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Abstract

The concentration and sparsity of signal repregentin the Hermite transform (HT) basis may higbpend on a
properly chosen scaling factor and discrete timé phrameter. In that sense, we propose a simpieedficient
iterative procedure for automatic determinatiorthaf optimal scaling factor. The optimization ciiiberis based on
the £1-norm acting as a measure of signal concentratishé HT domain. Instead of centering the signahatzero
time instant, we also propose to shift the cenderaf few points left or right, which will additiobyaimprove the
concentration. An important application of the mepd optimization approach is the compression ofSQR
complexes, where properly chosen scaling factortame-shift increase the compression performante fesults
are verified using synthetic and real examplesamdpared with the existing approach for the congioesof QRS
complexes.

Keywords Concentration measures, Gradient algorithm, EC@asigHermite function, Hermite transform, QRS

complex

1. Introduction

The Hermite transform (HT) has been studied dutivg last few decades, particularly as an alteradtivthe
Fourier transform [[1]-[16]]. Although covering aide range of possible applications due to manyrésting
properties, Hermite transform has been extensivedyl for the representation of QRS complexes, &gdlyefor their
compression, as well as feature evaluation andaetidn [[1]-[9],[11]]. Other applications includenolecular

biology [[8]], image processing and computed torapdyy [[8],[9],[11]], radar signal processing [[12Physical
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optics [[13]] etc.

QRS complexes, as the most characteristic waveBQ¥ signals, are important for medical diagnosid an
treatments. In the processing and compression @& Ei@nals and QRS complexes, many authors appiffsfenht
kinds of wavelets and corresponding transforms]{[19]]. Recently, it was shown that the Hermitartsform may
provide far better performance, when it is appiatety optimized [[1]]. Namely, the Hermite transfois found to
be a suitable mathematical tool for the represiemtadf QRS complexes due to their similarity witrerrite
functions (HF). In other words, these signals camepresented using a few Hermite coefficients[[f1]J10]]. This
property has been exploited in the developmenewél compression algorithms for QRS complexels[fB, that
established a theoretical framework, having a latlkpractical applications due to use of continualgsnain
functions [[1]]. An algorithm that proposes the wdaliscrete Hermite functions is presented in,[[l]]. Hence, we
start from the HT based algorithm [[1],[2]], whicignificantly outperforms the compression basedotimer
transforms, such as DFT, DCT and DWT, in the apgiims with ECG signals. This approach uses an
experimentally obtained value of the scaling factdnich “stretches” and “compresses” the QRS comfdematch
the orthogonal basis. Herein, we employ a conctotraneasure based algorithm to get optimal HF patars [20].
It leads to better performance of approach propas¢d],[2]]. The idea arises from the currentligractive area of
compressive sensing and sparse signal reconstmyfti4]-[22]]. Hence, an iterative procedure foe ttietermination
of the optimal scaling factor and time-shift is posed leading to the improved compression perfoceaas verified
on real ECG signals database [[23]].

The paper is organized as follows. In Section 2pwarview of the discrete HT calculation for unifdy sampled
signals is provided. The optimization of the sprisdor and time-shift parameter is proposed irti8e@. Section 4

presents the numerical results, while the conclydémarks are given in Section 5.

2. TheHermitetransform
2.1. Discrete Hermite transform
Hermite polynomial of the-th order, widely known among the orthogonal polwials, can be defined as [[1]-

[14], [24]]:
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Thep-th order HF is related with-th order Hermite polynomial as follows:

v,.0)=(02° pin) e 2 H (11 0), )
where the scaling facteris introduced to “stretch” and “compress” HF, mdler to better match the signal [[1]-[10]].

The Hermite expansion is defined as [[1]-[14]]:
f(t)=> c,(to), (3)
p=0

wherec, denotes the-th order Hermite coefficient:

o

c, = [ f(y,(to)dt p=01,...,M~ 1 @

—00

For the numerical calculation of the integral (#¢ Gauss-Hermite quadrature approximation [[1]F&]]:

¢ =13 M f(t), p=0,1,..M-1 (5)

"MW (,0)]
is commonly used, whertts denotes the zeros of tiv-th order Hermite polynomial (1). As it is discuddsa the
literature [[1], [24], 25], there is no closed-forexpression for the roots of the Hermite polynomidllso, some
examples of the roots for the first 10 Hermite polyials are given in [[14]].

