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Abstract—Sparsity of the ISAR images is exploited with the aim 

to use the possibility of applying an under-sampling strategy as 

assumed by the compressive sensing approach. The signal 

sparsity is a desirable property that needs to be satisfied in order 

to reconstruct the signals and images from the compressive 

sensed data. It is assumed that certain amount of radar data is 

not available and the idea is to reconstruct the radar image from 

the rest of the data. The signal samples are observed in the 

spatial domain, and the reconstruction is based on the total 

variation minimization. The procedure is tested on both, 

synthetic and real ISAR image, showing satisfactory 

reconstruction quality with a small set of acquired samples.  

Keywords- Compressive Sensing, ISAR, incomplete set of 
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I.  INTRODUCTION 

Radars have been used in large number of applications, 
such as imaging, remote sensing and global positioning. 
Remote-sensing radars, i.e. Synthetic Aperture Radar (SAR) 
and Inverse Synthetic Aperture Radar (ISAR), are techniques 
used for obtaining high resolution image of the target. They 
form an image based on the changes in viewing angle of the 
target with respect to the radar [1]-[6]. The SAR technique is 
used in the situations where the radar platform is moving while 
the target is stationary. On the other hand, the ISAR technique 
refers to the situations where the radar is stationary and the 
targets are moving (e.g. airplanes, ships, etc.). Useful 
information from both, SAR and ISAR images, can be derived 
by using proper post-processing techniques. Our focus in this 
paper will be on the ISAR images. 

Inverse Synthetic Aperture Radar-ISAR provides imaging 
of the moving targets, in range-Doppler (or range and cross-
range) domains. Therefore, it is an important tool in automatic 
target recognition applications. In ISAR, radar collects the 
scattering data from the target. This is done for different look 
angles, which results in resolving different points along the 
cross-range axis. The ISAR images are formed by using small 
number of target reflectors and they are post-processed in the 
2D Fourier transform domain. Also, they show property of 
being sparse in this domain. Therefore, we consider the 
possibility of applying the algorithms for sparse reconstruction 

of ISAR images when some of the data are missing (not 
available).  

The reconstruction of sparse signals, in the situations when 
a small set of samples is available, or when the signal is 
intentionally under-sampled, is done by using the Compressive 
Sensing (CS) approach [7]-[10]. Unlike the traditional 
Shannon-Nyquist theorem, which requires signal to be sampled 
with frequency twice higher than the maximal signal frequency 
for satisfactory signal reconstruction, the CS concept allows to 
recover the important information from very small set of signal 
samples. This leads to the lower memory requirements in 
various application, as well as faster signal acquisition.  

In this paper, we assume that some of the positioned radar 
data are not available, in order to test the quality of ISAR 
image reconstruction using CS algorithms and considering 
different number of available target positions. 

The paper is structured as follows: Section II provides 
theoretical background on ISAR image modeling, as well as 
the basic concepts of the CS theory. Section III describes the 
procedure for reconstruction of ISAR images from under-
sampled radar data by using the CS techniques for 2D signal 
reconstruction. Section IV provides experimental results on 
synthetic and real ISAR signals. Conclusions are given in 
Section V. 

II. THEORETICAL BACKGROUND 

A. Model of the ISAR signal 

The starting point, when defining an ISAR image, is to 

choose range and cross-range size. Let R denote the range size 

and C the cross-range size. Quality of the ISAR image is 

defined by range and cross-range resolution x and y, 

respectively. Frequency and angular resolution can therefore 

be defined as [4]: 
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where f is a frequency resolution,  is an angular 

resolution, c is the speed of light and c is the wavelength. The 

frequency and angular bandwidth are defined as: 



 

 , .
R C

B f
x y

    
 

 (2) 

Then, the ES signal is formed as [4]: 
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where Ai is the backscattered field amplitude for the each point 

scatterer for the P points  scatterer, k=2πf/c is the wave 

number for the frequency f and Θ is the look-angle. ISAR 

image is obtained as 2D inverse DFT of the ES: 
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where backscattered electric field is collected for the spatial 

frequencies from k1 to k2 and for the angles from Θ1 to Θ2. 

