
  

  
Abstract — In this paper genetic algorithm is applied in the 

reconstruction of signal with missing samples, sparse in a 
transformation domain. DFT is considered as a domain of 
sparsity, without loss of generality. The reconstruction is 
performed as a minimization of the ℓ1-norm based 

concentration measure, with missing samples acting as 
minimization variables. Parameters of the genetic algorithm 
are set based on a numerical study, taking into account the 
nature of the considered minimization problem. The 
proposed genetic algorithm parameters setup provides an 
efficient reconstruction of missing samples under the 
assumption that the standard reconstruction conditions are 
met. 

Keywords — Compressed sensing, Concentration 
measures, Digital signal processing, Genetic algorithms, 
Sparse signal processing. 

I. INTRODUCTION 

OMPRESSED sensing (CS) and sparse signal processing 
are closely related areas in the modern signal 

processing [1]-[17]. The reconstruction of missing samples 
is possible under the assumption that the signal is sparse in 
a transformation domain, meaning that it can be 
represented with a small number of non-zero 
transformation coefficients [1]-[9]. This number of non-
zero transform coefficients is referred to as sparsity.  

In the compressed sensing, missing samples arise as a 
consequence of a specifically chosen sampling strategy, in 
order to reduce the number of samples needed for storage 
and transmission of the signal, aiming to preserve the full 
information contained within the signal at the same time 
[1], [2]. In some applications signal samples can be lost 
during the transmission over the communication channels. 
In many real scenarios, signal samples can be corrupted 
with strong disturbances (noise) and consequently, it is 
more adequate to intentionally omit this corrupted data 
rather than engage it in the further processing. Illustrative 
example is the application of the robust signal processing 
and L-statistics [10], [16], [17]. Signal reconstruction 
algorithms and methods developed within the framework 
of the compressed sensing and sparse signal processing 
can deal with all these scenarios in the same manner [10]. 
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 During the last decade of extensive research in the areas 
of compressive sensing and sparse signal processing, many 
different reconstruction approaches have been developed. 
The basic principle, however remains the same: solve the 
undetermined system of linear equations describing the 
available signal measurements, by adding the constraint 
that the solution of this system has to be the sparsest 
among the all possible solutions. Hence, the reconstruction 
of missing samples can be observed as the problem of the 
sparsity minimization of transformation coefficients, under 
the constraints dictated by the system of linear equations 
representing the available data [1]-[5], [10], [17].  
 As it is equal to the number of non-zero transform 

coefficients, the ℓ0-norm is a natural choice for measuring 

the sparsity [1]-[9]. However, a direct minimization of this 
measure is not computationally feasible. Hence, the 

reconstruction constraint is relaxed by engaging the ℓ1-

norm as a measure of signal sparsity, as the developed 
theory proves the equality of the obtained minimization 
results under certain conditions [1]-[8], [16], [17]. As the 

engaged ℓ1-norm is convex, different reconstruction 

approaches have been exploited and new developed, 
including linear programming approaches, primal-dual 
interior point methods, CoSaMP, Orthogonal Matching 
Pursuit (OMP), Gradient Pursuit, Gradient-based 
reconstruction algorithm etc. [1]-[3], [5], [9], [13], [14]. It 
is important to emphasize that in the gradient-based 

reconstruction algorithm originally proposed in [13], ℓ1-

norm is minimized by engaging the values of missing 
samples as minimization variables. Recently, a proof of 

the convexity of the ℓ1-norm with respect to the missing 

samples as variables was presented [15]. 
 Genetic algorithms (GA) are widely used stochastic 
optimization methods [19]-[24]. However, there are just 
few interesting applications in signal processing. GAs 
have been applied in signal parameter estimation [22]. In 
the processing of radar signals, after the removal of the 
micro-Doppler, GA was applied in the rigid body 
reconstruction [24]. Starting from an initial population 
consisted of a certain number of possible problem 
solutions represented by chromosomes, the algorithm 
emulates the natural process of the evolution, providing 
the chance of surviving and recombination to the best 
adopted individuals, having the highest fitness. Through 
the generations the average fitness of the new populations 
increases, as they are consisted of the best individuals 
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from previous generations, and their recombinations [24]. 
 The paper is organized as follows. In Section II the 
basic theory dealing with the considered CS problem is 
provided. Section III presents the GA setup for the 
reconstruction of missing samples. Numerical results are 
presented in Section IV, while the concluding remarks are 
given in Section V. 

