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Abstract The paper presents a method for denoising and reconstruction of
sparse images based on a gradient-descent algorithm. It is assumed that the
original (non-noisy) image is sparse in the two-dimensional Discrete Cosine
Transform (2D-DCT) domain. It is also assumed that a number of image
pixels is corrupted by a salt and pepper noise. In addition, we assume that
there are pixels corrupted by a noise of any value. In this paper we intro-
duce a method to find the positions of the corrupted pixels when the noise
is not of the salt and pepper form. The proposed algorithm for noisy pixels
detection and reconstruction works blindly. It does not require the knowledge
about the positions of corrupted pixels. The only assumption is that the im-
age is sparse and that the noise degrades this property. The advantage of
this reconstruction algorithm is that we do not change the uncorrupted pixels
in the process of the reconstruction, unlike common reconstruction methods.
Corrupted pixels are detected and removed iteratively using the gradient of
sparsity measure as a criterion for detection. After the corrupted pixels are
detected and removed, the gradient algorithm is employed to reconstruct the
image. The algorithm is tested on both grayscale and color images. Addition-
ally, the case when both salt and pepper noise and a random noise, within the
pixel values range, are combined is considered. The proposed method can be
used without explicitly imposing the image sparsity in a strict sense. Quality
of the reconstructed image is measured for different sparsity and noise levels
using the structural similarity index, the mean absolute error, mean-square
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error and peak signal-to-noise ratio and compared to the traditional median
filter and recent algorithms, one based on the total-variations reconstruction
and a two-stage adaptive algorithm.

Keywords gradient algorithm - compressive sensing - denoising - image
processing - reconstruction

1 Introduction

The analysis and reconstruction of corrupted/missing samples in a sparse sig-
nal using a reduced set of available samples has been introduced within the
field of compressive sensing (CS). A sparse signal can be represented in certain
transformation domain by a very few nonzero coefficients, comparing to the
total signal length. Compressive sensing is based on the statement that if a
signal is sparse in a transformation domain, it can be reconstructed with less
samples than required by the Shannon-Nyquist theorem, if the conditions of
the compressive sensing reconstruction are met, [1-13]. Many real-world sig-
nals are sparse in a certain transformation domain. This means that the theory
of CS can be widely used in almost all areas of digital signal processing, such as
multimedia (audio, speech, image, video), radars, remote sensing, biomedicine,
communications, etc. Since the introduction of CS, many reconstruction algo-
rithms have been developed. One of these algorithms, belonging to the large
group of gradient-based algorithms, uses the gradient of the Li-norm as a
sparsity measure in the minimization problem [14, 15]. In this algorithm the
missing/corrupted pixels are considered as the minimization variables. The im-
age is reconstructed in the spatial domain. This property makes the algorithm
suitable for denoising of corrupted pixels in a noisy environment.

Common images can be considered as sparse in the two-dimensional dis-
crete cosine transform. It means that they have only few nonzero coefficients
in that domain. These images can be reconstructed from reduced set of pixels.
The reduced set can occur for different reasons. If some pixels are corrupted,
we can declare them as unavailable and try to reconstruct them using differ-
ent CS reconstruction methods. The impulsive noise in an image could appear
due to analog to digital conversion errors, communication errors, dead pixels
in image acquisition equipment, etc. In this paper, we will assume that, in
addition to the salt and pepper noise, there exists a noise whose values are
within the range of the original image pixels. Since we assume that the noise
exists in some image pixels only, we will consider this as an impulsive noise,
although its amplitudes can be within the range of pixel values.

Algorithms for denoising sparse images with specific impulsive noise, whose
positions can be detected based on the noise values (salt and pepper noise),
were presented in [16-30]. The initial form of gradient-based algorithm for
image reconstruction was introduced in [16]. In [17] a local median value was
used for recovery of the noisy pixels. A technique for image denoising by using
morphological filter and a training-based optimization scheme is presented
in [18]. A method to reconstruct images corrupted by a salt-and-pepper noise
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based on partially noise-free pixels is given in [19]. Algorithm in [20] is based
on median filtering, patch-based sparse representation and weighted Li-Lq
regularization method. In [21,22] noisy images are filtered using an adaptive
discrete cosine transform filtering algorithm. Noisy signal and image recovery,
assuming various constraints on noise positions and sparsity in a generally
dictionary domain, is the topic of [23]. A decision-based median method that
changes only the corrupted pixels by the median or the neighboring pixel values
is presented [24]. The method in [25] uses a linear combination of uncorrupted
pixel values and the median of the local window. Reconstruction of images
using a primal-dual total variation method is presented in [26-28]. In [29] an
average-filtering algorithm was applied to the image denoising. The algorithm
presented in [30] introduces a combination of adaptive decision-based median
technique with the block matching 3D filtering.

