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Abstract — In this paper genetic algorithm is applied in the
reconstruction of signal with missing samples, spae in a
transformation domain. DFT is considered as a domairof
sparsity, without loss of generality. The reconstruiion is

performed as a minimization of the #Zi-norm based

concentration measure, with missing samples actingas
minimization variables. Parameters of the genetic lgorithm
are set based on a numerical study, taking into aoant the
nature of the considered minimization problem. The
proposed genetic algorithm parameters setup provide an
efficient reconstruction of missing samples under he
assumption that the standard reconstruction conditbns are
met.
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I. INTRODUCTION
COMPRESSEDsenSing (CS) and sparse signal processi

Srdjan Stankodj Senior Member, IEEE

During the last decade of extensive researcharateas
of compressive sensing and sparse signal processary
different reconstruction approaches have been dpedl
The basic principle, however remains the same:estite
undetermined system of linear equations descrilireg
available signal measurements, by adding the instr
that the solution of this system has to be the sgsar
among the all possible solutions. Hence, the rdoaction
of missing samples can be observed as the probleheo
sparsity minimization of transformation coefficisntinder
the constraints dictated by the system of linearaéiqns
representing the available data [1]-[5], [10], [17]

As it is equal to the number of non-zero transform

coefficients, th&/o-norm is a natural choice for measuring

the sparsity [1]-[9]. However, a direct minimizatiof this
measure is not computationally feasible. Hence, the

reconstruction constraint is relaxed by engaging &h

ng

are closely related areas in the modern sign8P'mM as a measure of signal sparsity, as the deselo

processing [1]-[17]. The reconstruction of missg@mples
is possible under the assumption that the sigrgpasse in
a transformation domain, meaning that
represented with a small number of
transformation coefficients [1]-[9]. This number obn-
zero transform coefficients is referred to as spars

In the compressed sensing, missing samples arise apyrsuit

consequence of a specifically chosen samplingegyatin
order to reduce the number of samples needed doagst
and transmission of the signal, aiming to presinesfull
information contained within the signal at the satinee
[1], [2]. In some applications signal samples canldst
during the transmission over the communication obén
In many real scenarios, signal samples can be imau
with strong disturbances (noise) and consequeittlis
more adequate to intentionally omit this corruptiata
rather than engage it in the further processirgsthative
example is the application of the robust signalkpssing
and L-statistics [10], [16], [17]. Signal reconstion

it can bengaged ¢;-norm
non-zeér@pproaches have been exploited and new developed,

theory proves the equality of the obtained miniricra
results under certain conditions [1]-[8], [16], [1As the

is convex, different reconstruction

including linear programming approaches, primalidua
interior point methods, CoSaMP, Orthogonal Matching
(OMP), Gradient Pursuit, Gradient-based
reconstruction algorithm etc. [1]-[3], [5], [9], 31, [14]. It
is important to emphasize that in the gradient-ase
reconstruction algorithm originally proposed in J13:-
norm is minimized by engaging the values of missing
samples as minimization variables. Recently, a fpajo
the convexity of the/;-norm with respect to the missing
samples as variables was presented [15].

Genetic algorithms (GA) are widely used stochastic
optimization methods [19]-[24]. However, there gust

few interesting applications in signal processif@As
have been applied in signal parameter estimati@h [&

algorithms and methods developed within the frantewothe processing of radar signals, after the remo¥ahe
of the compressed sensing and sparse signal pimegessnicro-Doppler, GA was applied in the rigid body

can deal with all these scenarios in the same nmdh@g
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reconstruction [24]. Starting from an initial pogtibn
consisted of a certain number of possible problem
solutions represented by chromosomes, the algorithm
emulates the natural process of the evolution, ighoy

the chance of surviving and recombination to thstbe
adopted individuals, having the highest fithessrotigh

the generations the average fithess of the newlabpos
increases, as they are consisted of the best ¢hdils



from previous generations, and their recombinat[@ds$. The idea is to vary these values, in order to mirenthe
The paper is organized as follows. In Sectionhi t sparsity measure, i.e. the fitness function (2)jlevthe
basic theory dealing with the considered CS probiem values of available samples remain unchanged [Li3¢

provided. Section Il presents the GA setup for thalgorithm can be briefly described as follows.
reconstruction of missing samples. Numerical resale
presented in Section IV, while the concluding rekaaare TABLE I: PROPOSEDGENETIC ALGORITHM SETUP

