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Time-Frequency Decomposition of

Multivariate Multicomponent Signals
Ljubiša Stanković, Danilo Mandić, Miloš Daković, Miloš Brajović

Abstract

A solution of the notoriously difficult problem of characterization and decomposition of multicom-

ponent multivariate signals which partially overlap in the joint time-frequency domain is presented. This

is achieved based on the eigenvectors of the signal autocorrelation matrix. The analysis shows that the

multivariate signal components can be obtained as linear combinations of the eigenvectors that minimize

the concentration measure in the time-frequency domain. A gradient-based iterative algorithm is used

in the minimization process and for rigor, a particular emphasis is given to dealing with local minima

associated with gradient descent approach. Simulation results over illustrative case studies validate the

proposed algorithm in the decomposition of multicomponent multivariate signals which overlap in the

time-frequency domain.

Multivariate signals, time-frequency signal analysis, analytic signal, instantaneous frequency, signal

decomposition, concentration measure, estimation

I. INTRODUCTION

Signals with time-varying spectral content are not easily characterized by the conventional Fourier

analysis. They are commonly studied within the time-frequency (TF) analysis [1]–[8]. Research in

this field has resulted in numerous representations and algorithms which have been almost invariably

introduced for the processing of univariate signals, with most frequent characterization through amplitude

and frequency-modulated oscillations [6], [9].

Recently, the progress in sensing technology for multidimensional signals has been followed by a

growing interest in time-frequency analysis of such multichannel (multivariate and/or multidimensional)

data. Namely, developments in sensor technology have made accessible multivariate data. Indeed, the

newly introduced concept of modulated bivariate and trivariate data oscillations (3D inertial body sensor,

3D anemometers [9]) and the generalization of this concept to an arbitrary number of channels have

opened the way to exploit multichannel signal interdependence in the joint time-frequency analysis [10]–

[12].

Prof. L. Stankovic, Prof. M. Dakovic, and M. Brajovic are with the Electrical Engineering Department, University of Montenegro,

Montenegro. Prof. D. Mandic is with Imperial College London, United Kingdom.



2

The concept of multivariate modulated oscillations has been proposed in [10], under the restricting

assumption that one common oscillation fits best all individual channel oscillations. In other words, a

joint instantaneous frequency (IF) aims to characterize multichannel data by capturing the combined

frequency of all individual channels. It is defined as a weighted average of the IFs in all individual

channels. The deviation of multivariate oscillations in each channel from the joint IF is characterized

by the joint instantaneous bandwidth. With the aim to estimate the joint IF of multichannel signals, the

synchrosqueezed transform, a highly concentrated time-frequency representation (TFR) belonging to the

class of reassigned TF techniques, has been recently extended to the multivariate model [9]. Following the

same aim of extracting the local oscillatory dynamics of a multivariate signal, the wavelet ridge algorithm

has also been introduced within the multivariate framework [10]. Another very popular concept, empirical

mode decomposition (EMD), has been studied for multivariate data, [18]- [22]. However, successful

EMD-based multicomponent signal decomposition is possible only for signals having nonoverlapping

components in the TF plane.

By a virtue of high concentration and many other desirable properties, the Wigner distribution is

commonly exploited in numerous IF estimators developed within the TF signal analysis [6]–[8]. However,

in the case of multicomponent signals, undesirable oscillatory interferences known as cross-terms appear,

sometimes masking the presence of desirable auto-terms. To this end, other representations have been

developed, commonly aiming to preserve Wigner distribution concentration, while suppressing the cross-

terms. One such algorithm is the S-method [6] which was also used as a basis for the multi-component

signal decomposition algorithm, proposed in [1]. This particular type of decomposition makes it possible

to analyze and characterize signal components independently, allowing the IF estimation for each separate

component [1]- [4].

In this paper, multivariate Wigner distribution is studied as the basis of multicomponent multichannel

signal decomposition. Namely, the strong interdependence of modulations of individual components

within all the available data channels is exploited in the joint TF analysis, leading to a reduction of

undesirable oscillations present in cross-terms. The inverse multivariate Wigner distribution matrix is

decomposed into eigenvectors which contain signal components in the form of their linear combination.

Further, a steepest-descent algorithm that enables a fast search for a linear combination of eigenvectors

that produces the best possible components concentration is applied. Using the advantages of multichan-

nel interdependence, the proposed TF-based decomposition is shown to be successful in the case of

multivariate signals which overlap in the TF plane, while preserving the integrity of each extracted signal

component.

