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Abstract

Nonstationary signals, approximately sparse in the joint time-frequency do-

main, are considered. Reconstruction of such signals with sparsity constraint

is analyzed in this paper. The short-time Fourier transform (STFT) and time-

frequency representations that can be calculated using the STFT are considered.

The formula for error caused by the nonreconstructed coefficients is derived and

presented in the form of a theorem. The results are examined statistically on

examples.

Keywords: time-frequency analysis, sparsity, reconstruction, compressive
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1. Introduction

Nonstationary signals that cover most of the time and frequency domain

may be well localized in the joint time-frequency domain. These signals are

dense in both time and frequency, considered separately. However, they could

be located within much smaller regions in the joint domain using appropriate5
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representations [1, 2, 3, 4, 5, 6]. The basic time-frequency representation is the

short-time Fourier transform (STFT). It can be easily related to the Wigner

distribution and its cross-terms reduced versions [7]. These representations will

be considered in this paper. The signals are sparse in the time-frequency domain

if the number of nonzero coefficients in this domain is much smaller than the10

total number of coefficients. For example, a sum of few nonstationary signal

components, being well localized in the STFT at each considered time instant,

is a sparse signal in this domain.

A signal that is sparse in a certain domain can be reconstructed with fewer

samples than the Shannon-Nyquist sampling theorem requires. Compressive15

sensing is the field dealing with the problem of signal recovery with reduced

number of available samples [8, 9, 10, 11, 12, 13, 14]. Reducing the number of

available samples in the analysis manifests as a noise, whose properties in the

discrete Fourier transform (DFT) domain are studied in [15]. These results will

be used to define reconstruction properties in the STFT case. The influence20

of noise in the two-dimensional DFT is examined in [16]. If a nonsparse signal

is reconstructed with a reduced set of available samples then the noise due to

the missing samples of nonreconstructed coefficients will be considered as an

additive input noise in the reconstructed signal.

In the compressive sensing literature, only the general bounds for the recon-25

struction error for nonsparse signals (reconstructed with the sparsity assump-

tion) are derived [10, 17, 18]. In this manuscript, we have presented an exact

relation for the expected squared error in approximately sparse or nonsparse

signals in the time-frequency domain, reconstructed from a reduced set of sig-

nal samples, under the sparsity constraint. The error depends on the number of30

available samples and the assumed sparsity, that is crucial for any compressive

sensing based reconstruction. The results are given in the form of a theorem.

Theory is illustrated and checked on statistical examples.

The noise in the reconstructed STFT influences the other time-frequency

representations that can be calculated using this STFT. The S-method [6, 7] is35

considered as an example of such signal representations.
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The paper is organized as follows. The theoretical background of compres-

sive sensing and time-frequency signal analysis is presented in Section 2. The

theorem and formula of nonsparsity influence on the reconstructed signal is

presented in Section 3. The numerical results are given in Section 4. The40

conclusions are presented in Section 5.

2. Theoretical Background

Let us consider a multicomponent signal

x(n) =

C∑
l=1

xl(n), (1)

where components xl(n) are nonstationary and the total number of components

is C. Assume that the signal is sparse in the STFT domain. The STFT of the

discrete-time signal is defined as

SN (n, k) =

N/2−1∑
m=−N/2

x(n+m)w(m)e−j
2π
N mk, (2)

at an instant n and a frequency k. The window function of length N is w(m).

The windowed signal x(n,m) = x(n+m)w(m), which is K-sparse in the STFT

domain, can be written in the form

x(n,m) =

K∑
i=1

Ai(n)ej2πmki/N (3)

The signal and its STFT in a vector form are

SN (n) = WNHNx(n) (4)

HNx(n) = W−1
N SN (n), (5)

where SN (n) = [SN (n, 0), SN (n, 1), . . . , SN (n,N − 1)]T is the STFT calculated

at time instant n, x(n) is the original signal (column) vector within the window,

WN is the DFT matrix of size N ×N with coefficients W (m, k) = e(−j2πkm/N)
45

and HN is a diagonal matrix with the window values at its diagonal. Analysis
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and reconstruction of the whole signal based on the STFT is straightforward

with appropriate overlapping. It is presented in [1, 2, 6].