In general, for the case of continuous-time signafs infinite number of Hermite functions is needed the
representation of the signal without approximagorors in (3), [[1]]. In the discrete case, it &samed that discrete
HF and analyzed signals are obtained by samplieig tontinuous counterparts at non-equispaced $agnpbints
associated with the roots of Hermite polynomiaid,[R],[4],[13]]. Namely, in that case any discretignal of length
M can be uniquely represented by the expansion aftlxM discrete Hermite functions in (3), i.e., this sign
representation is complete, [[1]].

The time axis scaling factor is used to “stretch” and “compress” HF relativedythe analyzed signdft). As
proposed in [[1],[2]], we can alternatively fix = 1 and introduce an equivalent paramétdo “stretch” and
“compress” the signd(t) relatively to the HF basis.

The inverse and direct HT, (3) and (5) can be amiih matrix-vector notation. Let us introduce HiEe matrix as:
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If we introduce the vector of Hermite coefficients=[c,,c,,...,q, | andf =[f (), f (4t,)...., f (A, )] vector

with M signal samples at the points proportional to thats of theM-th order Hermite polynomialts, Ato,..., Atwm,

according to Gauss-Hermite quadrature formulaH®HT can be written as:
c=W,f. (7)
Having in mind the expansion (3), the inverse tiams matrix is:

%(tpl) llfl(tl,l) 41/M_1([1,1)
W_l= %(tz,l) llfl(tpl) wM—l(tZ']')
H : . .. . .
l//o(tM !1) wl(tM -1) l//M-l ¢M 11)
Based on the previous matrix definitions, the isedf T for the case of discrete signals reads:
f =wc (8)

2.2. Hermite transform of uniformly sampled signals

Consider a continuous-time sigri@) with compact support, such thiaft) =0 fort D[—T,T] , sampled uniformly

to obtain the corresponding finite duration diseftine signaf(n), of odd-lengthM = 2K+1, n = K,..., K, with At
being the sampling period. According to the sangptizeorem, the continuous-time signal can be reoarted and

resampled at the desired poinats Ata, ..., Atm according to:

U= Y. f (nagy SN(70L, ~nAY 184

9
e (At - nAt) / At ©

wherem=1,...,M, n=-K,..., K, or in matrix form:

f=Af, (10)



with f being the vector containing values of signal samalt the desired points= At_, corresponding to zeros of

theM-th order Hermite polynomial (1) arids the vector of original signal samples takerfamily according to the
sampling theorem. In the case of even-length sighal2K, in (9) valuesr =K, ..., K-1 are assumed.
In the expanded form, (10) can be written as:
f(/]tl) a; &, - Ay f(_K)
f(/:]tz) ~ a:Zl a;22 azM f(_|:< +1) ’ (11)
f(/]tM) 81 vz " G f(K)
whereM = 2K + 1 and elementg; being defined with:

a, =sin[m(At - (j- K - DAt) /At] [[7 At - (j - K - DAt ) /4t],

with i,j O{, 2, ... M }. As recently presented in [[26]], the truncatioroe[27] using sinc interpolation is largest for
time instants near the edges of the grid. Howewethe case of compact time-support signals, thecttion error
will be negligible even at the edges (e.g., -50dB gignal given in Example 1). Furthermore, thebfgm of
interpolation of finite signals is also discusseanf the perspective of FIR filter-based sinc intdaion in [27],
where it is emphasized that the truncation effexisld be alleviated by multiplying the interpolatikernel
sin( 77t - nAt) /At) / (7t — nAt) /At) with a window function.

