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Abstract- The paper proposes an application of the median form 

ambiguity function in direct sequence spread spectrum 

modulated signals denoising. The observed signals are 

multicomponent and consisted of short duration sinusoidal 

components, appearing on different frequencies. The analysis of 

such multicomponent signals in the time-frequency plane could 

be disturbed by the unwanted cross-terms. It is shown that the 

filtering based on the median ambiguity function can completely 

eliminate the cross-terms. Moreover, beside the cross-terms the 

observed signal can be disturbed by different types of noise. 

Impulse noise is considered, due to the fact that this type of noise 

is common in communications. The signal terms are located 

around the origin in the ambiguity plane, being symmetric 

around the y-axis. Since the noise/cross-terms are dislocated from 

the origin, the filtering does not affect the signal terms providing 

satisfactory results. After denoising and cross-terms removal, the 

signal parameters (hop bandwidth and hop time duration) are 

estimated. The theory is proved by the experimental results.  
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I.  INTRODUCTION  

Spread spectrum techniques [1] are used to extend the 

frequency range of the signal, using a code that is unique for 

each user and uncorrelated with the observed signal. As a 

result of spreading, a signal with much wider bandwidth 

compared to the bandwidth of an unmodulated signal, is 

obtained. The spread spectrum approach increases the number 

of users of the same transmission medium and, at the same 

time, decreases the interferences between signals that operate 

in the same frequency band.  

Spread spectrum techniques are in theory known since the 

beginning of the twentieth century. They have found practical 

application by the German army during the World War I, 

when they were used to prevent the interception of signals and 

the disclosure of confidential information. These techniques 

are commonly used in communications [2],[4], mobile radio 

networks, satellite applications, systems for positioning, etc.  

There are several types of spread spectrum modulations. 

The commonly used are direct sequence spread spectrum 

(DSSS) [4] and frequency hopping spread spectrum (FHSS) 

[1]-[5].  

The second modulation technique is of particular interest in 

this paper. It is used in the Bluetooth standard and is based on 

the carrier wave frequency shift in a pseudorandom manner. 

The pseudorandom sequence defines the signal components 

frequencies [1]-[5]. Useful signal is being multiplied by the 

pseudorandom sequence, which results in extending the signal 

bandwidth. The frequency-hopping pattern represents a 

sequence of frequencies, and they occupy a certain range 

called hopping band. The time interval between the two-hops 

is called a hop interval. The hop bandwidth and hop time 

duration are among main characteristics of the FHSS signal. 

The characteristics of the FHSS signals are observed and 

extracted from the time-frequency (TF) plane.  However, 

having in mind multicomponent nature of the FHSS signals, 

cross-terms are common problem in the TF representation. 

Also, during the transmission through the communication 

channel, signal may be corrupted by noise. In order to reduce 

the unwanted terms, we applied the ambiguity-domain 

filtering [6]-[9]. The robust, median form of the ambiguity 

function (AF) is used and it is filtered by using the Gaussian 

kernel adapted to this specific type of signals. It is shown that 

median AF can provide the TF representation that is cross-

terms and noise free.  

TF distributions can be combined with the Compressive 

sensing (CS) approach [10]-[24]. CS provides the possibility 

to acquire small amount of data from the signal and still be 

able to recover the whole information about the signal. The 

aim of TF and CS combination in this paper is to reduce the 

number of samples from the ambiguity domain, required for 

providing TF representation from which signal parameters are 

estimated.  
The paper is organized as follows: Section II represent the 

theoretical background on the spread spectrum modulated 
signals along with the Cohen class TF distributions. In Section 
III, the robust form of the AF is described as well as an 
optimization of the median form AF based on the CS 
principles. The experimental results are discussed in Section IV 
and conclusion is in the Section V. 

 

II. THEORETICAL BACKGROUND 

The spread spectrum modulation techniques find their 

usage in the wireless communication standards. FHSS 

technique is based on changing the carrier frequency from one 

value to another, according to a priori defined pseudorandom 

sequence. Extraction of the signal’s features is important 



issue, since it enables identification of the wireless standard. 

