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Received 31 August 2017; Revised 9 December 2017; Accepted 28 December 2017; Published 12 February 2018

Academic Editor: Joan Serra-Sagrista

Copyright © 2018 Miloš Brajović et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sparse signals, assuming a small number of nonzero coefficients in a transformation domain, can be reconstructed from a reduced
set of measurements. In practical applications, signals are only approximately sparse. Images are a representative example of such
approximately sparse signals in the two-dimensional (2D) discrete cosine transform (DCT) domain. Although a significant amount
of image energy is well concentrated in a small number of transform coefficients, other nonzero coefficients appearing in the 2D-
DCT domain make the images be only approximately sparse or nonsparse. In the compressive sensing theory, strict sparsity should
be assumed. It means that the reconstruction algorithms will not be able to recover small valued coefficients (above the assumed
sparsity) of nonsparse signals. In the literature, this kind of reconstruction error is described by appropriate error bound relations.
In this paper, an exact relation for the expected reconstruction error is derived and presented in the form of a theorem. In addition
to the theoretical proof, the presented theory is validated through numerical simulations.

1. Introduction

Signals that can be characterized by a small number of
nonzero coefficients are referred to as sparse signals [1–11].
These signals can be reconstructed from a reduced set of
measurements [1–25]. The measurements represent linear
combination of the sparsity (transform) domain coefficients
[1, 7, 24]. Signal samples can be considered as measurements
(observations) in the case when a linear signal transform
is the sparsity domain. Signal sparsity in a transformation
domain can be observed in a number of important applica-
tions. For example, ISAR images are commonly sparse in the
two-dimensional Fourier transform domain, whereas digital
images are well known for their good concentration in the
domain of two-dimensional (2D) discrete cosine transform
(DCT) [8, 21–24].

The idea of reduced number of observations is stud-
ied within the compressed sensing (CS) theory and the
sparse signal processing framework. The reduced number of
measurements may appear due to different causes. In the
CS applications, it arises as a consequence of intentional
sampling strategy, aiming to reduce the signal acquisition

time, equipment load, and subject exposure to potentially
dangerous radiation during the acquisition in biomedical
applications, or, simply, there is a particular interest to
reduce the amount of acquired samples while preserving the
complete information (compression) [1–15]. In certain cases,
physical unavailability can be a cause of a reduced number
of measurements. In many applications, strong disturbances
(noise) can significantly corrupt the signal samples. Such sig-
nals are processed by detecting and intentionally neglecting
the corrupted measurements [7, 9, 23]. Regardless of their
unavailability reasons, under certain reasonable conditions,
missing samples can be reconstructed using well developed
CS methods and algorithms [1, 2].

The DCT is an important and frequently used tool in
signal processing [21–27]. Many signal classes can be more
compactly represented in the DCT domain than in the
Fourier domain. Due to its superior compressibility, the
2D-DCT is one of the most exploited transforms in the
compression of digital images [24]. Moreover, this trans-
form domain has been convenient for the reconstruction
of digital images with missing pixels and/or noise corrup-
tion using the sparsity assumption [21–23]. Measuring the
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2D-DCT coefficients concentration (using the ℓ1-normbased
measure) and varying missing samples values to obtain the
sparsest possible solution leads to the prominent compressive
sensing reconstruction results [20, 23]. In the orthogonal
matching pursuit (OMP) framework, successful reconstruc-
tion is easily obtained if the coefficients corresponding to
signal component positions are successfully identified [12,
28–30]. In that case, the true coefficient values can be
calculated using the identified component positions and
the 2D-DCT measurement matrix [9, 24]. However, it is
important to note that, in practice, digital images are usually
only approximately sparse or nonsparse in the 2D-DCT
domain [21–24]. It means that besides the coefficients with
significant values, carrying most of the signal energy, small
valued coefficients may appear instead of zero-valued ones.
As sparse recovery algorithms assume certain sparsity level,
these coefficients will remain unreconstructed [8, 24]. This
leads to inevitable reconstruction errors. The reduction of
the amount of available samples manifests as a transform
domain noise [7, 9]. During the reconstruction, this noise is
completely cancelled out, if the sparsity assumption is strictly
satisfied. However, if weak signal coefficients of a nonsparse
signal remain unreconstructed, their contribution to the
noise in the reconstructed coefficients remains. If a nonsparse
signal is reconstructedwith a reduced set of available samples,
then the noise due to themissing samples in unreconstructed
coefficients will be considered as an additive input noise in
the reconstructed signal [8].

The existing compressive sensing literature provides only
the general bounds for the reconstruction error for nonsparse
signals (reconstructedwith the sparsity assumption) [1, 2, 4, 5,
28]. The error bounds for the DFT and DCT are considered
in [6] within the reconstruction uniqueness framework. In
this paper, we present an exact relation for the expected
squared error in approximately sparse or nonsparse signals
in the 2D-DCT domain. It is assumed that these signals
are reconstructed from a reduced set of observations, under
the sparsity constraint. Missing measurements influence on
the transform domain is modelled by an additive noise [7].
The noise originating from missing samples in each signal
component is statistically modelled as a Gaussian stochastic
process, and its mean-value and variance are determined.
The results are further exploited in the derivation of the
relation for the error in the reconstructed signal if the sparsity
assumption is used for the reconstruction of nonsparse
signals. The theory is illustrated and verified by numerical
results.