given in Section V. ]
Max. No. of generations 500

Il BASIC THEORY Fitness function ¢1-norm of DFT coefficients
The sparse signal reconstruction can be observeal as calculated for the signal
sparsity measure minimization under the constraints whose missing samples are

defined by the available samples. Let us obsemesitnal equal to the values contained
x(n) of length M, with Ma available samples, that is, within  the individual's
M — Ma missing samples at random positions. Let us chromosomes.
denote withx the vector consisted of all signal samples. It Population
is assumed that the signal is sparse in the trematmn size 3x30
domain, whereas the signal transform is definedthszy type double vector
transform matrix¥ , andX = [X(0), X(1), ...,X(M - 1)]"is Initial population
consisted of transform coefficients calculated Xy ¥x . distribution uniform
Let us denote withkcs the vector consisted of available range [min(ycs),maxycsj
samples at random positions Fitness scaling
type shift linear
UM, ={rh’nz""’rMA} oM ={01..M- L s}::gling constant 2
i i i Selection function remainder selection

The compressive sensing based random selection fjite count 1

signal values can be modeled as: Crossover
Yoo = OX = OV X = A X, 1 Muta:i):)pne scattered

where @ represents a random measurement matrix and  tyPe Gaussian
Acs is formed from the inverse transform matMx™ by . |n_|t|al gtan(_jard dev. 0.3

i~ . . . Migration direction forward
omitting rows corresponding to missing samples timss. Hybrid function fminunc

The CS-based reconstruction algorithms try to fimel set
of values of missing samples that minimize the sipaof _ o _ o
the corresponding transformation coefficients, trisl can First, the initial population of 90 individuals fsrmed.

be formulated as the following optimization problem The problem is represented by a multi-populatioith 8
o1 sub-groups of 30 individuals. Our numerical anaysas
. . hown some results improvement when this concept is
min Y |X (k) subject to/., = A N P p
é' (k) Ject 10/es = Ac ) used. Each individual represents the set of passiblues

at the positions of missing samptesSM \M ,, coded by

The solution of (2) can be found by varying thegble a vector of real numbers with double precisidn).

values of missing samples, starting from some ahiti Initially. each value is chosen randomly with unifo
values, e.g. zeros, while preserving the valuesvaflable Y, y

samples. For a large number of missing samples trﬁléstr!butlon W'th',n the bounds dgfmed by minimaida
procedure, however, is not computationally feasibled maximal values in the set of available samples.nT figr

consequently, solvers based on convex optimizadicn 500 generations, the following steps are taken. fithess
utilized. Another possible reconstruction appro@dbased of each individual is calculated as tlgnorm of the

on the sparsity measure minimization by varying thgansform vector of the analyzed signal, whose imiss
missing samples values in a steepest descent MHBIEr \aues are equal to the individual's chromosomese T

[14]. available samples remain unchanged. In other wdads,

IIl. GENETIC ALGORITHM-BASED RECONSTRUCTION OF  each individual in the observed generation, thasfiam
MISSING SAMPLES coefficients are calculated for signals of the form

The optimization problem (2) can be solved by ajmgly yo(n) nCOM
the genetic algorithm. A detailed GA overview adlvas y(n) ={ et A
realization details are given in [19] and [20]. The h(n),  nOM\M ,
algorithm simulates the natural process of evofytioy
selecting the individuals i.e. the possible probkatutions
represented by chromosomes that have the highéshma M-1

to the selected fitness function. In the considgnexblem ”Y"l = Z |Y(k)| ' (4)
framework, the population is consisted of individua k=0

which represent the possible values of missing #8np whereY is the vector of transform coefficients of signal

®3)

in order to obtain



(3) with h(n) being chromosome values, that is, the
repregenti

possible values of the missing samples,
individuals of the GA populationThe raw fitness scores
are then scaled by applying the scaling functioavkm as
‘shift linear’, which enables the fitness scalimgthe way
that the expected result for the fittest individisaéqual to
twice of the average score [21]. After the fitnesscaled,
the selection function is applied in order to cheodke
parents for the next generation. Our numerical kEitrans
have shown that the best results are obtained ing tise
so-called ‘remainder selection function’. It takelse
integer part of each individual (which is previgustaled
by the scaling function) to determine the numberitsf

appearance in the list of possible parents. Nekxg t

roulette selection is used on the remaining fractigart
[21]. The ‘scattered’ crossover of the winnerseasfprmed
to form the children, where a random binary vedsor
formed. At the positions of ‘1’ genes from the fiparent
are used to form the new individual, and at thetjpos of
‘0’ genes of the second parent are used. The roatagi
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Fig. 2. MSE in the reconstruction of the four-coment signal
with missing samples from Example 1. The MSE isvsho
versus the number of missing sampMs- Ma. The results are
shown in logarithmic scale.