The difference in the approach considered here is that we cannot retrieve
the positions of corrupted pixels based on their values. Noisy pixels will be
marked down by detecting those that degrade the image sparsity in the trans-
formation domain. Based on the sparsity measure and its gradient estimation,
a criterion for iterative detection of the corrupted pixels will be defined. It uses
the property that the corrupted pixels degrade the sparsity [31,32], meaning
that their variation causes larger finite difference estimates of the sparsity
measure gradient. When the corrupted pixels are detected they are removed
and considered as unavailable, and the potentially uncorrupted pixels will be
used as the only available ones. At this point, the problem is reduced to the
CS based image reconstruction. In contrast to the robust filtering algorithms
that use corrupted pixels in the analysis (and minimize their influence), the
presented algorithm removes these pixels and uses only the uncorrupted ones
in the reconstruction. An additional sparsification step is proposed as well.
Since the gradient-based reconstruction assumes sparsity in an implicit way
(minimizing norm-one), the reconstructed image is only approximately sparse.
Imposing the strict image sparsity constraint on the result, an additional im-
provement in the reconstruction is achieved.

The performance of image denoising and reconstruction are analyzed by
using the structural similarity (SSIM) index introduced in [33], as well as on the
mean absolute error (MAE), mean squared error (MSE), and peak signal-to-
noise ratio (PSNR). The proposed algorithm is also tested on a combination of
salt and pepper and random noise (whose values are within the pixel intensity
range). This method is applied on both grayscale and color images.

The reconstruction performance is analyzed for various noise levels and
noise types, by using the proposed method, classical median filtering and two
recent denoising and restoration methods [27,29]. The two methods used for
comparison are the total variation with primal-dual CS reconstruction algo-
rithm [26-28] and the two-stage adaptive reconstruction method [29]. Since [29]
contains comparison with other methods such as [24,25] (proving its superi-
ority), in this way we included an indirect comparison with those methods.

The paper is organized as follows. After the introduction in Section 1, the
theoretical background about compressive sensing and image sparsification is
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presented in Section 2. In Section 3, the reconstruction algorithm with the
pixel selection criterion is presented. In Section 4, the experimental results
are shown. The comparisons using different error parameters are presented in
Section 5.

2 Theoretical Background

Let us consider an 8-bit M x N image z(m,n). The 2D-DCT of this image
and its inverse can be written as [10,11]

M-1N-1
X(k,1) = Z Z x(m,n)e(k,l,m,n)

m=0 n=0

M-1N-1 (1)
z(m,n) = X(k,)vp(m,n,k,l)

k=0 1=0

where ¢(k,l, m,n) is the 2D-DCT basis function and ¢ (m,n, k,[) is the 2D-
DCT inverse basis function. They are defined defined as

ok, l,m,n) =¥(m,n, k1) = cre cos (71'(277;}\}— Uk) cos (W(Q;l; Ul) . (2)

The constants ¢ and ¢; are used for scaling and they are defined as

o 1/v/M, for k=0 o 1/VN, for 1 =0
FTAV2/M, for k#0 "TUV2/N, for 1 #£0

The image can be rewritten into a vector form as
x = [2(0,0),2(0,1),...,z(M — 1, N — 1)]*. (3)
The inverse transform in the vector/matrix form is defined as
x =¥X (4)

where W is the rearranged inverse transformation matrix with rearranged el-
ements defined in (2).