With the assumption that the signal is sparse in the STFT domain, we can

reconstruct it with a reduced number of samples, according to the compressive50

sensing theory [8, 10, 17, 18, 21].

The number of randomly positioned available samples for the reconstruction

is NA � N . For a given n the available signal samples are at the positions

n+m ∈ {n+m1, n+m2, ..., n+mNA}.

The number of unavailable/missing samples is NM = N−NA. The available

samples (measurements) of the windowed signal are then defined as

yn = [x(n+m1)w(m1), . . . , x(n+mNA)w(mNA)]T . (6)

Note that

yn = ASN (n),

where A is the measurement matrix. The matrix A is obtained by keeping the

rows of the inverse DFT matrix corresponding to the available samples

A =


ψ0(m1) ψ1(m1) · · · ψN−1(m1)

ψ0(m2) ψ1(m2) · · · ψN−1(m2)
...

...
. . .

...

ψ0(mNA) ψ1(mNA) · · · ψN−1(mNA)

 (7)

where ψk(m) are the inverse DFT matrix coefficients ψk(m) = 1
N exp(j2πmk/N).

The goal of compressive sensing is to reconstruct the original sparse signal

(using its windowed overlapped versions) from the available samples. A general

compressive sensing formulation is

min ‖SN (n)‖0 subject to yn = ASN (n).

Here we will assume that the initial STFT is calculated using the available
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samples only

SN0(n, k) =

NA∑
i=1

x(n+mi)w(mi)e
−j 2π

N mik (8)

SN0(n) = NAHyn, (9)

where superscript H denotes the Hermitian transpose.

The mean and the variance of this STFT, at a given instant n, calculated

using the available signal samples only, are [15]

E{SN0(n, k)} =
K∑
i=1

NAAi(n)δ(k − ki) (10)

var{SN0(n, k)} = NA
NM
N − 1

K∑
i=1

|Ai(n)|2 (1− δ(k − ki)) , (11)

where δ(k) = 1 only for k = 0 and δ(k) = 0, elsewhere.

In general, time-varying signals are not strictly sparse in the STFT domain.55

Because of their nature, most of these signals are either approximately sparse

or nonsparse. A signal is K-sparse in a transformation domain (in our case,

in the STFT domain) if it has only K (K � N) nonzero coefficients in this

domain at positions k ∈ K = {k1, k2, . . . , kK}. Other coefficients, for k /∈ K, are

zero-valued. A signal is approximately sparse if the coefficients for k ∈ K are60

significantly larger than the coefficients at k /∈ K. A signal is not K-sparse if the

coefficients for k /∈ K are of the same order as the coefficients at the positions

k ∈ K. If we want to use the compressive sensing based theory for any of these

signals the sparsity assumption has to be made. In this paper, we will analyze

the error in these signals reconstructed under the K-sparsity assumption in the65

STFT domain.

Signal reconstruction is done using estimation of the nonzero coefficient posi-

tions, based on (8) and calculating the unknown coefficients Ai(n) based on the

known signal values x(n+mi). Various reconstruction algorithms can be used.

For the numerical verification of the results we will use an iterative form of the70

OMP algorithm. The reconstruction algorithm used in this paper is an iterative

form of the OMP algorithm, introduced in [19, 20]. Since the introduction of
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compressive sensing, many reconstruction algorithms have been developed. A

review of reconstruction algorithms can be found in [21]. The main reason to

use the presented algorithm is the fact that it uses the sparsity assumption in75

an explicit way (producing K nonzero coefficients in the reconstructed signal).

Also, its computational complexity is low. Other algorithms that also exploit

the sparsity assumption in an explicit way can be used as well.