The uniformly sampled signal and the corresponéiiighow can be related by combining (7) and (11) as:

c=W,f=W,A f. (12)

3. Parameter optimization
3.1. Scaling factor

In this Section, we propose to employ the concéintraneasure of the Hermite coefficients veado calculate
the suitable value af, which will allow to represent the signal with masincentrated (or even the sparsest) Hermite
transform vectoc. It is important to emphasize that the criterisméfined such that the classical uniform sampling
of signals is assumed, without need for new samgplievices. The concentration measures, such a§-therm of
transform coefficients, have been used in optinopatwhere it is crucial to concentrate a sigrethgform in a small
number of coefficients [[4],[20]-[22]]. One of theost recent applications is in the compressed sgnshel;-norm

of the HT can be calculated as:
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Thus, the optimal value dfis obtained by solving:

A= argﬁmir"o" = arg mifW, A f|, (14)

Note that (14) is a 1D search problem over theiplessange ofi values. Thus, one can perform the search over
the range of possible values Af finding the one that minimizes the concentratineasure. This range can be
determined such that the roots of the Hermite patyial are mainly placed between the existing samyptioints, as
discussed in [[1]].

The basic idea behind the proposed algorithm igem@tively search for the optimal value starting from a
predefined valug©. In each iteratiotk, a small value\ is added and subtracted from the curfenb determine the
change of concentration measure. Théh,is updated by a value which decreases the meés8ydn a steepest
descent manner. Similar approach was employeddonstruct missing samples of sparse signals [[H].[Z he

algorithm is given as follows:

Algorithm 1. Calculation of the optimal scaling factor

Require:

» Signal vectof of lengthM = 2K + 1
e Step parametar
» Transform matrixVy, calculated according to (6)

1: SetA©® . MAt/[Z(w/ﬂ(M —1)/1.7+ 12)}

2: SetA — 2/t,,
3: Sete ~ 10"

While A> ¢
al+1 a1+2 a:I+M a11 a_].2 a_nn
S e V-Vt IR
a1\+/|1 ar\+/|2 avT/lM q_lll q_/IZ q:IM

. _sin[r((A£A)X - (j-K - 1At) /4]

VT (MDY - (j -K -1)nt) /A L0 2,.. M}

5: M+ < |lc’

M-l M-1
=) W, Af|, | =D |W,A;
1 ZO| +f M_ || _||1 ZO| _f|

p= p=



6: 0% — (M =M )/M

7. Ak 300 _ o0
8: 8 « sign(D(")D(k‘”)
9:1f p<0then A -« A/2

End while
10:Return A®

Here, A“ :MAt/[Z( M -1)/1.7+ 1.8ﬂ is used as the starting point, which is the lobeund for the scaling

factor defined in [[15],[16]] in order to ensuresthonvergence of the algorithm. The valueg ahdA are chosen to
provide optimal results for all considered sign&ld¢oo small stepu leads to slow convergence, while on the other

side 1 should be as small as possible to keep the digoristable (i.e., to ensure that the upper bound

A <[\/7T|\/| 11.7+ 1.8] [ 2] is satisfied [[15],[16]], withW being the frequency bandwidth). Hence, the vafye o
is set up empirically as a trade-off between theserequirements.

Maximal number of iterations corresponds to thenaidength (in the experiments, the convergenaabigined
even for number of iterations equal to the halthaf signal length). The computational complexitythad algorithm
can be approximated as follows (one iteration issitered): a) to generate the argument of thefgimztion in Step
4, we need ®%+2 additions (or subtractions) anM®multiplications with constants; b) the interpotatiis done
with M? multiplications andi(M-1) additions; c) For the two HT calculations, tramplexity is 2?2 additions and
2M? multiplications; d) the concentration measuresiires M-2 additions. Hence, the proposed algorithm reguire
5M?%+M additions and 91> multiplications in total.

Two-dimensional (2D) Hermite transform can be oi#di by calculating one-dimensional Hermite tramafor
separately in both directions [14]. Hence, the pssgl approach can be easily generalized in a Istsmigvard

manner for the case of 2D signals.
3.2. Shift parameter

The basis functions can be also shifted left dutrgjong the time axis [[10]]. Instead of centerthg signal at the
zero time instant [[1],[2]], here we propose toftslaenter for a few sampling points left or riglitefore the

calculation of the coefficients. In other wordsstead of f (nAt), we use: f_(nAt) = f((n+ 1)At) in (9), with
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For every discrete shift valdgoptimal4 is calculated in order to minimize (14). The meastectorlL is formed
containing the minimal measure value (14) obtaifmdthe optimall, for every considered We find thel

corresponding to the minimal valuelof solving:

| =argminL
9I (15)

Note thatlmax has a small value, e.fhax = 3 for the case of QRS complexes, and thus a@tdsearch in (15) is
applied. The integer shift values are used in paper, since the fractional shifts may require dditeonal

interpolation which causes difficulties in the nmiization of the concentration measure [[10]].