The conventional time-frequency decomposition techniques cannot separate crossing components of

arbitrary forms. The crossing components may appear in various signal processing applications. One of

them is radar signal processing, where reflecting points may assume the same velocity along the line-of-
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sight. These components will cross in the time-frequency (time-Doppler) representation. The same effect

appears when the target signature crosses with the clutter or stationary body reflecting component in the

time-frequency representation of radar signal return. The proposed method assumes that multiple phase

independent received signals are available. They can be obtained using polarization or multiple antenna

systems [23]. Signals with low frequency variations, when the amplitude changes are of the same order

as the phase changes, can also be treated as signals with crossing components. Such are the ECG signals,

for example. Multivariate forms of these signals are obtained using multiple sensors at different locations.

The presented approach can be applied to the decomposition of this class of signals as well.

The paper is organized as follows. Basic theory regarding multivariate TF signal analysis is presented

in Section 2. In Section 3, the Wigner distribution of multivariate multicomponent signals is analyzed.

In Section 4, we present the basic theory leading to the decomposition of multivariate multi-component

signals, whereas the decomposition algorithm is presented in Section 5. The theory is verified through

several numerical examples in Section 6.

II. MULTIVARIATE TIME-FREQUENCY ANALYSIS

Consider a multivariate signal

x(t) =


a1(t)ejφ1(t)

a2(t)ejφ2(t)

...

aN (t)ejφN (t)

 (1)

obtained by measuring a complex-valued signal x(t) with N sensors, where by each sensor the amplitude

and phase of the original signal are modified to give ai(t) exp(jφi(t)) = αix(t) exp(jϕi). If the measured

signal is real-valued, its analytic extension

x(t) = xR(t) + jH{xR(t)}

is commonly used, with xR(t) being real-valued measured signal and H{xR(t)} its Hilbert transform.

Analytic signal contains only nonnegative frequencies and the real-valued counterpart can be recon-

structed. This form of signal is especially important in the instantaneous frequency interpretation within

the time-frequency moments framework.

Since all time-frequency representations may be considered as smoothed versions of the Wigner

distribution, this distribution will be the starting point for a review of time-frequency based multivariate

signal analysis. The Wigner distribution of a multivariate signal x(t) is defined as

WD(ω, t) =

∫ ∞
−∞

xH(t− τ

2
)x(t+

τ

2
)e−jωτdτ, (2)

where xH(t) is a Hermitian transpose of the vector x(t).
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The inverse Wigner distribution is then given by

xH(t− τ

2
)x(t+

τ

2
) =

1

2π

∫ ∞
−∞

WD(ω, t)ejωτdω. (3)

The center of mass in the frequency axis of the Wigner distribution of a multivariate signal x(t),

defined by (1), is given by

〈ω(t)〉 =

∫∞
−∞ ωWD(ω, t)dω∫∞
−∞WD(ω, t)dω

or, more explicitly

〈ω(t)〉 =

d
jdτ

[
xH(t− τ

2 )x(t+ τ
2 )
]
|τ=0

xH(t− τ
2 )x(t+ τ

2 )|τ=0
=

1

2j

[xH(t)x′(t)− x′H(t)x(t)]

xH(t)x(t)
,

where x′(t) = dx(t)/dt denotes derivative in time.

The expression for instantaneous frequency of a multivariate signal follows straightforwardly from the

previous relation in the form:

〈ω(t)〉 =

∑N
n=1 φ

′
n(t)a2n(t)∑N

n=1 a
2
n(t)

. (4)

If a multivariate signal is obtained by sensing a monocomponent signal x(t) as ai(t) exp(jφi(t)) =

αix(t) exp(jϕi) with x(t) = A(t) exp(jψ(t)) and |dA(t)/dt| � |dψ(t)/dt|, then 〈ω(t)〉 = dψ(t)/dt,

since dφi(t)/dt = dψ(t)/dt. The condition for amplitude and phase variations of real-valued monocompo-

nent signals ai(t) cos(φi(t)) can be defined by Bedrosian’s product theorem [13]. It states that the complex

analytic signal ai(t) exp(jφi(t)) = ai(t) cos(φi(t))+ jH{ai(t) cos(φi(t))} is a valid representation of the

real amplitude-phase signal ai(t) cos(φi(t)) if the spectrum of ai(t) is nonzero only within the frequency

range |ω| < B and the spectrum of cos(φi(t)) occupies nonoverlapping higher frequency range. A signal

is monocomponent if the spectrum of ai(t) is of lowpass type.

This analysis can be generalized to other time-frequency and time-scale signal representations.

A deviation of the signal spectral content from the instantaneous frequency is described by the local

second order moments (instantaneous bandwidths). The expression for the instantaneous bandwidth is

obtained from

σ2
ω(t) =

1

2πxH(t)x(t)

∞∫
−∞

ω2WD(t, ω)dω − 〈ω(t)〉2

=
− d2

dτ2

[
xH
(
t− τ

2

)
x
(
t+ τ

2

)]∣∣
τ=0

xH(t)x(t)
− 〈ω(t)〉2 .