Assume that the image is sparse in the 2D-DCT domain with sparsity
K such that K <« MN. Assume that only the pixels at (m,n) € Ny are
available, while the other pixels are unavailable or omitted as corrupted ones.
In the initial calculation we can set the unavailable pixels to zeros. The initial
image is then represented as

2o(m,n) = {x(m,n) for (m,n) € Ny 5)
0 elsewhere

with Ny = {(m1,n1), (m2,n2), ..., (mn,,nn,)} being the set of N4 available
(uncorrupted) samples.
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The nonzero entries of (5) can be considered as measurements within the
CS framework [1-3]. In vector notation these values are

y = [x(m1,n1),x(mae, na), ...,x(mNA,nNA)]T

Each measurement x(m;, n;) is the linear combination of coefficients X with
sparsity K

M-1N-1
x(mi, n;) (mi,ng, k, )X (k1) (6)
k=0 1=0
or
y=AX (7)

where (m;,n;) € Ny and A is a measurement matrix of size Ng x MN. It is
obtained from the basis matrix ¥, with the rows corresponding to the positions
of the available samples N4. The goal of the CS is to reconstruct signal by
minimizing the sparsity measure of X subject to the available samples y [1-3].
The most obvious sparsity measure is based on simple counting of nonzero
values in the transformation domain. Counting can be done by using the so
called Lg-norm, ||X]|o. The problem formulation is then

min | X[|, subject toy = AX. (8)

This is the easiest and most basic way to count nonzero coefficients and to
minimize the sparsity. However, it is an NP-hard combinatorial problem. The
closest convex form is the Li-norm, with the problem formulation

min || X|[; subject toy = AX. (9)

Under certain conditions, the formulations (8) and (9) give the same solu-
tion [5]. In the gradient-descent based reconstruction, the problem is solved by
varying the missing pixels until the minimum of sparsity measure is reached.
The available samples remain unchanged in this method.

The image sparsity in the transformation domain is the basic condition for
reconstruction, based on a reduced set of pixels. The image sparsification is
done according to the quantization matrix of the JPEG standard. The stan-
dard quantization matrix is defined using 50% quality factor which is applied
on the 8 x8 DCT blocks of the image. For different quality factors (QF), which
influences the number of DCT components in a block (i.e. the sparsity level
of the block) [11], the quantization matrix is defined as

Qqr = round(Qso - q), (10)

where @Q5¢ is the standard quantization matrix and ¢ is calculated as

q_{QOOQQF for QF > 50

20 for QF <50 (11)
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In this paper, the image is first split into blocks of size 8 x 8 and then
processed and reconstructed. After the reconstruction of each block is finished,
they are combined together to get the whole image back. Also, we assumed
different quality factors to compare the performance of the algorithm with
various sparsity levels. This will be examined in Section 5.

3 Reconstruction Algorithm

The approach considered here deals with images which have M N — N 4 noisy
pixels with the noise amplitude being in the range of the available pixels values.
The aim is to reconstruct the corrupted pixels without the knowledge of their
number and the positions.

The algorithm is based on the minimization of the sparsity measure through
iterations [14,31,32]. Each image pixel is considered as possibly corrupted. Its
value is varied by adding +A. For each pixel the gradient sparsity measure
[|X|[; is estimated based on its finite difference value. The pixel producing the
largest gradient estimate is considered as corrupted and omitted. Then the
iterative process is repeated until the sparsity measure does not change sig-
nificantly. All corrupted pixels are set as missing/unavailable pixels. Then the
CS-based reconstruction process is performed. The missing pixels are varied in
the reconstruction step to produce the most sparse solution. The uncorrupted
(available) pixels are not changed. Details of this method will be presented
next.

3.1 Algorithm

In this subsection, the basic gradient-descent reconstruction algorithm, assum-
ing known positions of the available (uncorrupted) pixels [14], is explained. It
is described in Algorithm 1. We set the corrupted pixels to zero, and continue
with the iterative reconstruction procedure.

The algorithm can be read as follows: the corrupted/missing pixels are
considered as variables. We add and subtract a value A to the corrupted pixel
at (m;,n;). The images formed in this way are given by:

XI = (P (m,n) + Ad(m —m;,n —n;) (12)

x; = 2P (m,n) — AS(m — mi,n —n;)
The 2D-DCT transforms of these images, in a vector form, are X and X .
After that, the gradient of the sparsity measure is estimated using finite

difference of the Li-norms of X" and X, as
g(mi,ni) = X5 [ = 1% ]l

According to the gradient value, the corrupted pixel is updated (step 16 in Al-
gorithm 1). The calculation is continued until the stopping criterion is reached
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Algorithm 1 Gradient-based image reconstruction
Input:

— Set of the uncorrupted pixel positions N4

— Corrupted image x
Output:

— Reconstructed image xp

1: function GRADREC(x,N4)

xéo)(m, n) + {

z(m,n) for (m,n) € Ny

!\?