IV. NUMERICAL RESULTS

Gaussian, and it adds a random number with zerammmea In order to illustrate and verify the presentedotlye as

value to each entry of the parent vector [21], vitiial
standard deviation 0.3 which linearly decreases tie
generations, until it reaches the zero value in lds
generation. The migration is done in the forwangction,
towards the last subpopulation.

well as to confirm that the GA-based reconstructiesults
are in accordance with the CS theory, the following
numerical experiments were taken.

Example 1:To illustrate the reconstruction capability of
the proposed approach, we observe a four-component

The presented GA setup is based on a large nunibersignal sparse in DFT domain, defined as:

numerical experiments, and it is summarized inTihble
I. Each parameter is chosen by varying its valuer akie
possible range, and selecting the one that minenthe
reconstruction error.

Orlglnal S|gnal
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Reconstructed and original signal

Fig. 1. The reconstruction of signal with missimgrples: (a) the
original signal with all samples available, (b) teignal with
zeros at missing samples positions, (c) the reoactsd signal
(dots) and the original signal (circles).

10/m

x(n):4sin( j+ 35ir(
M
9om nj

+5.7co:{607mj+ 2COE +—
M M

and with lengthM = 128. TheM — Ma = 80 samples are
missing at random positions, i.e. 37.5% signal dasnpre
available. The signal sparsityis= 8, as each sinusoid has
two non-zero coefficients in the DFT domain (it is
assumed that the components are placed on thesfregu
grid).

The GA with the proposed parameter setup is agpjtie
the reconstruction of missing samples. The recoostm
results are shown in Fig. 1, where the reconstndiiSE
is -60.22 dB.

Example 2: The reconstruction results are highly
dependent on the number of missing samples. Hence,
order to additionally verify the results preseniedthe
Example 1, the following experiment was carried. diite
signal (5) was considered again. The number of ingss
samplesM — Ma was varied from 1 tdM — 1, and MSE
calculated for eactM — Ma, based on 40 independent
realizations of the signal with random missing sksp
positions. The reconstruction MSE calculated as

MSE=213"| X1~ %.( 0

+ =

40m nj
+
)

(6)

is shown in Fig. 2, confirming that with the incseaof the
number of missing samples, the reconstruction acgur
decreases, as expected by the CS theory, anchth&A-
based reconstruction results match the theoretical
expectations.

Example 3:Consider the signal of the form:



x(n>=§A.sin[2nkﬁ+6rj %

i=1

(1
(2
(3]

of lengthM = 64, with sparsityK = 2s, wheres is the
number of real sinusoids. The number of real siissis
varied from 1 toM / 2, with step 2. Amplitudes,
frequencies and phases are chosen randomly, wiitbriom
distribution, within the intervals defined b@< A <4,

0<k <M/2-1and0< g < 2T respectively.

The number of missing samples is also varied frotm O
M - 1 with step 2. For each possible valuesadnd for
each observed number of missing samples tjgl
reconstruction MSE was calculated based on
independent realizations of (7) withiven number of [7]
randomly positioned missing samples. The results ar
shown in Fig. 3. Blue values correspond to a sma[lé]

reconstruction MSE. The reconstruction is succéssfu
when M, = 2K is satisfied, as it is theoretically expected
[9]
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Fig. 3. MSE in the reconstruction of teeomponent signal with

M — Ma randomly positioned missing samples, shown vessus[17]
and M — Ma. The MSE takes values defined by the color bar
presented above. 18]
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[16]

V. CONCLUSION

The reconstruction of signals with missing samptes (19]
considered. The concentration i.e. the sparsitysomeais |2
minimized by varying the missing samples valuese Th
genetic algorithm, well known for its efficient sehing [21]
capabilities of large spaces of possible solutisrepplied 122]
in the considered problem framework. A suitable GA
parameter setup is proposed for solving the pdaticu
minimization problem arising in the CS and spaigaad
processing. The presented theory is numericallyfisdr
on signals sparse in DFT domain. The applicatiothef
proposed approach on real-life signals sparse in a
transform domain is straight-forward. Our furthesearch
is oriented towards the comparison of the numerical
complexity between the presented GA-based appraagh
existing CS reconstruction algorithms, applied in
calculation demanding CS problems, such as in the
reconstruction of large digital images with misspigels.

[23

[24]
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