In the first step, the position of the maximal STFT coefficient is found as

k1 = arg max{SN0(n)}.

Matrix A1 is formed from matrix A by omitting all columns except the column

corresponding to k1. The first STFT estimate is

SR(n) = (AH
1 A1)−1AH

1 yn.

The signal is reconstructed and subtracted from the original signal at the posi-

tions of available samples. The STFT estimate is calculated again with this new

signal and its maximum position k2 is found. A new set K = {k1, k2} is formed

with corresponding matrix A2. The new estimate SR(n) is calculated and the

signal is reconstructed. The procedure is repeated K (assumed sparsity) times,

with the final reconstruction

SR(n) = (AH
KAK)−1AH

Kyn.

The reduced measurement matrix AK is obtained from A by selecting the

columns corresponding to K detected nonzero coefficient positions

AK =


ψk1(m1) ψk2(m1) · · · ψkK (m2)

ψk1(m2) ψk2(m2) · · · ψkK (m2)
...

...
. . .

...

ψk1(mNA) ψk2(mNA) · · · ψkK (mNA)

 . (12)

3. Nonsparsity in Time-Frequency Signal Analysis

The reconstruction error of sparse signals is an important topic in compres-80

sive sensing. Its general bounds can be found in [10, 17]. An exact formula for
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the expected squared reconstruction error, with the STFT as a sparsity domain,

is presented by the next theorem.

Theorem: Consider a signal x(n) with time-varying components. Its

STFT values are denoted by SN (n) = [SN (n, 0), SN (n, 1), . . . , SN (n,N − 1)]T .

The total number of signal samples within a window is N . Assume that the

available signal samples are at NA random positions, defined by n + m ∈ NA,

and NM = N − NA is the number of unavailable/missing samples. The signal

is reconstructed under the assumption as it were K-sparse in the STFT domain

(with the assumption that the reconstruction conditions are met for this spar-

sity). The reconstructed signal with K nonzero STFT coefficients at k ∈ K is

denoted by SNR(n). The error in the K reconstructed STFT coefficients is:

‖SNK(n)− SNR(n)‖22 = K
NM
NAN

‖SN (n)− SNK(n)‖22 . (13)

The K-sparse version of SN (n) is denoted by SNK(n). The elements of vector

SNK(n) are SNK(n, k) = SN (n, k) for k ∈ K, and SNK(n, k) = 0 for k /∈ K.85

The reconstructed STFT SNR(n) is formed in the same way, with coefficients

for k ∈ K being obtained by the reconstruction procedure and the remaining

coefficients, for k /∈ K being set to 0.

Notation ‖SN (n)‖22 is used for the expected value of the squared norm-two, i.e.

‖SN (n)‖22 = E{
∑
k |SN (n, k)|2}.90

Proof: Assume that the compressive sensing conditions for the reconstruc-

tion are satisfied for the assumed sparsity and the number of available samples

[17]. Then we can reconstruct K coefficients (A1(n), A2(n), ..., AK(n)) using, for

example, the iterative OMP procedure explained at the end of Section 2. The

result is SR(n) with K reconstructed coefficients. The remaining (nonrecon-

structed)N−K signal coefficients with amplitudes (AK+1(n), AK+2(n), ..., AN (n))

produce noise in these K reconstructed coefficients. As defined in (11), the noise

variance from one nonreconstructed coefficient is

|Ai(n)|2NANM/(N − 1). (14)
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The signal amplitudes in SN0(n) are proportional to NA. The amplitudes are

recovered to their original values, proportional to N , the same as if all sam-

ples were available. The scaling factor is then N/NA for the reconstructed

coefficients. Consequently, the scaling factor for the noise variance in the recon-

structed coefficients is (N/NA)2. That is, the noise variance of a reconstructed

coefficient caused by a nonreconstructed coefficient is

|Ai(n)|2 N
2

N2
A

NANM
N − 1

∼= |Ai(n)|2NNM
NA

. (15)