The paper is organized as follows. Basic definitions
regarding the 2D-DCT domain are provided in Section 2.
In Section 3, the main result is presented in the form of
a theorem which will be examined and proved in the next
sections. In Section 4, the 2D-DCT transform is put into
the framework of the reduced number of observations and
the error of nonsparse images reconstruction is analyzed.
In Section 5, the theory is validated with several numerical
examples, while the concluding remarks are given at the end
of the paper, along with Appendix with special cases.

2. Basic Definitions

Consider a 2D discrete signal (digital image) of size 𝑀 × 𝑁
denoted by 𝑠(𝑚, 𝑛). The 2D-DCT of this signal is defined by
[24]

𝐶 (𝑝, 𝑞) = 𝑀−1∑
𝑚=0

𝑁−1∑
𝑛=0

𝑠 (𝑚, 𝑛) 𝜑𝑀 (𝑚, 𝑝) 𝜑𝑁 (𝑛, 𝑞) , (1)

where 𝑝 = 0, . . . ,𝑀−1 and 𝑞 = 0, . . . , 𝑁−1 are the transform
coefficient indices, and

𝜑𝑀 (𝑚, 𝑝) = √ 2𝑀 cos(𝜋 (2𝑚 + 1) 𝑝2𝑀 ) , 𝑝 ̸= 0
𝜑𝑁 (𝑛, 𝑞) = √ 2𝑁 cos(𝜋 (2𝑛 + 1) 𝑞2𝑁 ) , 𝑞 ̸= 0

(2)

are the normalized basis functions. For 𝑝 = 0 or 𝑞 = 0 these
functions are of the form 𝜑𝑀(𝑚, 0) = √1/𝑀 and 𝜑𝑁(𝑛, 0) =√1/𝑁, respectively. The corresponding inverse transform is
given by

𝑠 (𝑚, 𝑛) = 𝑀−1∑
𝑝=0

𝑁−1∑
𝑞=0

𝐶 (𝑝, 𝑞) 𝜑𝑀 (𝑚, 𝑝) 𝜑𝑁 (𝑛, 𝑞) (3)

with 𝑚 = 0, . . . ,𝑀 − 1, 𝑛 = 0, . . . , 𝑁 − 1. The 2D-DCT
transform can be written in a matrix form as [24]

C = Φs, (4)

where C is the 2D-DCT coefficients matrix, Φ is 2D-DCT
transformation matrix, and s is the matrix containing pixel
values of a digital image. For the inverse 2D-DCT the relation
s = ΨC holds, withΨ = Φ−1.

An image of the form

𝑠 (𝑚, 𝑛) = 𝐾∑
𝑙=1

𝐴 𝑙𝜑𝑀 (𝑚, 𝑝𝑙) 𝜑𝑁 (𝑛, 𝑞𝑙) (5)

is sparse in the 2D-DCT domain if the number of nonzero
2D-DCT coefficients 𝐾 is much smaller than the number of
image pixels; that is, 𝐾 ≪ 𝑀𝑁. The components are located
at theDCT indices (𝑝𝑙, 𝑞𝑙)with amplitudes𝐴 𝑙, 𝑙 = 1, 2, . . . , 𝐾.

Assume that only𝑁𝐴 ≤ 𝑀𝑁 randomly positioned pixels
at (𝑚𝑖, 𝑛𝑖) ∈ {(𝑚1, 𝑛1), (𝑚2, 𝑛2), . . . , (𝑚𝑁𝐴 , 𝑛𝑁𝐴)} = NA ⊆ N ={(0, 0), (0, 1), . . . , (𝑀−1,𝑁−1)} are available. If we rearrange
the available pixels y into a vector with elements

𝑦 (𝑖) = 𝑠 (𝑚𝑖, 𝑛𝑖)
= 𝑀−1∑
𝑝=0

𝑁−1∑
𝑞=0

𝐶 (𝑝, 𝑞) 𝜑𝑀 (𝑚𝑖, 𝑝) 𝜑𝑁 (𝑛𝑖, 𝑞) , (6)

where 𝑖 = 0, 1, . . . , 𝑁𝐴, we can write it in the matrix form as

y = AC (7)

representing the mathematical model for the compressive
sampling procedure, where A is an 𝑁𝐴 × 𝑀𝑁 measurement



Mathematical Problems in Engineering 3

matrix. It is defined as the partial inverse 2D-DCT matrix,
containing rows of Ψ that correspond to the available pixel
positions.