From the relations (3) and (4) follows:  
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where δ(x,y) is the 2D delta function in the x-y plane. Here, the 

assumption that look angle Θ is small is used, and therefore, 

cos(Θ) ~1 and sin(Θ) ~ Θ [4]. 

 

B. Compressive Sensing 

Nowadays, there is an increasing demand to reduce the 

amount of data in real applications such as to provide lower 

sensing time, lower memory requirements, and generally less 

resources, but still to be able to reconstruct the entire 

information afterwards. Consequently, some new approaches 

and algorithms for signal processing are developed. The 

alternative strategy for signal acquisition based on decreased 

number of measurements has been known as the CS approach. 

It deals with sparse signals, sampled according to the a priori 

defined procedure. Sampling procedure should provide 

successful reconstruction from the small set of acquired data, 

which is usually assured by random signal samples selection. 

If the discrete signal x is sparse in the transform domain  , 

then it can be reconstructed from the vector of acquired 

samples y (measurements) by using the powerful 

mathematical algorithms for optimization, i.e. [11]-[14], [22], 

[23]. Mathematically, the measurement vector y can be 

defined as [10]: 

 1 y X , (6) 

where matrix Ω is used to randomly under-sample the signal, X 

is the vector of the transform domain coefficients and 1  is 

the inverse transform matrix, i.e.: 
 

  X x . (7) 

The system of equations (6) is under-determined and various 

optimization techniques are used for obtaining the optimal 

solution in terms of sparsity. Optimization techniques may 

differ for 1D and 2D signals [11]-[21]. In this paper, we will 

focus on the commonly used techniques for the reconstruction 

of the under-sampled images, based on the total variation 

minimization (TV) [16].  

 

III. PROCEDURE OF THE ISAR IMAGES RECONSTRUCTION 

BASED ON THE TOTAL VARIATION OPTIMIZATION 

 
Image reconstruction from the reduced set of samples is 

based on the gradient minimization approach. This approach is 
more appropriate for the reconstruction of 2D signals than 
commonly used CS approaches, because of the fact that images 
are not strictly sparse neither in spatial nor in the frequency 
domain. Image gradient expresses sparsity property and 
therefore can be suitable in minimization problems. Popular 
regularization approach is the TV regularization, due to its 
ability to preserve image edges. Let us observe the signal y 
[16]: 

 , y Af n  (8) 

where A is a matrix that models samples selection process, y is 
measurement vector, f is signal to be estimated and n is noise. 
The goal is to estimate f in a way that y correspond to the 
product Af. In that sense, let us form an objective function: 
 

 ( ) ( , ) ( ),O R  f y Af f  (9) 

where ( , ) y AF is the function which models the difference 

between y and f, R(f) is a regularization function and 

commonly is chosen to correspond to the 1 -norm, and 

parameter ɛ is >0. In most applications, the objective function 
is defined as: 
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 In this paper we have used TwIST algorithm for solving 
problem (9). TwIST relies on the iterative 
shrinkage/thresholding (IST) and iterative re-
weighted/shrinkage (IRS) algorithms. Regularization function 

R(f) can be set to minimize 0 -norm, 1 -norm, 2 -norm, TV 

semi-norm or similar. Solution is reached by an iterative 
procedure defined as [16]: 
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Function Γ is defined as: 

 ( ) ( ( ))T
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where Ψɛ is denoising operator: 
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and iD f denotes gradient operator Each iteration of the 

algorithm has computational complexity similar to the 



 

complexity of the Orthogonal Matching Pursuit algorithm, 

2KMN+3K
2
M, where K is sparsity, M number of available 

samples, and N is the signal length [24].   
Samples are acquired from the spatial domain, by using the 

radial line mask, shown in Figure 1.  