0 for (m,n) ¢ Ny

3: A+ maxm’n|x£lo)(m, n)|

4: p+0

5: repeat

6: repeat

- X )

8: for all (m;,n;) ¢ Ny do

9: xj — x((lp)

10: xF(mi,ng) < x (my,n;) + A
11: X}« DCT2{x/}

12: X, X((lp)

13: x, (mi,n;) + x, (mi,n;) — A
14: X, «+ DCT2{x,}

15: glmi,n;) X5 [ = [1X5 1
16: I’ap+1 (mi, nz) «— l’ap (mz,nz) — ,ug(ml, nz)
17: p+p+1

18: until stopping criterion is satisfied
19: A A/3
20: until required precision is achieved
21: XR < X((I;D)
22: return xp

for a given step A. As a stopping criterion we can use the angles between di-
rections of the two successive gradients. If these are almost 180 degrees it
means that the algorithm reached the solution with a precision defined by A.
It oscillates around it and the step A should be decreased. The procedure is
repeated until a required precision is achieved.

The normalization constant p used in step 16 for image size M x N is
_ 1 2
S SN IDCT2{6(m — mo,n —ng)}|  8VMN

m=1

W

where d(m,n) is 2D Dirac delta pulse.
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Original image Original sparse image

Noisy image Reconstructed image

Fig. 1 Reconstruction of image corrupted with 50% salt and pepper noise: Original image
(top left); Sparse image (top right); Noisy image (bottom left); Reconstructed image (bottom
right)

The algorithm can also be used when the noise is much stronger than the
signal itself, meaning that the corrupted pixels are distinguishable from the
uncorrupted pixels (salt and pepper noise), so that their positions are easily
found. When we have strong noise in the image, we will omit the noisy pixels
from the calculations and continue with the reconstruction as described in
Algorithm 1. Example with such a noise is given in Fig. 1. The original image,
and the sparsified image (with QF=25) are shown in Fig. 1 (top). The image
with salt and pepper noise is shown in Fig. 1 (bottom left). Half of the total
number of pixels are corrupted. The positions of the pixels corrupted with salt
and pepper noise are found using the a-trimming method. The reconstructed
image is presented in Fig. 1 (bottom right).
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3.2 Pixel Selection Motivation

Consider a sparse image x(m,n). Assume that one pixel is corrupted at a
position (mg,ng). The noisy image will be defined as x,(m,n), and the noisy
pixel can be defined as x,(mg, ng) = x(mg,no) + z where z is some noise. The
corrupted pixel will be changed for +A to form the images

zf(m,n) = z(m,n) + (z + A) §(m — mg,n — ng)

° (13)
z, (m,n) =x(m,n) + (z — A) d(m — mg,n — ng)

where A is the gradient parameter. The gradient is estimated as

g(mo,no) = chﬂh - HX;H1 (14)

where X1 and X are transformation coefficients of the images in (13). The
transforms of images x} (m,n) and z, (m,n) are defined as

X (k1) = X (k, 1) + (2 + A) ok, 1m0, n0)

X (k1) = Xk, 1)+ (= = )l Lmo, mo) "
Assume that the 2D-DCT of the original (uncorrupted) image pixels is
X(k,1) and (z £ A)@(k,l,mg,ng) is the 2D-DCT of the one missing (cor-
rupted) pixel. The sparsity measures of X (k,1) and X, (k,l) can be written
as a sum of the original image measure and the measure of the noise (with the
A shifts)
N-1
Yo IXF kD= X[l + 12+ AlC
k,1=0

(e
(16)

N—-1
X1, = 31X (k1) = X, + |2 - AlC
k,1=0

where C is a constant dependent on (mg, ng) and the image size. The sparsity
measure can be written as

g(mo,no) = [ X3[|, = [Xa ||, =1z + A]C - |2 - A]C. (17)

For variations from the true image value smaller than the step |z| < A we
get
g(mo,ng) =2Cz ~ 2 (18)

meaning that the gradient is proportional to the intensity of noise at the
corrupted pixel.
3.3 Pixel Selection Algorithm

The image is split into blocks of size 8 x 8 and reconstructed for each block
individually. The aim is to find the positions of missing (corrupted) pixels and
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select the available (uncorrupted) pixels. The available pixels positions will be
denoted by N4. According to the basic idea, this will be achieved by repeating
steps 9-15 from Algorithm 1 for all pixels. That is, we form signals as in (12)
for each pixel. Then, the 2D-DCT of these signals can be written as

X = XI(k,1) = DCT2{z} (m,n)}
X, =X, (k1) =DCT2{z, (m,n)}

a

(19)

and the gradient value at the missing pixels is calculated as in equation (14)
for each (m,n).