4, Numerical results

Example 1: Let us observe the signal of the form:

f (t) = -3sin(5t )exp{— (gﬂatzz ) (16)

0
with M = 61, g,=1.25, -1/2<t<1/2, sampled withAt=1/M to obtain discrete values at the uniform grid
n=-(M-1/2,..,(M - 1)/z Original signal with uniformly sampled points aride corresponding Hermite
coefficients with o=1 are shown on Fig. 1 (a) and (b) respectively. Nbtg the signal is characterized by the
compact time support and it has the similar shap¢éha Hermite basis functions. Hence, these typesigoals

(windowed or low-pass filtered sinusoids, QRS sagsjeshort-duration signals such as FHDSS, or U\igBads)

are amenable to the proposed approach.

Original signal Standard Hermite transform
0.5
0.2 ‘ [
0 0 l NNLTN"“"
(@) -0.2 ‘ (b)
-0.5
-30 -20 -10 O 10 20 30 0 20 40 60
n p
Signal resampled by using optimal Optimized Hermite transform
0.5 0
-0.2
0 -0.4
-0.6
- d
05 (c) -0.8 (d)
-30 -20 <10 0 10 20 30 O 20 40 60

At p

m



Fig. 1. Scaling factor influence on the HT: (a) originagrsal (16) and (b) the corresponding Hermite cokfits; (c) optimally

scaled signal resampled at the roots of Hermitgrmwhial, and (d) Hermite coefficients of resampdaghal

The proposed iterative procedure has been appiiedder to find the most concentrated HT of theamgsded
signal. The obtained result 5= g,At =1.25/M since we have intentionally incorporated the sprfe@tor as the
parameter of the Gaussian window in (16). The resaansignal with appropriately rescaled time asenpled at
the roots of thévi-th order Hermite polynomial, and correspondingrhiee coefficients are shown on Fig. 1 (c) and
(d). We can observe that the optimal value of tbalisg factor will assure that there is only ongngficant
coefficient atp = 2, while other coefficients are close or eqoatédro.

In order to check whether the proposed algorithmddithe optimal value, the concentration measucal@ulated
for different values of scaling factot: 1/At< A /At < 2/At, varied with the stef®.01/At. The results are plotted

in Fig. 2a, where the global minimugy,, =1.25/At is clearly visible on the curve.
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Fig. 2. a) The concentration measure in terma/at, b) the learning curve gf/At through the iterations
Here, it is assumed that the lower and upper boahdsre satisfied [[15],[16]]. Lower bound is contedl by the
algorithm initialization, and suitably chosen stepssures that the upper bound is never reachetislimterval, a
global minimum is expected to exist, correspondiogthe most concentrated Hermite transform. Fuythies
learning curve oA/At with respect to iteration number is given in R2. It can be observed that, as the algorithm
reaches the minimum of the concentration measus&bilizes.
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Fig. 3. MSE caused by the sinc interpolation kernel

The influence of truncation error introduced by fivdte sinc kernel is also examined calculating tMSE
between the interpolated signg|, (At,) (interpolation is done based on uniform samf(esand relation (10)) and
the original (analytic) signal (16) observed atrp®it = At : MSE:ﬁZ:J f.(A1)- f(1 ;n)|2. Hence, the signal
lengthM is varied from 21 to 401 samples (with step 2)e Tdsults are shown in Fig. 3 (logarithmic scalegng
that even the largest error caused by sinc intatiool is as small as -50dB.