For the signal in (1) it has the following form:

σ2
ω(t) =

∑N
n=1 (a′n(t))2 −

∑N
n=1 an(t)a′′n(t)

2
∑N
n=1 a

2
n(t)

.

In general, for the case of multicomponent signals, the components are localized over more than one

instantaneous frequency.
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III. MULTICOMPONENT SIGNALS

Consider a multicomponent signal

x(t) =

P∑
p=1

xp(t)

the components of which are of the form

xp(t) = Ap(t)e
jψp(t)

with the component amplitudes Ap(t) having a slow-varying dynamics as compared to the variations of

the phases ψp(t), i.e., |dAp(t)/dt| � |dψp(t)/dt|. The corresponding multivariate signal is then given

by

x(t) =

P∑
p=1


αp1xp(t)e

jϕp1

αp2xp(t)e
jϕp2

...

αpNxp(t)e
jϕpN

 . (5)

The individual components x1(t), . . . , xP (t), measured at different sensors, differ in their amplitudes

and phases but share the instantaneous frequency ωp(t) = dψp(t)/dt corresponding to 〈ωp(t)〉 in (4),

with p being the component index.

The Wigner distribution of this multivariate multicomponent signal is

WD(ω, t) =

P∑
p=1

P∑
q=1

N∑
i=1

∫ ∞
−∞

αpiαqixp(t+ τ
2 )x∗q(t− τ

2 )ej(ϕpi−ϕqi)e−jωτdτ,

with i being the sensor index. It may be written as a sum of auto-terms and cross-terms

WD(ω, t) =

P∑
p=1

N∑
i=1

α2
pi

∫ ∞
−∞

xp(t+ τ
2 )x∗p(t− τ

2 )e−jωτdτ (6)

+

P∑
p=1

P∑
q=1
q 6=p

N∑
i=1

αpiαqi

∫ ∞
−∞

xp(t+ τ
2 )x∗q(t− τ

2 )ej(ϕpi−ϕqi)e−jωτdτ.

= WDa(ω, t) +WDc(ω, t)

The phase shifts of the components of the multivariate signal in (6) cancel out in the auto-terms

WDa(ω, t). This important property implies that the auto-terms, obtained from each variate of a mul-

tivariate signal, are summed in-phase, independently from the (different) initial phases in the individual

signal components. In the cross-terms, the phase shifts do not cancel-out in the resulting WDc(ω, t),

leading to an out-of-phase summation. The cross-terms in the multivariate case are a sum of N signals

with arbitrary (random) phases. They are consequently reduced with respect to the Wigner distribution

of an univariate signal. Therefore, for a large N we would expect the auto-terms only, while the cross-

terms will tend to a small value with respect to the auto-terms. It is expected that the cross-terms, for a
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large number of sensors N, behave as a time-frequency dependent zero-mean Gaussian random variable,

the variance of which depends on the cross-terms value, var{WD(ω, t)} = σ2(WDc(ω, t)). The auto-

terms are deterministic for a given signal, since they do not depend on random phases, as seen in the

corresponding Wigner distribution term WDa(ω, t). This means that for a large N

WD(ω, t) ∼ N (WDa(ω, t), σ2(WDc(ω, t))).

IV. INVERSION AND SIGNAL DECOMPOSITION

The inversion of a Wigner distribution of a multivariate signal in the analog domain is given by

xH(t2)x(t1) =
1

2π

∫ ∞
−∞

WD

(
t1 + t2

2
, ω

)
ejω(t1−t2)dω.

By the discretization of angular frequency, ω = k∆ω, and the time, t1 = n1∆t, t2 = n2∆t, with an

appropriate definition of discrete values, we easily obtain

xH(n2)x(n1) = 1
K+1

K/2∑
k=−K/2

WD

(
n1 + n2

2
, k

)
ej

π
K+1k(n1−n2). (7)

Upon introducing the notation

R(n1, n2) = 1
K+1

K/2∑
k=−K/2

WD

(
n1 + n2

2
, k

)
ej

π
K+1k(n1−n2), (8)

we obtain

R(n1, n2) = xH(n2)x(n1). (9)

Therefore, for multicomponent multivariate signals, the inversion produces a matrix with the elements

of the form

R(n1, n2) =

N∑
i=1

P∑
p=1

P∑
q=1

αpiαqixp(n1)x∗q(n2)ej(ϕpi−ϕqi). (10)

If we now use the assumption that the cross-terms in the Wigner distribution of multivariate signals can

be neglected with respect to the auto-terms summed in phase, this yields

R(n1, n2) =

N∑
i=1

P∑
p=1

a2pixp(n1)x∗p(n2) =

P∑
p=1

Bpxp(n1)x∗p(n2) (11)

where Bp =
∑N
i=1 α

2
pi.