 
 

Figure 1.  Radial line mask used in the measurement procedure  

 

The acquired samples correspond to the white regions in the 

masks. Note that in this case the vector of observations y 

denotes spatial coefficients, while vector f denotes coefficients 

from the transform domain.  

 

IV. EXPERIMENTAL RESULTS 

The presented theory is demonstrated on two examples -

simulated and real radar signals. In both examples, we assume 

that only small set of the coefficients is available, as defined 

by the radial-lines within the considered mask. The noisy free 

measurements are observed. In the noisy signal cases, the 

observations should be denoised prior to reconstruction 

procedure is applied. 

 
Example 1: Synthetic radar signal 

 In the first example, the simulated radar signal is analyzed. 
The outline of the airplane is formed by using 110 point 
scatterers and backscattered electric field was collected for 64 
frequencies and 64 angles. In this example, the radial line 
masks with different number of radial lines are used. Figure 2. 
Figure 2. b, 2c and 2d show the ISAR images obtained directly 
from the available pulses, as a 2D DFT of the available 
samples. It can be seen that the obtained images are noisy. 
Noise in the 2D DFT domain is a consequence of the missing 
information in the spatial domain. The available samples are 
used in optimization algorithm and results of the reconstruction 
are shown in Figure 2.  In all considered cases, successful 
reconstruction is obtained by using the TV minimization 
algorithm. The reconstruction is done by using 33.4% (mask 
with 20 radial lines), 38.5%  (mask with 24 radial lines) and 
49.4% (mask with 32 radial lines) of the total number of 
samples. 

 

Example 2: Real radar signal 

 Commonly used signal for ISAR image testing, MIG 25, is 

considered in this example. As we are dealing with real signal, 

it is only approximately sparse in each range bin. Signal has 

256 pulses and 64 samples in each pulse (due to the algorithm 

requirements we have used image of size 64×64). Original 

image is shown in Figure 3. ISAR images obtained directly 

from the samples belonging to the radial lines are shown in the 

Figure 4.  a, b and c, and these are quite disturbed due to 

incomplete data. Reconstructed images after TV optimization 

algorithm are shown in Figure 4. d, 4e and 4f. Masks with the 

same number of radial lines as in the Example 1 are used (20, 

24 and 32 lines, respectively).  

 

           
 a) 

  
 b) c) d) 

    
 e) f) g) 
 
Figure 2.  a) ISAR image of the simulated radar signal, b), c) and d) ) ISAR 

image obtained from the available samples, by using 20, 24 and 32  lines 

radial mask, respectively; e), f) and g) Reconstructed ISAR image by using 
TV optimization algorithm, from  20, 24 and 32 radial line mask, respectively  

 

 
Figure 3.  ISAR image of the Mig25 

  

We can observe that the ISAR image can be successfully 

reconstructed in all considered cases: by using 33.4%, 38.5%, 

and 49.4% of the total number of samples. Even the image 

reconstructed using only 33.4% of the total number of 

samples, is very similar to the original one. 
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Figure 4.  a), b) and c) ISAR image obtained from the available samples, 
using 20, 24 and 32  lines radial mask, respectively; d), e) and f) 

Reconstructed ISAR image from the radial line mask, with 20, 24 and 32  

lines using TV based optimization  
 

V. CONCLUSION 

Images obtained by using the ISAR technology exhibit 

sparsity property in the 2D Fourier transform domain. This 

fact is used for testing the possibility to apply CS approach for 

the reconstruction of the ISAR images. The samples, called 

measurements, are acquired from the spatial domain. The 

measurement process is modeled by using the radial mask as it 

is done in biomedical imaging applications. It is shown that 

the ISAR images can be successfully recovered from small 

number of acquired samples – approximately with 33% of the 

total number of samples. The performance of the algorithm in 

the presence of external noise could be considered in the 

future work. 
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