Feature extraction can be made by observing the suitable TF 

representation, under the condition that it is cross-terms free.  

In the analysis of the multicomponent signals, different TF 

distributions are used. The goal is to provide good 

concentration in the TF plane and to avoid cross-terms 

appearing as a consequence of the TF distribution nature [6]-

[8]. Although the Wigner distribution (WD) is the basis for the 

AF definition, it has problem with the cross-terms occurrence 

when dealing with the multicomponent signals. Therefore, our 

focus is on distributions that belong to the Cohen’s class, 

defined starting from the WD as a basis, and introducing a 

kernel function. By choosing a proper kernel function, the 

cross-terms and other interferences can be reduced to a great 

extent or can be completely eliminated.  

The distributions from the Cohen class can be defined in a 

discrete form as follows:  
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where l(m,n) is a 2D kernel function and A(m,n) is an AF, 

defined by [8]:  
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Parameters k, ψ, m and n denote time, frequency, time-lag and 

frequency-lag coordinates, respectfully. The kernel function 

acts as a 2D filter of the AF. By properly adjusting the kernel 

parameters, reduction or complete elimination of the cross 

terms is possible. Different kernel functions produce various 

distributions belonging to the Cohen class. For example, Choi-

Williams and Zhao-Atlas-Marks distributions to some extent 

reduce the cross-terms, but their use is limited to a small 

number of signals. By using the Gaussian kernel type and by 

adjusting its parameters, satisfactory results can be obtained 

for different types of signals. Therefore, in this paper we have 

used a distribution based on the Gaussian kernel: 
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where σ1 and σ2 are parameters that affect the kernel shape.  

However, in the case of the noisy signals, Gaussian based 

distribution fails to provide an accurate representation in the 

TF plane. Therefore, to overcome this problem, robust 

Gaussian distribution based on the robust form of the AF is 

defined. 

 

III. ROBUST FORM OF THE AMBIGUITY FUNCTION AND CS 

OPTIMIZATION  

A. Robust form of the ambiguity function 

Let us describe the robust form of the AF, obtained as a 

solution of the following optimization problem [8]: 
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The error function is defined as: 
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Then the standard form of the AF is defined using the mean 

form as follows: 
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while robust, median form is described by using the relation 

[8]: 

 

2

( , ) ( ) *( ) ,

[ / 2, / 2)

j mt
M

RA m n median x t n x t n e

t M M

π
− 

 
= + − 

  

∈ −

  (7) 

In the case of the mixed noise, the L-form of the AF can be 

used: 
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where rssort and issort are the sorted elements of real and 

imaginary part of the autocorrelation function: 
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m∈∈∈∈  [-M/2, M/2), and coefficients as are described as: 
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The median form of the AF can be defined by using the 

relation (8) with ρ=1/2. 

The robust form of the Gaussian TF distribution is obtained 

by using the robust AF defined as: 
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where AL denotes the L-estimate form of the ambiguity 

function. Due to the nature of the FHSS signals, the median 

form of AL for ρ=1/2 is shown to be suitable for dealing with 

those signals. 

B. Undersampling in the ambiguity plane 

The number of samples, required for satisfactory 

representation of the signal’s TF distribution, can be reduced. 



This can be done by intentionally undersampling the AF, and 

applying the optimization algorithms to obtain an optimized 

TF representation. The goal is to reduce the number of 

ambiguity domain samples, while preserving the TF resolution 

satisfactory enough for later estimation of the signal 

parameters: components’ hop frequencies, hop intervals and 

hop time durations.  