The white noise energy in the reconstructed coefficients of SR(n) will be K times

larger than the variance in one reconstructed coefficient. The total noise energy

caused by the nonreconstructed coefficients (AK+1(n),AK+2(n),..., AN (n)), in

K reconstructed coefficients is

‖SNR(n)−SNK(n)‖22 = KN
NM
NA

N∑
i=K+1

|Ai(n)|2 , (16)

where SNR(n) is obtained from SR(n), as defined in the theorem. Energy of the

STFT, corresponding to the nonreconstructed coefficients only, can be written

as

‖SN (n)−SNK(n)‖22 =

N∑
i=K+1

|NAi(n)|2 . (17)

From (16) and (17) follows

‖SNR(n)−SNK(n)‖22 = K
NM
NAN

‖SN (n)−SNK(n)‖22 .

In the case when the original signal is K-sparse, i.e. SN (n) = SNK(n), or when

all samples are available, i.e. NA = N and NM = 0, there is no error

‖SNR(n)−SNK(n)‖22 = 0. (18)
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4. Numerical Results

Consider a combination of two linear frequency modulated signal compo-

nents

x(n) = 1.5 exp (j192πn/N + j48πn2/N2 + jϕ1)

+ exp (j48πn/N + j16πn2/N2 + jϕ2) (19)

for 0 ≤ n ≤ 1280. The STFT is calculated using a Hamming window of the

length N = 256 with a step in time of 32. Note that the signal is not sparse

in the DFT domain since its components sweep almost the whole frequency

range. Various numbers of randomly positioned available samples NA have95

been considered. The phases ϕ1 and ϕ2 are random between 0 and 2π. In the

reconstruction a K-sparse signal in the STFT domain is assumed, with various

K = 4, 8, 16, 32, 64. Illustration of the reconstructed signal STFTs for NA = 192

randomly positioned available samples and K = 8, 16, 32 is shown in Fig. 1.

The statistical error Es, and the derived (theoretical) error Et, in the recon-

structed coefficients, are calculated as

Es = 10 log
(
‖SNK(n)−SNR(n)‖22

)
(20)

Et = 10 log

(
K

NM
NAN

‖SN (n)−SNK(n)‖22

)
(21)

where SN (n) is the original STFT of the signal, SNK(n) is equal to SN (n) for

its K reconstructed coefficients and SNR(n) is the reconstructed STFT with K

nonzero values. The total reconstruction errors can be calculated as

Etots = 10 log
(
‖SN (n)−SNR(n)‖22

)
(22)

Etott = 10 log

((
K

NM
NAN

+ 1
)
‖SN (n)−SNK(n)‖22

)
. (23)

The reconstruction error values averaged over 100 realizations, calculated100

using (20), (21), (22), and (23), are shown in Table 1.

The total reconstruction error as a function of the number of available sam-

ples is presented in Fig. 2. The number of available samples is varied from 25
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Table 1: The error in the reconstructed coefficients and the total error (in dB) for NA = 2N/3

and NA = 3N/4, and various assumed sparsity levels K.

Error in the

reconstructed coefficients Total error

NA K Statistics Theory Statistics Theory

2N/3 4 −21.4 −21.5 −0.4 −0.4

2N/3 8 −19.8 −20.5 −2.3 −2.3

2N/3 16 −23.0 −23.5 −8.3 −8.3

2N/3 32 −40.9 −41.8 −29.4 −29.5

2N/3 64 −53.5 −54.8 −45.1 −45.2

3N/4 4 −22.8 −23.3 −0.4 −0.4

3N/4 8 −21.9 −22.3 −2.4 −2.4

3N/4 16 −25.0 −25.3 −8.4 −8.4

3N/4 32 −42.6 −43.6 −29.5 −29.6

3N/4 64 −54.4 −56.6 −45.2 −45.5

to 250. We assumed the sparsity values K = 8, 16, 24, and 32. The theoretical

results are presented with solid lines and the statistical results are given by dots.105

Filled marks indicate the region when the reconstruction is possible with a high

probability, NA ≥ 4K, [17]. Note that any exact recovery can be expected only

if NA > 2K.