As for any square matrix, the eigenvalue decomposition of a K ×K dimensional matrix R gives

R = QΛQT =

K∑
p=1

λpqp(n)q∗p(n), (12)

where λp are the eigenvalues and qp(n) are the corresponding eigenvectors of R. Note that the eigen-

vectors qp(n) are orthonormal.
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For a P -component signal, in a noiseless case, the elements of this matrix are

R(n1, n2) =

P∑
p=1

λpqp(n1)q∗p(n2). (13)

Let us consider several special cases:

1) For a univariate signal and the Wigner distribution, the signal itself is equal to the eigenvector

q1(n), up to a scaling by a complex-valued constant [1], with the corresponding eigenvalues λ1 = Ex,

λ2 = 0, . . . , λK = 0. The fact that the Wigner distribution based inversion produces only one nonzero

eigenvalue is also used to check if a given two-dimensional function is a valid Wigner distribution.

2) If the components of a multicomponent univariate signal do not overlap in the time-frequency plane,

then it is possible to calculate the distribution which will be equal to a sum of the Wigner distributions

of the individual signal components. This calculation is performed using the S-method and the property

[1]:

SM(n, k) =

P∑
p=1

WDp(n, k). (14)

Since the non-overlapping components are orthogonal, the eigenvalue decomposition in the case of

multivariate signals will produce

Bpxp(n) = λpqp(n), p = 1, 2, . . . , P.

where Bp is a constant. Note that, by definition, the energy of the corresponding eigenvector is equal to

1,

‖qp(n)‖2 = 1. (15)

We can conclude that

Bpxp(n)x∗p(n) =
(√

λpqp(n)
)(√

λpqp(n)
)∗

and

λp =
∥∥∥√λpqp(n)

∥∥∥2 = ‖Bpxp(n)‖2 =

K/2∑
n=−K/2

Bpx
2
p(n) = BpExp .

where Exp is the energy of the signal pth component. The eigenvector qp(n) is equal to the signal vector

xp(n), up to the constant amplitude and phase ambiguity.

3) If the signal components xp(n) overlap in the frequency plane, then the decomposition on the

individual components is not possible using the state-of-art methods, except in cases of quite specific

signal forms (such as linear frequency modulated signals, using chirplet transform, Radon transform

or similar techniques [14], [15], or for sinusoidally modulated signals using inverse Radon transform,

[16], [17]). In general, these kinds of signals cannot be separated into individual components in the

univariate case. However, the multivariate form of signals reduces (changes) the cross-terms in the Wigner
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distribution, thus offering a possibility to decompose the components which overlap in the time-frequency

plane.

V. DECOMPOSITION ALGORITHM

Consider a multicomponent signal of the form (5), with signal components xp, p = 1, 2, . . . , P whose

supports Dp may partially overlap in the time-frequency domain. We also make a realistic assumption that

there is no signal component whose time-frequency support completely overlaps with other component,

and D1 ≤ D2 ≤ · · · ≤ DP , where Dp is the area of the support Dp.

The first signal component can be expressed as linear combination of vectors qp with coefficients η1p

to give

x1 = η11q1 + η21q2 + · · ·+ ηP1qP. (16)

Since we have assumed that the signal components are well concentrated in the time-frequency domain,

we can use a concentration measure in order to find the coefficients ηp1. To this end, we form a linear

combination of the basis vectors qp, with weighting coefficients βp, p = 1, 2, . . . , P , to arrive at

y = β1q1 + β2q2 + · · ·+ βPqP, (17)

and calculate the concentration measureM{TFR(n, k)} of the time-frequency representation TFR(n, k)

of the normalized signal y/‖y‖2. The choice of the TFR is not crucial here. We can use the spectrogram

as the simplest TFR. By solving the concentration measure minimization problem we then obtain the

global minimum corresponding to the best concentrated signal component.

The most straightforward way to solve this problem would be to use the zero-norm as the concentration

measure of TFR(n, k) and perform a direct search over the coefficients βp, p = 1, 2, . . . , P . Then, the

coefficients ηp1 are the solution of the minimization problem

[η11, η21, . . . , ηP1] = arg min
β1,...,βP

‖TFR(n, k)‖0.

For these values of coefficients ‖TFR(n, k)‖0 is equal to the area of the best concentrated component

support D1. If any two the smallest areas are equal we still find one of them.

Note that this minimisation problem has several local minima as the coefficients βp in y = β1q1 +

β2q2 + · · ·+βPqP which correspond to any signal component xp will also produce a local minimum of

the concentration measure, equal to the area of corresponding component support. In addition, any linear

combination of K < P signal components xp will also produce a local minimum equal to the area of

the union of the supports of included signal components.