The CS [9]-[24] is a widely studied approach for recovering 

missing information in the signal if the signal has domain 

where can be sparsely represented. Here, as a sparsity signal 

domain, the TF representation is considered, while the 

samples are selected from the ambiguity domain 

[13],[14],[18],[19].  
Certain, small number of ambiguity domain samples, is 

randomly selected from the ambiguity plane. The 
reconstruction of the AF from a small number of acquired 
samples, is done by using the optimization algorithms 
[11],[12],[18]. The 2D CS problem is defined starting from 
relation between the AF and complex-time distribution: 

 ( , ) ( , )R
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where ϒ denotes 2D Fourier transform matrix. The 

measurements are randomly selected from the ambiguity plane 

and the measurement matrix Y is obtained as [18]:  
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where Φ is matrix whose elements are 1 and 0, and models 

random selection of the coefficients. The optimization 

problem is then formulated as follows: 
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 resulting in an optimized TF distribution S

GC . 

  

IV. EXPERIMENTAL RESULTS 

Let us consider three-component FHSS modulated signal, 

defined as follows: 
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where it is assumed that the amplitudes Pi are equal to 1 and 

f1=10,  f2=7, f3=2. 

 The WD of the non-noisy signal is shown in the Figure 1a, 

while Figure 1b shows the ambiguity function of the non-

noisy signal. It can be seen that, even when there is no noise in 

the signal, the WD produces cross-term between two signal 

terms.  

 Let us now observe the WD and the AF when the impulse 

noise is present in the signal, as shown in Figure 2 (8 noisy 

peaks occur in the observed signal). The noisy peaks are real 

valued and therefore only real part of the signal is displayed. 

The WD and the corresponding AF are shown in Figure 3. It 

can be seen that differentiation between noise and signal terms 

is not possible in this case. Therefore, the median form of the 

ambiguity function is calculated and filtered by the Gaussian 

kernel function in order to eliminate the unwanted terms. The 

median ambiguity function is shown in Figure 4a. 

 

    
 a)  b) 

Figure 1.  a) the Wigner distribution of non-noisy signal, b) the ambiguity 

function of non-noisy signal 

 

 
Figure 2: Noisy signal (real part of the signal is displayed). Red marks denote 

noisy coefficients 

 

   
 a) b) 

Figure 3: a) Wigner distribution and b) ambiguity function of the signal 

corrupted by noise 

 

 
a)   b) 

Figure 4: a) Median ambiguity function; b) Gaussian kernel used for the TF 

distribution calculation  

 

 The parameters for the Gaussian kernel are σ1=σ2=96. The 

kernel is shown in Figure 4b, while the TF representation after 

denoising is shown in Figure 5a.  

 The filtered ambiguity function can be randomly 

undersampled in order to obtain the optimized TF 

representation. In our case, only 27% of the samples from the 

ambiguity plane is randomly chosen. The optimized TF 
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representation is then calculated by applying the optimization 

problem according to the relation (14). The obtained TF 

representation is shown in Figure 5b. The time/frequency 

durations of signal components, estimated from the original 

and optimized TF representations, are shown in Table 1. 

 

  
 a) b) 

Figure 5: a) Gaussian kernel based TF distribution obtained by using the 

median ambiguity function; b) The optimized TF distribution obtained from 

only 27% of the ambiguity domain samples 
 

 

Table 1: Time (t) and frequency (f) durations of the signal components, 
estimated from the original and optimized TF representation  

 Component 1 Component 2 Component 3 

t f t f t f 

TF 15 11 18 80 16 43 

Optimized TF 14 11 20 80 18 43 

V. CONCLUSION 

 The application of the median form ambiguity function for 
denoising of spread spectrum modulated signals, is proposed in 
the paper. The signal corrupted by the impulse noise is 
observed. Beside the noise, the unwanted terms are the cross-
terms appearing in the TF and in the ambiguity plane. The fact 
that the signal components in the ambiguity plane are 
concentrated around the origin while the noisy components and 
cross-terms are dislocated, is exploited in this approach. It is 
shown that the median form of the ambiguity function 
completely eliminates the unwanted terms from the ambiguity 
plane. After filtering, the optimization of the ambiguity 
function size is done by it’s undersampling.  By using only 
27% of the samples from the ambiguity plane, the optimized 
TF distribution is obtained based on which the signal features 
are successfully estimated.  
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