In the initial iteration all pixels are considered as possibly corrupted. The
gradient of sparsity measure is estimated for each pixel. The pixel whose vari-
ation produce the largest gradient value is marked as corrupted. Note that the
value A in this case is equal to the initial A value used for the reconstruc-
tion in the algorithm. For the pixel selection A = max(,, »)|7q(m, n)| since we
should provide that A > z for any possible z. After the highest corrupted pixel
(or few of them) is removed in one iteration, the process is repeated with the
remaining pixels. In each iteration the sparsity measure is calculated. When
all corrupted pixels are removed, the sparsity of the image will be restored
and it will not change anymore. This can be used as a stopping criterion for
the corrupted pixels detection. By introducing the pixel selection criterion we
get a set of available (uncorrupted) pixels. Algorithm 1 is then used for the
image reconstruction at the positions of the removed pixels. In this way, we
can generalize the algorithm to be completely independent on the number and
the positions of corrupted pixels. The procedure is repeated until a required
precision is achieved, and the algorithm is repeated until all blocks of the image
are reconstructed.

The pixel selection and image reconstruction procedure is illustrated in Al-
gorithm 2. In steps 2 and 3 we initially assume that all pixels are available and
there is no corrupted pixels. In the case of salt and pepper noise we can detect
some corrupted pixels by using a-trimming or L-statistics prior to iterative se-
lection procedure (steps 4-17). In the next step we test all individual pixels as
possibly corrupted ones. The pixel with largest gradient of sparsity measure is
marked as corrupted. It is reconstructed and the procedure is repeated. In the
reconstruction we include all previously detected positions of corrupted pixels.
For the image processed in blocks the procedure presented in Algorithm 2 is
repeated for each image block.

Block edge effects can influence the quality of reconstruction. In some
blocks, a few pixels from an object which dominantly belongs to the neighbour-
ing blocks may appear at the edging pixels. Algorithm could recognize these
pixels as disturbance and perform their “reconstruction” in order to minimize
the sparsity of the considered block. To avoid this edge effect, image analysis
is done with partially overlapping blocks. Only the central (non-overlapping)
parts of the blocks are included for the final reconstruction. In this way, the
edge effects are completely avoided.
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Algorithm 2 Proposed method
Input:
— Image x of size M x N with possibly corrupted pixels
— Number of pixels to be selected in each iteration r
Output:
— Reconstructed image x
— Set of the uncorrupted pixels N4

1 A maxy, , |z(m,n)|

2: Ny « {(m,n):m 2., M, n=1,2,...,N}

3: N, 0

4: repeat

5 for all (n,m) € N4 do

6: xT +x

7: T (m,n) <zt (m,n) + A
8 Xt + DCT2{x"}

9: X X

10 = (m,n) < x"(m,n) — A
11: X~ «+ DCT2{x"}

2 glmn) & X — X

13: Select r pixels (m,n) € Ny with highest |g(m,n)]

14: Add selected pixels to set N,

15: Remove selected pixels from set N4

16: x + GRADREC(x,N4) > Algorithm 1
17: until the sparsity is not significantly changed

18: Optionally, perform sparsification of the reconstructed image

19: return x, Ny

4 Experimental Results

Application of the algorithm is explained on the corrupted image “Lena”.
The image is of size M x N = 512 x 512. The quality factor (QF) used is
QF = 25 because it results in a sparser image than the standard 50% and the
visual degradation will not be significant. Reconstruction of images “Lena’”
and “Peppers” affected with a combination of salt and pepper and uniform
noise is demonstrated in the last subsection, as well. A detailed performance
analysis of the proposed algorithm is done in the next section using eight
common images.