After the best concentrated component is detected, the corresponding vector q1 is replaced with the

extracted signal component. The extracted component is then removed from the remaining vectors qk

by subtracting the projection of the extracted component to the vectors qp, p = 2, 3, . . . , P (signal
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deflation procedure [31]). The procedure is repeated with the new set of vectors qp by forming the

signal y = β2q2 + · · · + βPqP , and then by varying the coefficients βp a new global minimum of the

concentration is found, which corresponds to the second signal component. The procedure is iterated P

times.

However, since in practical applications neither the direct search nor the norm-zero concentration can

be used, several methods have been developed in literature based on the optimization of problems with

several local minima. In general, all these methods can be divided into three large classes: deterministic

[27], stochastic [25], [26], and heuristic (ant colony optimization [28], genetic algorithm, hill climbing

[30], simulated annealing [29], particle swarm optimization...). In this paper we will adapt a gradient-

based approach to solve the minimization problem. The zero-norm is replaced by its closest convex

counterpart, the one-norm. The proposed algorithm is presented next.

- In the first step, we calculate the matrix R of the multivariate signal x(n) according to (8) or (9).

The number of signal components P is equal to the number of non-zero eigenvalues of matrix R. In the

noisy signal cases two approaches for determining the number of components can be utilized: (a) The

number of components is assumed. As long as it is larger than or equal to the true number of components

P , the algorithm works properly, producing noise only as the extra components. (b) A threshold is set

to separate eigenvalues corresponding to signal components from those corresponding to the noise. This

threshold determines the number of components in the decomposition.

- For the time-frequency representation of the signal we can use the spectrogram, the S-method with

narrow frequency window (for example Ls = 1), or any other appropriate representation. Since these

time-frequency representations are quadratic, a concentration measure equivalent to the one-norm should

be defined as [24]

M{TFR(n, k)} =
∑
n

∑
k

|TFR(n, k)|1/2 (18)

where the summation is performed over all available time and frequency indices n and k.

The decomposition procedure is outlined in Algorithm 1.

- The measure minimization is implemented by using a steepest descent approach presented in Al-

gorithm 2. Here, we fix the coefficient βp = 1 and vary the real and imaginary parts of the remaining

coefficients by ±∆. The gradient of the normalized measure, γp, is then calculated and is used for

coefficient update. The initial value of the parameter ∆ is 0.1 and it is reduced whenever a further

coefficients update does not yield a smaller measure.

- When the pth component is extracted, the corresponding vector qp is replaced with the extracted

signal component. The extracted component is then removed from the remaining vectors qk by subtracting

the projection of the extracted component to vectors qk, k = p + 1, p + 2, . . . , P . In this manner, we

ensure that the pth signal component will not be detected again.

- This procedure is repeated until there is no more updates of vectors qk.



10

For a two-component signal, the considered minimization problem is now convex, with a single, global,

minimum. For a three-component signal, the local minima exists for signals obtained as a sum of any

two components. This is the reason why the decomposition procedure is repeated after minimum of the

concentration measure is found. In the next iteration, the pair of components corresponding to the local

minimum are separated as in the two-component signal case. For a higher number of signal components,

the number of local minima increases. Then several repetitions of the procedure are needed in order to

separate the components in an iterative way. Recall that a gradient-based algorithm can find any local

minimum, each corresponding to a combinations of K < P signal components. This means that each local

minimum reduces the complexity of decomposition vectors qp, leading to the full signal decomposition

in an iterative way. For more details, see Algorithm 2.

VI. NUMERICAL EXAMPLES

Example 1: Consider a real bivariate signal x(t) = [x1(t), x2(t)]T , where the signal from channel i

has the form

xi(t) = e−(t/128)
2

cos
(
(t/16)4/128− 8π(t/16)2/64 + ϕi

)
(19)

= 0.5e−(t/128)
2
[
ej((t/16)

4/128−8π(t/16)2/64+ϕi) + e−j((t/16)
4/128−8π(t/16)2/64+ϕi)

]
= x1i(t) + x2i(t), i = 1, 2,

for −128 ≤ t ≤ 128, as shown in Fig. 1 (a) (for the first channel). The phases ϕ1 6= ϕ2 are random

numbers with a uniform distribution drawn from the interval [0, 2π]. As this signal is real-valued, two

symmetric components x1i(t) and x2i(t) exist in the Fourier transform and the time-frequency domains.

However, these components partially overlap, and thus they are inseparable using these representations.

A common problem is to estimate the instantaneous frequency (IF) of the signal. To this end, for real

signals it is usual to calculate its analytic form based on the Hilbert transform. The true IF is shown in

Fig. 1 (b), black line. The time-frequency representation (TFR) of this analytic signal is shown in Fig.