Example 2: In the framework of the considered compressiomlern, it is important to represent QRS complexes
with the smallest possible number of coefficientith a medically acceptable error. The compressilgorithm
proposed in [[1]] and [[2]] operates as followsidtassumed that the ECG signal (i.e. QRS com{xs sampled
at pointsity, Aty,..., Aty, to obtain the vectof . Then the HT coefficientsare calculated by (7). Further, the vector
is formed by keeping largest coefficients ia and setting others to zero. The signal approxonatan be obtained
according to (8):

f=we (17)

Here, we will refer to the algorithm presented ff],[2]] which can be further improved, by the posed
optimization of the scaling factor and time-shithe continuous signd{t) was sampled at the poimis, Ata,..., Atv,
where the scaling factor is chosen to obtain smallest number of coeffigant¢ under the condition that the

relative reconstruction error:

i1l
I, (18)

is below 10%, which is medically acceptable [[1]][2However, several problems arise. To determive dptimal
scaling factori, starting from the continuous ECG signals, sangptirocess needs to be repeated for e¥drgm a
suitable range of possible values, which can texlanical problem for sampling devices. Then, thei¢i@alculated
for every possible, and (18) is used to find the optimiasuch tha€& < 10%. The other possibility is to use a fixed
value of . However, it can be shown that impropeteads to the larger number of Hermite coefficieimtsC.
Moreover, our experiments as well as those in[#llJshow that each QRS complex has a differeninogitvalue of

A, which means that the sampling device has to hérmumusly readjusted. On the other side, whenimgalith the

discrete QRS complexes in [[1]], the signal is negled according to (11) and search for the optiinial done by
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measuring the compression ratio, which has to beimized under the condition th& < 10%. However, this
approach is numerically exhausting, since bothctliamd inverse Hermite transform need to be caledlfor each
observed number of largest coefficients and fohéac

In this paper, we propose to search for an optiindly minimizing the concentration measure, before th
compression is done. The compression procedureris ds in [[1]], while the improvement is providesing the
scaling factor optimization and the time-shift oiiation based on concentration measure (14).

We have extracte@ = 1486 QRS complexes, from the first 10 secondthénfirst leads of 168 ECG signals

obtained from the MIT-BIH Compression Test Datal{f&&]]. The signals are uniformly sampled witkt =1/ 250
. Three different signal lengths are used [2K +1D{ 27, 29, 3}1. The compression results are shown in Table | as

the average number of coefficients (producings 10%) and the average compression ratio:

ACR:ZEO(ZKi +1)/220|_i ,whereL,; is the number of nonzero HT coefficients in thla complex producing <

10%, Xi+1 is the length of theth QRS complex. The second column (as well ashing and the fourth) shows the

result published in [[1]].

Tablel
Average number of coefficients and compressiom ffati 10% approximation error

Comparisor Proposed H” HT basec DFT- DCT-
criterion algorithm  algorithmin[1]  based based
Averagt number of 5.0 5.8 8.3 7.3
coefficients
Averag 6.2 5.3 3.7 4.3

compression ratio

In the original approach [[1]] that uses a demagdiearch approach over all possihleand average number of 5.8
coefficients is needed for the proper reconstructiith E < 10%. The proposed method (first column of Table 1)
shows further improvement, if the set of consideret-shifts is extended with,, =3, |0{-3,-2-1,0,1, 2,B.
Namely, when both the time-shift and scaling faet@ optimized as proposed, the same error lewadhieved even
if only 5 coefficients are used, which means that improvement over the original algorithm is abd818%. The
average value of the scaling factor over @l = 1486 QRS complexes isl/At= 4.249% (in seconds
A= 4.2495/256@ 0.01, which is the value experimentally obtained infJj[Zhus confirming the accuracy of the

proposed approach). The stgp=0.05is used in the experiment.
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Let us consider the estimate of average nhumbeit®pbr sample: a) for the time domain we have € bpin the
case of optimized HT, there are 5 most importaakvalued coefficients out of 31 within QRS complexe zero
value may appear between 5 nonzero coefficients,6aroefficients are count to be encoded), whicults in the
rate 2 bps; c) in the case of DFT, there are apmately 8 most important coefficients (with realdaimaginary
parts) to be encoded out of 31, which is approxitgat bps in average.