4.1 Grayscale images

The original sparse image is presented in Fig. 2 (top left), together with the
noisy image with 12.5% uniform noise in Fig. 2 (top right). The noisy pixels are
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uniform and in the range between 20 and 230. The image reconstructed using
the presented algorithm is shown in Fig. 2 (middle left). Since the original
image is sparsified, the reconstructed image is also sparsified at the end of
the process. Note that the presented gradient-based algorithm minimizes L:-
norm of the signal transform coefficients and, in real cases, it does not preserve
sparsity in a strict sense. Sparsification of the resulting image is done in the
same way as the sparsification of the input image using equations (10) and
(11). The image reconstructed using the additional step of sparsification is
shown in Fig. 2 (middle right). The same image was corrupted with 12.5% of
a Gaussian noise with mean 100 and standard deviation 50. The noisy and
reconstructed image are shown in Fig. 2 (bottom). It can be seen that the
reconstruction was successfully done for both images, corrupted either with a
uniform or a Gaussian noise.

4.2 Color images

The reconstruction will be done using the RGB version of image “Lena”of the
same size 512 x 512. The original sparse image and the noisy image are shown
in Fig. 3 (top). The image has 12.5% of noisy pixels in the range between 20
and 230. The reconstructed image and the sparsified reconstructed image are
shown in Fig. 3 (bottom).

4.3 Combination of noises

The reconstruction of the image “Lena” with the combination of salt and
pepper and uniform noise is presented. The noisy image is shown in Fig. 4
(top left). The image contains 50% of noisy pixels, with 10% of them being
the uniform noise. The image is not strictly sparse, which means that it was
not sparsified (as in previous sections). When no sparsification step is used,
the 32 x 32 gives a faster reconstruction. Using larger blocks, the sparsity is
more emphasized and the reconstruction is still computationally feasible on
ordinary computers. The reconstruction using proposed method with 32 x 32
block size is shown in Fig. 4 (top right). For comparison, the reconstruction
using median filter of size 3 x 3 and 5 x 5 are shown in Fig. 4 (middle). The
algorithm is compared with a total variation L1 (T'V-L1) model with a primal-
dual algorithm [26,27]. The code used for the TV-L1 reconstruction algorithm
can be found in [28]. The proposed algorithm was also compared with a two-
stage adaptive algorithm presented in [29]. The reconstruction results using
these two algorithms are shown in Fig. 4 (bottom).

The noisy color image, and the reconstructed one using the gradient-
descent algorithm are presented in Fig. 5 (top). Note that the impulsive noise
in this case is randomly positioned in each of the three channels separately.
For comparison, the image was reconstructed using the marginal median filter
of size 3 x 3 and 5 x 5 and the reconstruction images are shown in Fig. 5
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Original sparse image Noisy image (uniform noise)

Noisy image (Gaussian noise) Reconstructed sparse image (Gaussian noise)

Fig. 2 Reconstruction of sparse images corrupted by different noise types: Sparse image
(top left); Noisy image corrupted with uniform noise (top right); Reconstructed image cor-
rupted with uniform noise (middle left); Reconstructed sparsfied (middle right); Noisy image
corrupted with Gaussian noise (bottom left); Reconstructed image corrupted with Gaussian
noise (bottom right)
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Original image Noisy image

Reconstructed image

Fig. 3 Reconstruction of color image corrupted with 12.5% uniform noise: Sparse image
(top left); Noisy image (top right); Reconstructed image (bottom left); Reconstructed sparse
image (bottom right)

(middle). The marginal median filters each color channel separately. The re-
construction using the TV-L1 and the two-stage adaptive algorithms is shown
in Fig. 5 (bottom). The algorithm was also tested on the image “Peppers”,
with the same characteristics. The original and noisy images are shown in Fig.
6 (top). The reconstruction using the gradient algorithm and the reconstruc-
tion of the image using the 5 x 5 marginal median filter are presented in Fig. 6
(middle). In Fig. 6 (bottom), the reconstruction with the other two algorithms
is presented.

