
5th Mediterranean Conference on Embedded Computing MECO 2016 Bar, Montenegro

Convexity of the `1–norm based Sparsity Measure
with Respect to the Missing Samples as Variables
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Abstract—Sparse signal processing and the reconstruction of
missing samples of signals exhibiting sparsity in a transform
domain have been emerging research topics during the last
decade. In this paper, we present the proof of the sparsity measure
convexity, when considering the missing samples as minimization
variables. The sparsity measure can be directly exploited in
the reconstruction procedures, such as in the recently proposed
gradient-based reconstruction algorithm. It makes the proof of
sparsity measure convexity with respect to the missing samples as
minimization variables especially interesting for signal processing.
The minimal value of the sparsity measure corresponds to the
set of missing sample values representing the sparsest possible
solution, assuming that the reconstruction conditions are met.
Convexity, along with recently presented proof of the uniqueness
of the acquired solution, makes the gradient-based algorithm with
missing samples as variables, a complete approach to the signal
reconstruction. If the sparsity measure is convex, then we can
guarantee that the solution corresponds to the global minimum
of the sparsity measure, since the local minima do not exist in
that case.
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I. INTRODUCTION

During the last decade, the sparse signal processing and
the compressive sensing (CS) continuously attract a respective
research interest [1]-[17]. These areas are related closely since
the compressive sensing assumes the sparsity of the considered
signal in a transformation domain [1]-[5], [13]. The basic aim,
in general, is to recover all signal values from a reduced set of
observations. The theoretical foundation of the CS and some
representative missing samples reconstruction approaches are
presented in [1]-[5], [7]-[12] and [14].

The reconstruction of missing samples is possible under the
condition that the analyzed signal is sparse in a transform do-
main i.e. it has a concise representation with a small number of
non-zero coefficients. Missing samples, or simply the reduced
set of observations, may arise a consequence of a sampling
strategy or their physical unavailability. In the CS area, the
samples are omitted with the aim to reduce the data size. On
the other side, signal samples may be intentionally omitted
due to a high noise corruption, applying robust processing

techniques such as the L-estimation [5], [15]. The signal
reconstruction process can be interpreted as a procedure of
finding the solution of an undetermined system of equations
having the sparsest transform representation [1]-[15].

The sparsity can be measured by the `0-norm of the signal’s
transform, since it is directly related with the number of non-
zero coefficients. However, as discussed in [5], [15] and [16]
this norm is very sensitive to noise and small quantization
errors, since every small value, even close to zero, equally
contributes to the `0-norm as actual non-zero values. This norm
does not allow simple gradient based minimization approaches
since it not convex as well. These are the reasons why other
norms, for instance the `1-norm, are exploited as sparsity
measures. The idea of using the norms to measure the signal
sparsity, i.e. the signal concentration in a transform domain
was present for decades in the area of time-frequency signal
analysis [18].

It is important to emphasize that the direct application of
the `0-norm in minimization is an NP-hard problem. Relaxing
the reconstruction constraint by involving the `1-norm instead
of the `0-norm has opened the way to the application of
linear programming approaches and methods in the recon-
struction of missing samples. Representative reconstruction
approaches include the convex optimization algorithms, for
example, primal-dual interior point methods. Other approaches
are the iterative procedures such as Orthogonal Matching
Pursuit (OMP), Gradient Pursuit and CoSaMP [1]-[11].

For the topic analyzed in this paper, especially interesting is
the gradient reconstruction algorithm presented in [5]. Namely,
the reconstruction of missing samples is based on their vari-
ation using a steepest descent approach, lead by the sparsity
measure. Since the available samples remain fixed during the
reconstruction process, thus dictating the constraints for the
sparsity measure minimization, the number of minimization
variables is equal to the number of missing samples. The
uniqueness of the solution is considered in detail in [6].
Detailed discussion and adaptations of this algorithm can be
also found in [13], [15], while the initial ideas are presented
in [16].
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The convexity of the sparsity measure guaranties that the
solution of the optimization corresponds to the global min-
imum of this function. Moreover, the convexity guaranties
that the gradient approaches, i.e. converges to the solution
corresponding to the global minimum of the optimization
function. Herein, we provide a proof of the convexity of
the sparsity measure with respect to the missing samples as
variables.

In the next section, we provide the theoretical background
concerning the sparsity measures, and the reconstruction by
varying the missing samples values. As a representative ap-
proach which applies these concepts, gradient algorithm is
revisited. Section III provides the proof of the sparsity measure
convexity. Concluding remarks are given in the end of the
paper.

II. SPARSITY MEASURES AND THE RECONSTRUCTION IN
THE SIGNAL DOMAIN

The sparse reconstruction can be formulated as a minimiza-
tion problem, where the sparsity measure is minimized under
the constraints defined by available samples. Let us observe the
signal x(n) of length N , with M available samples (N −M
missing samples) at random positions

ni ∈M = {n1, n2, ..., nM} ⊂ N = {0, 1, ..., N − 1}.

