p
M(e) = (ZZ|SMe(nAt,mAm)|1/P> , 11)
nm

where p > 1. Theoretically, for p— oo, the term |SM.(nAt,
mAw)|'/P is equal to one if |SM.(nAt, mAw)| # 0, while, for
|[SM.(nAt, mAw)| =0, it is equal to 0. Therefore, the mini-
mal value of M(e) corresponds to the TF representation
that is best concentrated in the TF plane (with the smallest
spread). In order to compare various TF representations
in a fair manner one has to first normalize them to
>nXmSM.(nAt,mAw) =1, while, in order to avoid effects
of noise and quantization, he has to adopt a moderate
value of p (about p=2, corresponding to the norm one in
the STFT [23]).

However, the concentration measure given by (11) does
not work properly in the case of signals corrupted by an
impulsive noise. Namely, impulses are highly concentrated
in the TF plane. Therefore, if the TF representation does
not eliminate them, the concentration measure could
indicate an excellent concentration in the TF representa-
tion. Impulses appear in the signal for certain instant and
they corrupt all frequencies of the TF representation for
that instant. This property can be used in order to design
alternative concentration measure that is able to produce
large values for TF representation influenced by the
impulsive noise. Therefore, we are proposing the following
slight modification of the previous concentration measure:

P
M(e) = ¥ | ZISM.(nAt, mAw)| /P | . (12)
n m
In this way we are measuring concentration for each
instant. If all TF representation values in that instant are
large, the obtained M(¢) will be small, meaning weak
concentration.

4. Numerical examples and statistical study
4.1. Numerical example

Consider the sum of a linear FM, sinusoidal FM and
short linear FM signals

V2

X(t) = 5 exp (j48xt? +j128xt) +exp(j36 sin (2at)—j104xt)

+exp(j64zt? +j36xt) exp(—25t2), 13)

where te[—1,1). The signal x(t) is sampled with the
sampling rate equal to At=1/256, while, in order to
calculate the STFT and the SM, we used N=256 (window
length used in the calculation of the STFT) and L=8. The
SM of the non-noisy signal has been shown in Fig. 2a
for reference, while the SM calculated for the signal x(t)
corrupted by the impulsive noise

v1(t) " 1/3(0]

=03 [Dz(t) va(D)

(14)

where z;(t), i=1,...,4 are independent Gaussian white
noise processes, E{vi(t)}=0 and E{vi(t")y;(t")}=&(i—}))
8(t'—t"), is depicted in Fig. 2b. The considered form of
noise is impulsive/heavy tailed with the Cauchy distribu-
tion. From Fig. 2b the signal components cannot be
recognized. However, the proposed technique whose repre-
sentation is shown in Fig. 2c gives an excellent accuracy. Its
concentration measure M(e) is given in Fig. 2d, while
zoomed part of that measure is shown in Fig. 2e. As it can
be noticed, the optimal value of ¢ is ¢=0.4. From the
concentration measure M(e) given in Fig. 2f we can see its
decrease for large e. It means that we should carefully use
this kind of concentration measure for large ¢ since it could
point to better concentration than for a small ¢ due to
impulse noise influence. Therefore, in order to avoid this
problem, we have used M(e).

The second experiment was a visual comparison of the
proposed technique with the fractional lower order TF
representations from [12]. For a fair comparison we varied
a in the range a € [0, 1]. Obtained results for characteristic
TF representation are depicted in Fig. 3. It can be seen that
the best concentration is achieved for a=1. The similar
results have been obtained for almost all experiments that
we have conducted, i.e., from a set of possible TF repre-
sentations for any impulsive or heavy tailed noise envir-
onment we are obtaining that the best concentration,
among all considered fractional lower order TF represen-
tations, is with a=1. Therefore, we can conclude that the
technique for adaptation of the TF representations we are
proposing here is better than the fractional lower order
transform since it is offering more possibilities for selec-
tion of adaptive TF representation. In addition, we can
observe the main difficulty in the case of the transforms
with a=1 or in our case with ¢ =0 when concentration of
components is not equal within the signal duration and
when we can have component that is not represented in
some interval. For example, linear FM signals cannot be
observed for t € [0.2,0.5], while the sinusoidal FM signal in
this interval is rather strong.