5 Performance Analysis

The performance of the algorithm will be examined using the SSIM index
as well as MAE, MSE, and PSNR with respect to the original image. We
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Noisy image Reconstructed using proposed method

Reconstructed using 3x3 median filter =~ Reconstructed using 5x5 median filter

Reconstructed using TV-L1 Reconstructed using two—stage adaptive method

Fig. 4 Reconstruction of image corrupted with 50% combined noise: Noisy image (top
left); Reconstructed image using the proposed method (top right); Reconstructed image
using median filters (middle); Reconstructed image using TV-L1 algorithm (bottom left);
Reconstructed image using two-stage adaptive method (bottom right)
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Noisy image Reconstructed using proposed method

Reconstructed using TV-L1 Reconstructed using two—stage adaptive method

Fig. 5 Reconstruction of color image corrupted with 50% combined noise: Noisy image (top
left); Reconstructed image using the proposed method (top right); Reconstructed image
using the 3 x 3 and 5 X 5 marginal median filters (middle); Reconstructed image using the
TV-L1 algorithm (bottom left); Reconstructed image using the two-stage adaptive method
(bottom right)
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Original image Noisy image

Reconstructed using proposed method Reconstructed using 5x5 median filter

Fig. 6 Reconstruction of color image corrupted with 50% combined noise: Original im-
age (top left); Noisy image (top right); Reconstructed image using the proposed method
(middle left); Reconstructed image using the 5 x 5 marginal median filter (middle right);
Reconstructed image using the TV-L1 algorithm (bottom left); Reconstructed image using
the two-stage adaptive method (bottom right)
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Table 1 SSIM index between original and reconstructed image for various quality factor
QF and percentage of corrupted pixels

after reconstruction after additional sparsification
QF 12.5% 25% 37.5% 50% 12.5% 25% 37.5% 50%

5 0.9958  0.9857 0.9123 0.6441 0.9991 0.9938 0.9252  0.6713
10 0.9965 0.9860 0.9196 0.6357 0.9985  0.9905 0.9217  0.6431
25 0.9970 0.9871  0.9225 0.6314 0.9981 0.9892  0.9207  0.6402
50 0.9962 0.9851 0.9175 0.6209 0.9970 0.9860 0.9152  0.6239
75 0.9955 0.9820 0.9159 0.6120 0.9959 0.9822 0.9136  0.6138
920 0.9929 0.9777 09114 0.5992  0.9925 0.9770 0.9104  0.5987

will declare the original image xz(m,n) — X, and the reconstructed image
as £r(m,n) = xy. The SSIM index is a function of luminance, contrast and
structure comparison between two images. It is introduced in [33]. The SSIM
index is defined as

(202, pz, + €1)(204 2, + C2)
(13, +uz, +ci)(oF, +03 +c2)

SSIM(x,, X,) = (20)
where the values (i, , (15, are the mean values of the images, 04, ., is the co-
variance between the two images, afco, aiT are the variances of the two images,
and ¢y, co are used for stabilization. The SSIM value is in range between 0 and

1, with 1 being very similar and 0 is for not similar.

SSIM index is calculated when the noisy grayscale image ”"Lena” from Fig.
2 (top right) is reconstructed. It is tested on different number of DCT com-
ponents obtained as a result of applying different quantization matrices with
QF € {5,10,25,50,75,90}, and percent of corrupted samples {12.5%, 25%,
37.5%,50%%}. The algorithm does not assume the knowledge of the number
and positions of the corrupted pixels.

Table 1 presents the SSIM index values for different quality factors in terms
of the percent of corrupted pixels. The SSIM is calculated after reconstruc-
tion and after additional sparsification step. Sparsification leads to improved
smoothness in the reconstructied image.

The MAE is calculated as
M AE(x,,x,) = mean(mean(|x, — x,|)). (21)

The MAE is used to compare the performances of the reconstruction of noisy
images using the algorithm presented. Table 2 presents the MAE values cal-
culated after the reconstruction and after sparsification of the reconstructed
image for various quality factor and percent of corrupted pixels.

Two more parameters will be used for the reconstruction comparison. The
MSE is calculated as

MSE(x,,%,) = mean(mean(|x, — x,|)?), (22)
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Table 2 MAE values for varying percent of corrupted pixels and quality factor

after reconstruction after additional sparsification
QF 12.5% 25% 37.5% 50% 12.5% 25% 37.5% 50%

5 0.4055  1.0847  3.2756  10.8029 0.1376 0.4559  2.7673  10.4414
10 0.3831  1.0540 3.1820 11.6284  0.2645 0.7985  3.2111  11.5774
25 0.3693  1.0759  3.2701  12.2769  0.4273 1.1505 3.6485  12.3009
50 0.4158  1.1712  3.4486  12.7903 0.6273  1.4565 3.9675 12.9114
75 0.4727  1.3113 3.6015 13.0952 0.8242 1.7840 4.2034 13.2539
920 0.6072  1.5378  3.8524  13.7471  1.1595  2.2244  4.4407  14.0689