The set of available samples is given with ycs =
[x(n1), x(n2), ..., x(nM )]T . Let X = [X(0), X(1), ..., X(N−
1)]T be the vector consisted of transform coefficients X(k) =
T[x(n)]. The case study analyzed in this paper is the Discrete
Fourier Transform (DFT), and it is assumed that the signal
has K non-zero transform coefficients, i.e. the sparsity K.
The compressive sensing procedure based on the random
selection/acquisition of signal values can be modeled by using
a random measurement matrix Φ as:

ycs = Φx = ΨΦX = AcsX, (1)

where ycs denotes the vector of available samples of the
analyzed signal. The matrix Acs is obtained from the inverse
DFT matrix Ψ, by omitting the rows corresponding to the
positions of missing samples. The solution of the sparsity
minimization:

min

N−1∑
k=0

|X(k)| subject to ycs= AcsX (2)

corresponds to the values of the missing samples. The function
being minimized is the `1-norm of the DFT coefficients of the
analyzed signal.

The simplest reconstruction procedure is a direct search over
all unavailable samples, by minimizing the sparsity measure.
In the other words, the missing samples can be observed

as minimization variables, with fixed values of the available
samples. Then, one can search over all possible values of
missing samples, aiming to find the combination of their values
which minimizes the sparsity measure. However, this is not
a computationally feasible problem for a large number of
samples. Thus, different CS reconstruction algorithms have
been proposed. A simple and efficient procedure for the
reconstruction of missing samples, with an arbitrary precision,
has been proposed in [5].

A. Review of the gradient reconstruction algorithm

Here, the missing samples are also observed as minimization
variables. Their values are varied until the minimum of the
sparsity measure is reached. To this aim, the gradient of the
sparsity measure is utilized to reach the solution which min-
imizes the optimization function. The procedure corresponds
to the well-known steepest descent (gradient descent) method.

The algorithm starts from the initial signal y(0)(k) contain-
ing zeros at missing samples positions, and values of signal
x(n) at the positions of available samples:

y(0)(n) =

{
0 for n ∈ N \M
x(n) for n ∈M.

The iterative procedure of the reconstruction algorithm can be
summarized as follows:

Step 1: For each missing sample at ni the two signals are
formed: y1(n) and y2(n) in each next iteration as:

y
(k)
1 (n) =

{
y(k)(n) + ∆ for n ∈ N \M
y(k)(n) for n ∈M.

y
(k)
2 (n) =

{
y(k)(n)−∆ for n ∈ N \M
y(k)(n) for n ∈M.

where k is the iteration number. Constant ∆ is used to
determine whether the value of the considered signal sample
should be decreased or increased [5], [15].

Step 2: Estimate the difference of the measures as

g(ni) =M
[
DFT[y

(k)
1 (n)]

]
−M

[
DFT[y

(k)
2 (n)]

]
. (3)

Step 3: Form a gradient vector G(k) with the same length as
the signal x(n) as follows:

G(k)(n) =

{
gr(n) for n ∈ N \M
0 for n ∈M.

In other words, only the positions corresponding to the missing
samples will be updated, while the remaining signal samples
will be unchanged, thus retaining the conditions for the mini-
mization.

Step 4: Correct the values of y(n) iteratively by

y(k+1)(n) = y(k)(n)− 1

N
G(k)(n).
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Fig. 1. The reconstruction using the gradient algorithm for signal with 100
missing samples at random positions - a) original signal (blue lines) and
available samples (red dots); b) Reconstructed signal.

Repeating the presented iterative procedure, the missing
values will converge to the true signal values, producing the
minimal concentration measure in the transformation domain
[15].

Since we use a difference of the measures to estimate the
gradient, when we approach to the optimal point, the gradient
with norm `1 will be constant and we will not be able to
approach the solution with an arbitrary precision. Instead of
moving toward the optimal point we will obtain oscillations,
meaning that the gradient vector completely changes direction
in subsequent iterations. This problem can be solved by
introducing the concept variable step ∆. Namely, as it is
proposed in [13] and [15], when the oscillations are detected,
the step size is reduced, such that the arbitrary precision can
be reached.

Example: Consider the signal x(n) = 4 sin(4πn/128) +
3 cos(42πn/128+pi/8)+5.7 sin(240πn/128) of length N =
128 with M = 28 available samples, as shown in Fig. 1 a).
The signal is sparse in the DFT domain. The result of the
reconstruction by using the gradient algorithm is shown in
Fig. 1 b).