The proposed technique has also been tested for more
challenging mixed Gaussian and impulse noise environment

v1(t) | w3(t)

v(it)=0.3 [yz(t) +]m] +0.7[vs(t) +jus(D)],

15)

where v;(t), i=1,...,6 are independent Gaussian white noise
processes, E{y;(t)} = 0 and E{y;(t')v;(t")} = 8(i—j) 6(t' —t"). The
SM obtained with the proposed procedure and its concentra-
tion measure are depicted in Fig. 4. It can be seen that the
proposed technique is useful even for this kind of noise.
Namely, all three components can be easily observed in the TF
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Fig. 2. Signal corrupted with Cauchy noise: (a) the SM of non-noisy signal; (b) the §M of corrupted signal; (c) the robust SM obtained with the proposed
approach; (d) concentration measure M(e); (e) zoomed concentration measure M(e); and (f) concentration measure M(e). (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

plane and their parameters can be estimated from this
representation.

Note: All TF representations in Figs. 2-4 are given with
the same MATLAB colormap in order to show results in a
fair and comparable manner.

Based on numerous experiments that we have con-
ducted it can be concluded that the value of £~0.5
produces results of good quality, meaning that search for
optimal ¢ can be performed in a rather narrow interval
around e~ 0.5. In addition, instead of the direct search for
e an iterative procedure can be performed starting with
e£=0. However, this topic will not be considered here.

4.2. Comparison of the robust TF representations

In this section, the proposed approach is compared
with marginal-median SM and myriad SM using numerical

https://reader.elsevier.com/reader/sd/pii/S01651684140022307...F648ATFOEOOE634900BF53089B33ECEBB37704C80E7A232C158F2FBEAF6

measure rather than visual comparison. As the quality mea-
sure of the TF representation SM,(nAt, mA») we considered
the Pearson correlation coefficient [24] given as

E{[SM1(nAt, MA®) — gy, ISMa(NAL, MA®) — g, 1
J/Valsy, Varsy,

PsM, SM, =

where yugy, and vargy,, i=1, 2 are mean and variance of the
SM calculated over entire TF plane, respectively and the
reference TF representation SM;(nAt, mAw) is the standard
SM of the non-noisy signal. The Pearson correlation coefficient
is the similarity measure of two statistics or random variables.
Values of pgy, gy, close to 1 indicate larger similarity between
non-noisy signal TF representation (SM;(nAt,mAw)) and
considered robust TF transform (SM,(nAt, mAw)) than those
for smaller pgy, su,- The experiment is performed for various
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Fig. 3. Signal corrupted with Cauchy noise: (a) the SM of non-noisy signal; (b) the SM of corrupted signal; (c) the adaptive robust SM for adaptive fractional-lower
order signal; and (d) concentration measure M (a). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this

paper.)

mixed Gaussian and impulse noise environments

0= a[ 10412 ot -0l
where E{yi(t)} =0 and E{y;(t")y;(t")} =6 —))s(t' —t"), ac
[0,1] and ¢ €[0, 1]. The results of the experiment are pre-
sented in Fig. 5. For brevity reasons, only two sets of the
results are shown: those for Gaussian noise with =0 and
o €[0, 1] (shown by solid lines) and those for mixed Gaussian
and impulse noise «=0.3 and ¢ € [0, 1] (shown by dashed
lines). Lines with square, hexagon and circle markers corre-
spond to the proposed approach, marginal-median SM and
myriad SM, respectively. For both cases, the proposed SM
outperforms the marginal-median SM and the myriad SM
meaning that it is closest to the SM of the non-noisy signal.
This justifying its usage in the robust TF framework.