Table 3 Performance measures for different noise types, percent of corrupted pixels and
optional sparsification after reconstruction

Noise type Level Sparsification MAE SSIM MSE PSNR

Salt & pepper  50.0% no 0.5728 0.9911  3.4448  42.7592
Uniform 12.5% no 0.3803 0.9965 5.9053 40.4184
Uniform 12.5% yes 0.4394 0.9978 3.1721 43.1173
Gaussian 12.5% no 0.3557 0.9952  6.7221  39.8557
Gaussian 12.5% yes 0.6816  0.9953 4.8952 41.2331

Table 4 Error measures after reconstruction of the noisy image with 50% corrupted pixels
by using the proposed method, median filtering, total variation L1, and two-stage adaptive
restoration method

Measure Proposed Median 3 x3 Median 5x5 TV-L1 Two-stage

SSIM 0.9835 0.4215 0.8831 0.9127 0.7554
MAE 0.7657 5.9514 3.1872 2.2110 2.4174
MSE 4.9124 22.9010 19.7015 16.5719 16.8124
PSNR 41.2179 34.5323 35.1858 35.9371 35.8745

while the PSNR for an 8-bit image is defined as

2552 ) (23)

PSNR(X(),X/,-) = 1010g10 (m

Table 3 presents the error values for the reconstructed images using differ-
ent noise types. The comparison among the algorithms using 50% combined
noise is shown in Table 4. Grayscale image “Lena” was used for the compar-
ison. The comparison among the algorithms for eight test images with 50%
pixels corrupted by combined noise, is presented in Table 5.

The proposed method is based on the detection and compressive sensing
reconstruction of the corrupted pixels. In theory, if the compressive sensing
conditions are met, the reconstruction is exact. Other methods are based on
filtering or interpolation, and in general they produce approximations of the
original pixels.
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Table 5 PSNR and SSIM for 8 test images. The results are obtained by the proposed,
two-stage (2-stage) adaptive [29] and total variation L1 [26,27] methods

PSNR SSIM
Test image Proposed 2-stage TV-L1 Proposed 2-stage TV-L1
Lena 41.22 35.87 35.94 0.9835 0.7544 0.9127
Lifting body 43.92 35.90 40.15 0.9860 0.7295 0.9438
Boat 39.33 34.15 34.41 0.9728 0.7312 0.8524
Butterfly 39.22 36.20 35.04 0.9768 0.8100 0.8840
Camera 36.54 36.36 33.01 0.9408 0.8102 0.7884
Pout 45.87 39.59 39.46 0.9802 0.6272 0.9189
Peppers 42.74 39.84 38.58 0.9877 0.6229 0.9529
Tissue 32.44 30.92 29.35 0.9101 0.8566 0.7303

6 Conclusions

The gradient-based algorithm for reconstruction of noisy images with noise
being within the range of the available pixels is considered in this paper. The
basic algorithm form implies that we know the number and positions of the
uncorrupted pixels (or the noise is very high so that the corrupted pixels are
distinguishable from the uncorrupted ones). In this paper we proposed an
algorithm for detection of corrupted pixel positions and their reconstruction.
It has been shown that the image can be reconstructed successfully without
any knowledge of the corrupted pixels, except that these pixels degrade image
sparsity. We also have used modifications of the initial algorithm by adding a
sparsification step at the end of the reconstruction process and by introducing
partially overlapping blocks, to avoid edge effects.

Denoising of sparse images using the presented algorithm, when the im-
age is corrupted with combined noise, is presented as well. The considered
noises were impulsive with values within the pixel range, also combined with
a salt and pepper noise. It is shown that the algorithm can produce successful
reconstructions of these images, both grayscale and color ones. The reconstruc-
tion was successful even in the cases when the original image is not strictly
sparse. The results are compared with the standard median-based filtering, a
CS-based algorithm that uses total variations L1 (dual prime approach), and
a two-stage adaptive algorithm. The proposed gradient-based algorithm over-
performed the considered algorithms for a set of standard images that we used
in the reconstruction.

Future work could include analysis of reconstruction accuracy when images
are approximately sparse as well as possible parallelization of the presented
detection and reconstruction algorithm. Application of the presented algorithm
to radar, sonar and medical imaging will be considered as well, taking into
account their specific forms.
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