III. THE CONVEXITY OF THE SPARSITY MEASURE

Consider again the signal x(n) that is sparse in the DFT
domain with sparsity K. Assume that the DFT coefficients
at frequency positions k ∈ K are non–zero. The case when
Q = N −M values are missing in the signal x(n), at random
positions qi ∈ NQ = N \M, i = 0, ..., Q − 1 is considered.
The deviations of the signal values at the positions can be
modeled with the signal:

z(n) =

Q−1∑
i=0

ziδ(n− qi). (4)

Thus, the signal with missing samples can be represented as
follows:

y(n) = x(n) + z(n), (5)

whose DFT is Y (k) = X(k) + Z(k), k = 0, ..., N − 1. Then
the sparsity measure, i.e. the `1 norm of the DFT of the signal
y(n) equals to:

M[Y (k)] =

N−1∑
k=0

|Y (k)| =
N−1∑
k=0

|X(k) + Z(k)| =

=

N−1∑
k=0

∣∣∣∣∣X(k) +

Q−1∑
i=0

zie
−j2πqik/N

∣∣∣∣∣ . (6)

Aim is to prove the convexity of the this function. For
the signal with K = 3 with two missing samples the spar-
sity measure is shown in Fig. 2 as the function of missing
samples values. We start from the formal definition of the
convexity. Consider the function M : ZQ → R defined on
a convex set. Then, the function M(z) is convex if for any
two points z1 = (z1,0, z1,1, ..., z1,Q−1) ∈ ZQ and z2 =
(z2,0, z2,1, ..., z2,Q−1) ∈ ZQ, and for any 0 < λ < 1 holds:

M[λz1 + (1− λ)z2)] ≤ λM[z1] + (1− λ)M[z2]. (7)

Left part of (7) can be expressed by using the concentration
measure definition in (6). To this aim, let us analyze (6) with
more details. It can be easily concluded that (6) has the the
largest possible value for given point λz1 + (1 − λ)z2 =
(z1, z2, ..., zQ−1) if, for every k ∈ K, phases of X(k) and∑Q−1
i=0 zie

−j2πqik/N are the same. Then, the measure (6)
becomes:

M(z) =

N−1∑
k=0

∣∣∣∣∣X(k) +

Q−1∑
i=0

zie
−j2πqik/N

∣∣∣∣∣ ≤
∑
k∈K

∣∣∣∣∣X(k) +

Q−1∑
i=0

zie
−j2πqik/N

∣∣∣∣∣+ (N −K)

Q−1∑
i=0

|zi| ≤

∑
k∈K

(
|X(k)|+

Q−1∑
i=0

|zi|

)
+ (N −K)

Q−1∑
i=0

|zi| =

∑
k∈K

|X(k)|+N

Q−1∑
i=0

|zi| . (8)

Now consider the convexity condition (7) for the function
(6). According to the previous analysis, left part of (7) will
have the largest value when the norm (6) is calculated as (8).
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Fig. 2. Sparsity measure as a function of missing samples values

This is the worst case. The convexity condition now becomes:

∑
k∈K

|X(k)|+N

Q−1∑
i=0

|λz1,i + (1− λ)z2,i| ≤

≤ λ

(∑
k∈K

|X(k)|+N

Q−1∑
i=0

|z1,i|

)
+

+(1− λ)

(∑
k∈K

|X(k)|+N

Q−1∑
i=0

|z2,i|

)
After simple rearrangement of the right part, it finally follows:

∑
k∈K

|X(k)|+N

Q−1∑
i=0

|λz1,i + (1− λ)z2,i| ≤

∑
k∈K

|X(k)|+Nλ

Q−1∑
i=0

|z1,i|+N(1− λ)

Q−1∑
i=0

|z2,i| (9)

The left side of (9), according to the triangle inequality, has
the largest possible value |λzi,1 + (1− λ)zi,2| = λ |zi,1|+(1−
λ) |zi,2| for given i, and in the worst case this holds for every
i. In that case, left and right side of (9) become equal, which
proves the fact that the convexity condition is satisfied.

IV. CONCLUSION

The `1 norm of the signal transform coefficients is com-
monly used as a sparsity measure. Since the reconstruction of
missing samples of signals sparse in a transform domain can
be done by varying the missing samples values in the signal
domain as, for instance, in the reviewed gradient algorithm, the
proof of the convexity of the sparsity measure in the context of
missing sample values as variables is very important. In this

paper, we prove the convexity of the sparsity measure, and
revisit the gradient reconstruction algorithm. The case study
transform analyzed in this paper is the DFT.
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[17] E. Sejdić, A. Cam, L.F. Chaparro, C.M. Steele and T. Chau, “Compres-
sive sampling of swallowing accelerometry signals using TF dictionaries
based on modulated discrete prolate spheroidal sequences,” EURASIP
Journal on Advances in Signal Processing, 2012:101 doi:10.1186/1687–
6180–2012–101
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