1 (c). However, the IF estimate based on the analytic signal, shown in Fig. 1 (b), red line, obviously

significantly differs from the true IF. Namely, the IF estimation based on the standard TFR maxima

approach does not appropriately track the IF variations, as they are lost in the corresponding TFR due

to significant overlapping of the components and the fact that amplitude and phase variations are of the

same order. Notice that Bedrosian’s product theorem condition for amplitude and phase is not satisfied

in this case.

On the other hand, if one calculates the TFR of the original signal (19), the two components x1i(t)

and x2i(t) overlap in the TF plane, as shown in Fig. 1 (d). These components are also nonlinear and

thus, none of the known techniques can be applied for their separation in order to estimate the IF of such
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Algorithm 1 Multivariate signal decomposition
Input:

• Multivariate signal x(n)

1: Calculate S-Method SM(n, k) of the multivariate signal x(n) and matrix R with elements

R(n1, n2) =
1

K + 1

K/2∑
k=−K/2

SM

(
n1 + n2

2
, k

)
ej

2π
K+1k(n1−n2),

as in [1]. If the Wigner distribution is used then the SM(n, k) should be replaced with WD(n, k),

or we can calculate elements of matrix R as R(n1, n2) = xH(n2)x(n1).

2: Find eigenvectors qi and eigenvalues λi of matrix R.

3: P ← number of non-zero eigenvalues

4: repeat

5: Nupdates ← 0

6: for i = 1, 2, . . . , P do

7: Solve minimization problem

min
β1,...,βP

M

{
TFR

{
1

C

P∑
p=1

βpqp

}}
subject to βi = 1

whereM{·} is concentration measure, TFR{·} is time-frequency representation of a provided

signal, and

C =

√∥∥∥∑P
p=1 βpqp

∥∥∥
2

is used to normalize energy of the combined signal to 1. Coefficients β1, β2, . . . , βP are

obtained as a result of the minimization.
8: if any βp 6= 0, p 6= i then

9: qi ←
1

C

P∑
p=1

βpqp

10: for k = i+ 1, i+ 2, . . . , P do

11: s← qHi qk

12: qk ← 1√
1−|s|2

(qk − sqi)
13: end for

14: Nupdates ← Nupdates + 1

15: end if

16: end for

17: until Nupdates = 0

Output:

• Number of signal components P

• Reconstructed signal components q1,q2, . . . ,qP
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Algorithm 2 Minimization procedure
Input:

• Vectors q1,q2, . . . ,qP

• Index i where corresponding vector qi should be kept with unity coefficient βi = 1

• Required precision ε

1: βp =

1 for p = i

0 for p 6= i
, for p = 1, 2, . . . , P

2: Mold ←∞
3: ∆ = 0.1

4: repeat

5: y←
P∑
p=1

βpqp

6: Mnew ←M
{

TFR

{
y

‖y‖2

}}
7: if Mnew > Mold then

8: ∆← ∆/2

9: βp ← βp + γp, for p = 1, 2, . . . , P . Cancel the last coefficients update

10: y←
P∑
p=1

βpqp

11: else

12: Mold ←Mnew

13: end if

14: for p = 1, 2, . . . , P do

15: if p 6= i then

16: M+
r ←M

{
TFR

{
y + ∆qp
‖y + ∆qp‖2

}}
17: M−r ←M

{
TFR

{
y −∆qp
‖y −∆qp‖2

}}
18: M+

i ←M
{

TFR

{
y + j∆qp
‖y + j∆qp‖2

}}
19: M−i ←M

{
TFR

{
y − j∆qp
‖y − j∆qp‖2

}}
20: γp ← 8∆

M+
r −M−r
Mnew

+ j8∆
M+
i −M

−
i

Mnew

21: else

22: γp ← 0

23: end if

24: end for

25: βp ← βp − γp, for p = 1, 2, . . . , P . Coefficients update

26: until
∑P
p=1 |γp|2 is below required precision ε

Output:

• Coefficients β1, β2, . . . , βP
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overlapping highly nonlinear components. As these components highly overlap, they are not orthogonal,

and consequently the S-method based decomposition [1] cannot be applied in a straightforward manner.

However, it is crucial to note that the cross-terms in Wigner distribution (WD) are changed and two

eigenvalues different from zero do appear. Therefore, the two corresponding eigenvectors, whose pseudo

Wigner distributions (PWD) are shown in Fig. 1 (e) and (f), contain both components, appearing as a linear

combination. Using the proposed multi-component decomposition algorithm, we were able to calculate the

coefficients β1 and β2, forming the linear combination (17) of eigenvectors. The minimum concentration

(sparsity) measure of this linear combination corresponds to two separate signal components, as shown

in Fig. 1 (g) and (h). It can be observed that the IF estimation based on these two TFRs maxima (using

positive IF parts), shown in Fig. 1 (b), green and blue dots, is accurate up to the theoretically expected

bias caused by the IF non-linearity, which can be further reduced using some well-known IF estimation

techniques [6].