II. BASIC THEORY 

The sparse signal reconstruction can be observed as a 
sparsity measure minimization under the constraints 
defined by the available samples. Let us observe the signal 
x(n) of length M, with MA available samples, that is,  
M – MA missing samples at random positions. Let us 
denote with x the vector consisted of all signal samples. It 
is assumed that the signal is sparse in the transformation 
domain, whereas the signal transform is defined by the 
transform matrix Ψ , and X = [X(0), X(1), …, X(M - 1)]T is 
consisted of transform coefficients calculated by =X Ψx . 
Let us denote with xcs the vector consisted of available 
samples at random positions 

 { } { }1 2, ,..., 0,1,..., 1 .
AMn n n n M∈ = ⊂ = −AM M  

 The compressive sensing based random selection of 
signal values can be modeled as: 

 1 ,−= = =cs csy Φx ΦΨ X A X   (1) 

where Φ represents a random measurement matrix and 

ACS is formed from the inverse transform matrix 1−
Ψ  by 

omitting rows corresponding to missing samples positions. 
The CS-based reconstruction algorithms try to find the set 
of values of missing samples that minimize the sparsity of 
the corresponding transformation coefficients, and this can 
be formulated as the following optimization problem: 
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 The solution of (2) can be found by varying the possible 
values of missing samples, starting from some initial 
values, e.g. zeros, while preserving the values of available 
samples. For a large number of missing samples this 
procedure, however, is not computationally feasible, and 
consequently, solvers based on convex optimization are 
utilized. Another possible reconstruction approach is based 
on the sparsity measure minimization by varying the 
missing samples values in a steepest descent manner [13], 
[14]. 

III.  GENETIC ALGORITHM-BASED RECONSTRUCTION OF 

MISSING SAMPLES 

The optimization problem (2) can be solved by applying 
the genetic algorithm. A detailed GA overview as well as 
realization details are given in [19] and [20]. The 
algorithm simulates the natural process of evolution, by 
selecting the individuals i.e. the possible problem solutions 
represented by chromosomes that have the highest match 
to the selected fitness function. In the considered problem 
framework, the population is consisted of individuals 
which represent the possible values of missing samples. 

The idea is to vary these values, in order to minimize the 
sparsity measure, i.e. the fitness function (2), while the 
values of available samples remain unchanged [13]. The 
algorithm can be briefly described as follows. 

 
TABLE I: PROPOSED GENETIC ALGORITHM SETUP 

Max. No. of generations 500 
Fitness function ℓ1-norm of DFT coefficients 

calculated for the signal 
whose missing samples are 
equal to the values contained 
within the individual’s 
chromosomes. 

Population  
size 3 30×  
type double vector 

Initial population  
distribution uniform 
range [ ]min( ),max( )cs csy y   

Fitness scaling  
type shift linear 
scaling constant 2 

Selection function remainder selection 
Elite count 1 
Crossover  

type scattered 
Mutation  

type Gaussian 
initial standard dev. 0.3 

Migration direction forward 
Hybrid function fminunc 

 
First, the initial population of 90 individuals is formed. 

The problem is represented by a multi-population, with 3 
sub-groups of 30 individuals. Our numerical analysis has 
shown some results improvement when this concept is 
used. Each individual represents the set of possible values 
at the positions of missing samples \ An∈M M , coded by 

a vector of real numbers with double precision, h(n). 
Initially, each value is chosen randomly with uniform 
distribution within the bounds defined by minimal and 
maximal values in the set of available samples. Then, for 
500 generations, the following steps are taken. The fitness 

of each individual is calculated as the ℓ1-norm of the 

transform vector of the analyzed signal, whose missing 
values are equal to the individual’s chromosomes. The 
available samples remain unchanged. In other words, for 
each individual in the observed generation, the transform 
coefficients are calculated for signals of the form: 
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in order to obtain 
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where Y is the vector of transform coefficients of signal 



 

(3) with h(n) being chromosome values, that is, the 
possible values of the missing samples, representing 
individuals of the GA population. The raw fitness scores 
are then scaled by applying the scaling function known as 
‘shift linear’, which enables the fitness scaling in the way 
that the expected result for the fittest individual is equal to 
twice of the average score [21]. After the fitness is scaled, 
the selection function is applied in order to choose the 
parents for the next generation. Our numerical simulations 
have shown that the best results are obtained by using the 
so-called ‘remainder selection function’. It takes the 
integer part of each individual (which is previously scaled 
by the scaling function) to determine the number of its 
appearance in the list of possible parents. Next, the 
roulette selection is used on the remaining fractional part 
[21]. The ‘scattered’ crossover of the winners is performed 
to form the children, where a random binary vector is 
formed. At the positions of ‘1’ genes from the first parent 
are used to form the new individual, and at the positions of 
‘0’ genes of the second parent are used. The mutation is 
Gaussian, and it adds a random number with zero mean 
value to each entry of the parent vector [21], with initial 
standard deviation 0.3 which linearly decreases over the 
generations, until it reaches the zero value in the last 
generation. The migration is done in the forward direction, 
towards the last subpopulation. 