The results can be easily applied to other time frequency-representations

whose realization can be implemented using the STFT. For example, the pseudo

Wigner distribution can be calculated as

WD(n, k) =

N/2∑
i=−N/2

SN (n, k + i)S∗
N (n, k − i). (24)

Its cross-terms free (reduced) version, is the S-method

SM(n, k) =

L∑
i=−L

SN (n, k + i)S∗
N (n, k − i), (25)
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where L should be sufficiently large to include auto-terms, but not too large to

produce cross-terms [7]. The S-method calculated from the reconstructed STFT110

is shown in Fig. 3.

The noise analysis in these distribution can be easily done based on the

derived relations for the noise in the STFT and the results in [22]. Sparse

reconstruction of bilinear time-frequency distributions is reviewed in [23].

5. Conclusions115

The influence of nonsparsity to the reconstruction of signals that are ap-

proximately sparse in the time-frequency domain is analyzed in this paper. The

relation for the reconstruction error is derived. The reconstruction results are

statistically checked. Statistical results are in high agreement with the derived

theoretical results.120
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[9] E. Sejdić, A. Cam, L. F. Chaparro, C. M. Steele, T. Chau, “Compressive

sampling of swallowing accelerometry signals using TF dictionaries based

on modulated discrete prolate spheroidal sequences,” EURASIP Journal

on Advances in Signal Processing, 2012.145

[10] E. J. Candès, M. B. Wakin, “An Introduction to Compressive Sampling,”

IEEE Signal Processing Magazine, vol. 21, March 2008.

[11] J. H. G. Ender, “On compressive sensing applied to radar,” Signal Process-

ing, Vol. 90, No. 5, 1402–1414, 2010.

[12] P. Flandrin, P. Borgnat, “Time-Frequency Energy Distributions Meet Com-150

pressed Sensing,” IEEE Transactions on Signal Processing, vol. 58, no. 6,

pp. 2974–2982, 2010.
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[14] I. Volarić, V. Sučić, Z. Car, “A compressive sensing based method for cross-

terms suppression in the time-frequency plane,” IEEE 15th International

Conference on Bioinformatics and Bioengineering, pp. 1–4, 2015.
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Recovery from a Reduced Set of Data,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 52, no. 6, Dec. 2016.165

[17] E. J. Candes, J. Romberg, T. Tao, “Robust uncertainty principles: exact

signal reconstruction from highly incomplete frequency information,” IEEE

Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[18] K. D. Ba, P. Indyk, E. Price, D. P. Woodruff, “Lower bounds for sparse

recovery,” Proceedings of the twenty-first annual ACM-SIAM symposium170

on Discrete Algorithms. SIAM, pp. 1190–1197, 2010.

[19] S. G. Mallat, Z. Zhang, “Matching pursuits with time-frequency dictionar-

ies,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–

3415, 1993.

[20] D. Needell, J. A. Tropp, “CoSaMP: Iterative signal recovery from incom-175

plete and inaccurate samples,” Applied and Computational Harmonic Anal-

ysis, vol. 26, no. 3, pp. 301–321, 2009.
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Figure 1: Reconstructed STFT with varying assumed sparsity K with NA = 2N/3 available

samples.

14



50 100 150 200 250

-30

-25

-20

-15

-10

-5

0

5

Figure 2: Total reconstruction error as a function of the number of available samples NA for

various assumed sparsity K. Theoretical results are presented by lines and the statistical with

dots. Dots for NA > 4K, when the reconstruction is possible with a high probability, are

filled.
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Figure 3: The S-method (SM) calculated from the reconstructed STFT with varying assumed

sparsity K and NA = 2N/3 available samples.
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