Example 2: In this example we consider a bivariate two-component signal x(t) assuming that each

sensor measures

xi(t) = x1i(t) + x2i(t), i = 1, 2 (20)

whose components are given by

x1i(t) = 1.2e−(t/96)
2

e−j12π(t/16)
2/25+jt3/2562+ϕ1i , (21)

x2i = 0.9e−(t/128)
2

e−jπt/8+j(t/16)
4/100+ϕ2i , (22)

with phases ϕ1i, ϕ2i, i = 1, 2 simulated as random numbers with a uniform distribution drawn from

the interval [0, 2π]. The real part of the signal from the first channel, and the corresponding Fourier

transform are shown in Fig. 2 (a) and (b), whereas the multivariate spectrogram is shown in Fig. 2 (c). It

can be observed that the signal components cannot be separated using the spectrogram, without significant

auto-term degradation. Note that the two signal components have non-linear frequency modulation, and

are thus inseparable using common component decomposition algorithms.

When the proposed algorithm for decomposition of multicomponent signals is applied, aiming to

extract each component of the analyzed signal, then in accordance with the presented theory, the Wigner

distribution is used as the initial time-frequency representation for the eigenvalue decomposition. The

Wigner distribution of the analyzed signal is shown in Fig. 3 (a) whereas the eigenvalues of autocorrelation

matrix R are shown in Fig. 3 (b). It can be seen that there are two non-zero eigenvalues containing linear

combinations of the signal component. Further steps of the proposed decomposition method assume that

a TFR is calculated and the proposed minimization procedure is applied in order to find the coefficients

producing the eigenvectors combination (17), leading to the best component concentration. Our numerical

experiments have shown that a similar performance of the minimization using Algorithm 2 is obtained

when the Wigner distribution, the spectrogram and the S-method are applied as underlying TFRs on the
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observed eigenvectors. In Fig. 3, we present the results obtained in the case of the Wigner distribution.

For visual clarity, pseudo Wigner distribution with Hanning window of length 256 is shown for each

eigenvector in Fig. 3 (c) and (e), although the Wigner distribution was used in the minimization procedure.

Similar results would be obtained for any other TFR in the minimization step. The pseudo Wigner

distribution for each separated signal component is shown in Fig. 3 (d) and (f), for signals x1i(t) and

x2i(t), respectively.

Example 3: Consider a multivariate three-component signal x(t) for N = 4, for which the i-th channel

signal is defined as

xi(t) = x1i(t) + x2i(t) + x3i(t), i = 1, ..., 4, (23)

the components x1i(t) and x2i(t) are given by (21) and (22), for i = 1, ..., 4 whereas the third component

has the following form

x3i = 0.9e−(t/128)
2

e−jπt/8+j(t/16)
4/100+ϕ3i , (24)

also having the phase ϕ3i, i = 1, ..., 4 simulated as a random number with a uniform distribution drawn

from the interval [0, 2π]. The signal from the first channel, its Fourier transform and the multivariate

spectrogram are shown in Fig. 4 (a)-(c) respectively.

The Wigner distribution of the analyzed signal is shown in Fig. 5 (a), whose inverse matrix R is

the subject of eigenvalue decomposition. The obtained eigenvalues are shown in Fig. 5 (b) while Fig.

5 (c), (e) and (g) show the pseudo Wigner distributions of the eigenvectors with largest eigenvalues in

subplot (b), and illustrate that the components are not separated. Namely, as in the previous example,

the intersected components are not orthogonal and consequently, each considered eigenvector contains

a linear combination of signal components. For the obtained eigenvectors, we apply the proposed mini-

mization procedure, in order to find the coefficients that combine these eigenvectors to produce the best

concentration, corresponding to the signal components. All three signal components were successfully

extracted, as shown in Fig. 5 (d), (f) and (h).

Example 4: A multivariate signal x(t) consisted of three intersected components and two non-

overlapping components in the TF plane, given by

xi(t) = x1i(t) + x2i(t) + x3i(t) + x4i(t) + x5i(t). (25)
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The signals from each of N = 3 channels are defined as follows

x1i(t) = e−(t/96)
2

ej(−π(t/16)
2/5+ϕ1i) (26)

x2i(t) = 1.2e−(t/96)
2

ej(π(t/16)
3/32+3π(t/16)2/10+ϕ2i) (27)

x3i(t) = 0.9e−(t/128)
2

ej(π(t/16)
4/200+πt/8+ϕ3i) (28)

x4i(t) = e−(t/16)
2

ej(3πt/4+ϕ4i) (29)

x5i(t) = e−(t/96)
2

ej(−6π(t/16)
2/25+πt/4+ϕ5i) (30)

where i = 1, 2, 3 denotes the channel index. In this example the S-method is used as the initial TFR,

as shown in Fig. 6 (a). Application of the S-method is crucial here since we have five components

and a trivariate signal only. The S-method would be able to separate (decompose) all non-overlapping

components from one realization. Then, the available realizations are used for the overlapped components

only. The eigenvalue decomposition of the S-method inverse autocorrelation matrix R produced five

eigenvectors, corresponding to the five largest eigenvalues shown in Fig. 6 (b).