An example of the analyzed QRS complexes frondttabase [[23]] is shown in Fig. 4. Original sigisathown
on Fig 4. (a), with the Hermite coefficients in Hig(b). The concentration measure is lowest fertitme-shiftl = 1,
with the corresponding optimal scaling factdf At =0.435Z (in secondd =0.017€). The optimally shifted signal
resampled at the roots of Hermite polynomial (Wih= 27 andl /At =0.4352) is shown in Fig 4. (c), with the

Hermite coefficients given in Fig. 4 (d). The restncted signal is given by dash-dotted line in Big(c).

Original QRS complex Standard Hermite transform
1
Amplitude [mV] 200
0.5 100
O 0 [I[TTTTTT™
-0.5 -100
-1 (a){ 200 (b)
-0.05 0 005 O 5 10 15 20 25
nAt [s] p
Signal resampled by using optimaandm Optimized Hermite transform
1 hd ®. 20y et
Amplitude [mV] 0 (g‘ :
0.5 -100
0 -200
-0.5 300
-1 C d
O] 400 Q)
-0.05 0 0.05 0 5 10 15 20 25
)\tm [s] p

Fig. 4. Optimal scaling, shifting and resampling of QRS ptew: (a) original signal (blue) and its shiftedrsien (red); (b)
Hermite coefficients of the original signal (stardiddermite transform); (c) shifted resampled sigwéh the optimal scaling
factor (solid line) and reconstructed signal udimgest 4 Hermite coefficients (relative error <4)) (d) Optimized Hermite

transform of rescaled and resampled signal (ciméeste largest 4 coefficients)

Example 3: It is interesting to emphasize that the same amir@an be applied to other types of signals sach a
the T waves of ECG signals, but also to the comgngmnesent UWB signals (known as Gaussian doublets).

Transmitting common Gaussian pulses directly to ahtennas results in filtered pulses modeled asrevative
operation producing [[29]—[31]]:s(t)=[1— 4ﬂ(t/rm)1 e2Mm)" A discrete version of this signal is considered,

sampled at 2GHz, of length 100 ns and wiff+ 22.2 ns. The results of applying the proposed methothereCG
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T waves are shown in Fig. 5a. After applying thepmsed algorithm, the observed part of ECG sigaal loe
represented with only 14 coefficients out of 108%), assuring the relative error (18) smaller ti&86. The
average number of coefficients for the entire MITHBCompression Test Database (first leads, firss@€onds of
168 ECG signals) [23] is approximately 23% of tb&ltlength. In the case of UWB signals, the alfjoni shows a
high level of efficiency, providing a compact supgpwith only 2 significant coefficients (Fig. SbiHence, in the
context of UWB signals, the proposed approach hastential in the design of UWB receivers, allowihg signals

to be easily detected at the receiver.

Original ECG T wave Standard Hermite transform Gaussian doublet (UWB signal) Standard Hermite transform
0.6 1
Amplitude [mV] L 15
0.4
200 05 1
0.2 0.5
. 100 0 . I
) lll;g;ta---
0 os e
-0.2 . -0.5
-02 -01 0 0.1 0.2 20 40 60 80 100 -50 0 50 O 20 40 60
nAt [s] p nAt [ns] p
Signal resampled by using optimaandm Optimized Hermite transform Signal resampled by using optimal Optimized Hermite transform
0.6 Y
Amplitude [mV] 1 0s
0.4 200
0.5
0
0.2 100f
0 -
0 0.5
-0.2 -0.5 -1
-02 -01 0 0.1 0.2 60 80 100 -50 0 50 0 20 40 60
)\tm [s] p )\tm [ns] p
a) b)

Fig. 5. a) Application to ECG T waves, b) applicationtie UWB signals
5. Conclusion
An optimization approach for the Hermite transfosealing factor and time-shift is presented. Conegion
measure of the transform is employed as the opditioiz criterion. An iterative algorithm for the $iog factor
search is presented. The results are confirmedtndynthetic signal and real ECG signals. Theeuriesl theory is
applied in the compression of QRS complexes, reduttie average number of coefficients that neduetstored.
Finally, it has been shown that the same concaptbeaalso applied to other segments of ECG signalh(as T

waves), but also to the UWB signals in communicetio
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