The presented GA setup is based on a large number of 
numerical experiments, and it is summarized in the Table 
I. Each parameter is chosen by varying its value over the 
possible range, and selecting the one that minimizes the 
reconstruction error. 

 
Fig. 1. The reconstruction of signal with missing samples: (a) the 
original signal with all samples available, (b) the signal with 
zeros at missing samples positions, (c) the reconstructed signal 
(dots) and the original signal (circles). 

 
 

Fig. 2. MSE in the reconstruction of the four-component signal 
with missing samples from Example 1. The MSE is shown 
versus the number of missing samples M – MA. The results are 
shown in logarithmic scale.  

IV.  NUMERICAL RESULTS 

In order to illustrate and verify the presented theory, as 
well as to confirm that the GA-based reconstruction results 
are in accordance with the CS theory, the following 
numerical experiments were taken.  

Example 1: To illustrate the reconstruction capability of 
the proposed approach, we observe a four-component 
signal sparse in DFT domain, defined as: 
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  (5) 

and with length M = 128. The M – MA = 80 samples are 
missing at random positions, i.e. 37.5% signal samples are 
available. The signal sparsity is K = 8, as each sinusoid has 
two non-zero coefficients in the DFT domain (it is 
assumed that the components are placed on the frequency 
grid). 
 The GA with the proposed parameter setup is applied in 
the reconstruction of missing samples. The reconstruction 
results are shown in Fig. 1, where the reconstruction MSE 
is -60.22 dB. 

Example 2: The reconstruction results are highly 
dependent on the number of missing samples. Hence, in 
order to additionally verify the results presented in the 
Example 1, the following experiment was carried out. The 
signal (5) was considered again. The number of missing 
samples M – MA was varied from 1 to M – 1, and MSE 
calculated for each M – MA, based on 40 independent 
realizations of the signal with random missing samples 
positions. The reconstruction MSE calculated as 

 21 ( ) ( )recM
n

MSE x n x n= −∑   (6) 

is shown in Fig. 2, confirming that with the increase of the 
number of missing samples, the reconstruction accuracy 
decreases, as expected by the CS theory, and that the GA-
based reconstruction results match the theoretical 
expectations. 

Example 3: Consider the signal of the form: 
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of length M = 64, with sparsity K = 2s, where s is the 
number of real sinusoids. The number of real sinusoids is 
varied from 1 to M / 2, with step 2. Amplitudes, 
frequencies and phases are chosen randomly, with uniform 
distribution, within the intervals defined by 0 4,iA≤ ≤   

0 / 2 1ik M≤ ≤ −  and 0 2iθ π≤ ≤  respectively.   

The number of missing samples is also varied from 0 to 
M – 1 with step 2. For each possible value of s and for 
each observed number of missing samples the 
reconstruction MSE was calculated based on 40 
independent realizations of (7) with given number of 
randomly positioned missing samples. The results are 
shown in Fig. 3. Blue values correspond to a small 
reconstruction MSE. The reconstruction is successful 
when 2AM K≥  is satisfied, as it is theoretically expected 

[2]. 

 
Fig. 3. MSE in the reconstruction of the s-component signal with 
M – MA randomly positioned missing samples, shown versus s 
and M – MA. The MSE takes values defined by the color bar 
presented above. 

V. CONCLUSION 

The reconstruction of signals with missing samples is 
considered. The concentration i.e. the sparsity measure is 
minimized by varying the missing samples values. The 
genetic algorithm, well known for its efficient searching 
capabilities of large spaces of possible solutions is applied 
in the considered problem framework. A suitable GA 
parameter setup is proposed for solving the particular 
minimization problem arising in the CS and sparse signal 
processing. The presented theory is numerically verified 
on signals sparse in DFT domain. The application of the 
proposed approach on real-life signals sparse in a 
transform domain is straight-forward. Our further research 
is oriented towards the comparison of the numerical 
complexity between the presented GA-based approach and 
existing CS reconstruction algorithms, applied in 
calculation demanding CS problems, such as in the 
reconstruction of large digital images with missing pixels. 
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