As the two non-overlapping signal components are mutually orthogonal and with the rest of intersected

components, according to the theory presented in [1], there are exactly two eigenvectors corresponding

to these two components (one eigenvector for each component). The pseudo Wigner distribution for

these two eigenvectors are shown in Fig. 6 (c) and (i). Therefore, these two components are easily

extracted, as shown in Fig. 6 (d) and (j). The three remaining components are obtained based on the

proper linear combination of the three corresponding eigenvectors using coefficients βi obtained by the

proposed minimization procedure. The pseudo Wigner distributions of these three remaining eigenvectors

are shown in Fig. 6 (e), (g) and (k), whereas the separated components obtained based on their proper

linear combination are shown in Fig. 6 (f), (h) and (l).

The same experiment was repeated for the noisy signal x̂(t) = x(t)+ε(t). The signal from each channel

corrupted by additive, white zero-mean complex-valued i.i.d. Gaussian noise εi(t) with the variance of

real and imaginary parts σ2 = 0.152. The SNR level for one (linear FM) component was 7.13 dB, that

is, quite low. The results of the proposed decomposition approach are presented in Fig. 7, illustrating

that the proposed algorithm is robust against the additive Gaussian noise influence.

VII. CONCLUSION

Decomposition of non-stationary signals overlapping in the time-frequency plane is still an open

problem. Exploiting the fact that the Wigner distribution of multivariate signals exhibits significant cross-

term change due to their arbitrary phases whereas the auto-terms are added up in phase, we have revisited

the time-frequency based signal components decomposition. In this paper, we have shown that even with

a small number of signal channels, relative to the number of components, an accurate decomposition

can be performed with proper linear combination of the signal autocorrelation matrix eigenvectors. The
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decomposition and eigenvector combination algorithms have been proposed. Their efficiency is illustrated

over several examples, which prove a complete and accurate extraction of overlapped and non-overlapped

components. The robustness of the proposed approach has been illustrated in a noisy signal example.
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Fig. 1. Bivariate real signal analyzed in Example 1. (a) signal shown in time domain. (b) estimation of the IF: black - true IF,

red - IF estimation using the analytic signal, green and blue - IF estimation based on components extracted using the proposed

approach. (c) PWD of the analytic signal. (d) PWD of the original signal. (e) and (f) PWD of the eigenvectors. (g) and (h) PWD

of components extracted using the proposed approach.
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Fig. 2. Bivariate two-component signal shown in: (a) time domain, (b) frequency domain, (c) time-frequency domain (spectrogram)
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Fig. 3. Decomposition of the bivariate two-component signal from Example 2. (a) WD of the analyzed signal. (b) Eigenvalues of

the autocorrelation matrix R. (c) and (e): PWD of the first and second eigenvector. (d) and (f) PWDs of extracted signal components



21

−100 −50 0 50 100

−2

0

2

time

Re{x1(t)} (a)

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

frequency

|X1(jω)| (b)

−3 −2 −1 0 1 2 3
−100

−50

0

50

100

(c)

 frequency

Spectrogram of signal
 ti

m
e
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domain (spectrogram).
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Fig. 5. Decomposition of a multivariate signal from Example 3 with N = 4, having three components (auto-terms). (a) Wigner

distribution of the signal. (b) Eigenvalues of the autocorrelation matrix R. (c), (e) and (g): PWD of the first, second and third

eigenvector; (d), (f) and (h) PWDs of extracted signal components
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Fig. 6. Decomposition of multivariate five-component signal from Example 4 with N = 3, based on S-method as underlying TFR.

(a) S-method of the analyzed signal. (b) eigenvalues of the autocorrelation matrix R. (c), (e), (g), (i), (k) PWDs of eigenvectors

corresponding to the largest five eigenvalues. (d), (f), (h), (j) and (l) PWDs of extracted signal components.
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Fig. 7. Decomposition of the noisy multivariate five-component signal from Example 4 with N = 3, based on S-method as

underlying TFR. (a) S-method of the analyzed signal. (b) eigenvalues of the autocorrelation matrix R. (c), (e), (g), (i), (k) PWDs

of eigenvectors corresponding to the largest five eigenvalues. (d), (f), (h), (j) and (l) PWDs of extracted signal components.