(16)

4.3. IF estimation

The robust SMs, obtained from the STFT evaluated with
the proposed adaptive normalization strategy, marginal-
median STFT and myriad STFT, are compared in the IF
estimation. The myriad-based SM is evaluated for x=1
and, in order to ensure faster convergence of the myriad
STFT, the marginal median-based STFT is used in the initial
iteration.

The considered signal was the linear FM one

X(t) = exp(jp(t)) = exp(j48xt?)

with the IF w(t)=¢'(t) =96xt. In order to compare the
proposed TF representation with the marginal median
and myriad based SMs, we have calculated the MSE of
the obtained IF estimates. The considered noise environ-
ment was impulsive with pulses having the random phase

and the magnitude that is five times larger than the signal
magnitude. Also, the mixture of these impulses with a
Gaussian noise is considered. We have performed the
Monte-Carlo testing of the obtained results with 300 trials
for each percentage of the additive impulsive noise added
to the signal in the range of [0%,50%]. The obtained results
are depicted with dotted lines in Fig. 6. Results of experi-
ments performed with a mixture of the Gaussian and
the impulsive noise are given with solid lines in the same
figure. In both cases, the proposed technique produces
better results than the marginal median based technique
while it is slightly worse than the myriad based estimator.

4.4. Calculation complexity

The detailed calculation complexity analysis of the SM
is carried out in [20,25]. By knowing that the STFT can be
realized recursively, it can be show that the calculation
of the SM in a single instant requires O(NL) operations.
Having this in mind, the complexity of the proposed
technique is O(N.NL) floating point operations, where N,
is the number of e-values in which M(e) is calculated in
order to obtain optimal e. The sorting is the most demand-
ing in the calculation of the marginal-median SM and it
requires O(N? log N) comparison operations. Since N <L
and N> N,, the marginal median SM has significantly
larger complexity than the proposed technique. Finally,
an additional iterative procedure, with N; iterations, in the
myriad SM requires O(N;N?) floating point operations,
which is again significantly larger than O(N,NL).

To make comparison more concrete, it can be shown
that the proposed approach with N=256 frequency
bins and L=8, evaluated using N, =21 different ¢ values

https://reader.elsevier.com/reader/sd/pii/S01651684140022307...F648ATFOEOOE634900BF53089B33ECEBB37704C80E7A232C158F2FBEAF6
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Fig. 5. Pearson correlation coefficient: solid line - Gaussian noise envir-
onment with ¢ €[0,1]; and dashed line - mixed Gaussian and impulse
environments with «=0.3 and ¢€[0,1]. Markers: square - proposed
transform; hexagon - marginal median SM; and circle - myriad SM.

without any optimization has approximately 84.5% less
calculations with respect to the marginal-median STFI-
based SM and 96.1% less calculations than the myriad
STFT-based counterpart.
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Fig. 6. MSEs of the IF estimates obtained by various robust SMs: dotted
lines for impulsive noise environment; solid lines for mixture of Gaussian
and impulsive noise. Green lines - marginal median realization; blue
lines - proposed technique; and red lines - myriad technique. (For
interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)

5. Conclusion

An alternative signal normalization strategy for the
time-frequency analysis of nonstationary signals has been
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proposed in this paper. The proposed technique gives
more flexibility in design of time-frequency representa-
tions than the fractional lower order approach. In addition,
it produces better results for the instantaneous frequency
estimation than the time-frequency representations cal-
culated based on the marginal median STFT, while it is
slightly worse than the time-frequency representation
calculated with the myriad filter-based robust strategy.
However, the proposed technique is evaluated using the
fast Fourier transform (FFT) algorithms and obtaining
calculation measures, while the median and myriad coun-
terparts are evaluated using extremely demanding sorting
and iterative procedures.
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