Compressive sensing reconstruction inherently assumes
the signal sparsity. An image 𝑠(𝑚, 𝑛) is 𝐾-sparse in the 2D-
DCT domain if only 𝐾 of its 2D-DCT coefficients assume
nonzero values. The nonzero coefficients at the positions(𝑝, 𝑞) ∈ Π𝐾 = {(𝑝1, 𝑞1), (𝑝2, 𝑞2), . . . , (𝑝𝐾, 𝑞𝐾)} will be defined
as C𝐾.

The 2D-DCT of an image reconstructed under the 𝐾-
sparsity assumption will be denoted by C𝑅. This is a vector
with𝐾 reconstructed nonzero coefficients at (𝑝, 𝑞) ∈ Π𝐾.

An image is approximately sparse or nonsparse if the
coefficients𝐶(𝑝, 𝑞), (𝑝, 𝑘) ∉ Π𝐾 are small or of the same order
as the coefficients 𝐶(𝑝, 𝑞), (𝑝, 𝑘) ∈ Π𝐾, respectively. In that
case, the vector C𝐾 contains𝐾 largest values of C. The vector
C𝐾 zero-padded up to the size of the original C and written
in the same format as C will be denoted by C𝐾0.

3. Reconstruction Error Energy

Themain result of the paper providing the exact formulation
of the expected squared reconstruction error in the case of
nonsparse images will be given in the form of a theorem.

Theorem 1. Assume an image nonsparse in the 2D-DCT
domain, with largest amplitudes 𝐴 𝑙, 𝑙 = 1, 2, . . . , 𝐾. Assume
that only 𝑁𝐴 out of total 𝑀𝑁 samples are available, where1 ≪ 𝑁𝐴 < 𝑀𝑁. Also assume that the image is reconstructed
under the assumption as it was 𝐾-sparse. The energy of error
in the𝐾 reconstructed coefficients ‖C𝐾 − C𝑅‖22 is related to the
energy of unreconstructed components ‖C𝐾0 − C‖22 coefficients
as follows:

󵄩󵄩󵄩󵄩C𝐾 − C𝑅
󵄩󵄩󵄩󵄩22 = 𝐾 (𝑀𝑁 −𝑁𝐴)𝑁𝐴 (𝑀𝑁 − 1) 󵄩󵄩󵄩󵄩C𝐾0 − C󵄩󵄩󵄩󵄩22 , (8)

where

󵄩󵄩󵄩󵄩C𝐾 − C𝑅
󵄩󵄩󵄩󵄩22 = 𝐾 (𝑀𝑁 −𝑁𝐴)𝑁𝐴 (𝑀𝑁 − 1)

𝑀𝑁∑
𝑙=𝐾+1

𝐴2𝑙 ,
󵄩󵄩󵄩󵄩C𝐾0 − C󵄩󵄩󵄩󵄩22 =

𝑀𝑁∑
𝑙=𝐾+1

𝐴2𝑙 .
(9)

The theorem will be proved in the next section.

4. The Reconstruction Process and the Proof

The proof will be presented through four subsections. In the
first subsection, we will define the 2D-DCT transform put
into the framework of the reduced number of observations.
Then, we will describe how the missing pixels affect other
components in mono- and multicomponent cases, respec-
tively. Finally, the reconstruction under the assumption that
the signal is𝐾-sparse is considered.

4.1. Initial Estimate. The initial (norm-two based) 2D-DCT
estimation uses the available pixels only

𝐶0 (𝑝, 𝑞) = ∑
(𝑚,𝑛)∈NA

𝑠 (𝑚, 𝑛) 𝜑𝑀 (𝑚, 𝑝) 𝜑𝑁 (𝑛, 𝑞) , (10)

where𝑝 = 0, 1, . . . ,𝑀−1, 𝑞 = 0, 1, . . . , 𝑁−1.The same results
are obtained if the missing (unavailable) pixels assume zero
values [7]. In a matrix form we can write

C0 = ATy. (11)

The coefficients in (10) act as random variables, with
different statistical properties at positions of the image com-
ponents, (𝑝, 𝑞) = (𝑝𝑙, 𝑞𝑙), and positions not corresponding to
image components, (𝑝, 𝑞) ̸= (𝑝𝑙, 𝑞𝑙).
4.2. Noise-Only Coefficients in Monocomponent Signals. We
will first observe the monocomponent signal case, that is,
when 𝐾 = 1, and then generalize the result for multicompo-
nent signals. Without loss of generality, we will assume that
the amplitude is 𝐴1 = 1. From (5) and (10) we get

𝐶0 (𝑝, 𝑞)
= ∑
(𝑚,𝑛)∈NA

𝜑𝑀 (𝑚, 𝑝1) 𝜑𝑁 (𝑛, 𝑞1) 𝜑𝑀 (𝑚, 𝑝) 𝜑𝑁 (𝑛, 𝑞) . (12)

The variable

𝑥𝑝1𝑞1 (𝑚, 𝑛, 𝑝, 𝑞)
= 𝜑𝑀 (𝑚, 𝑝1) 𝜑𝑁 (𝑛, 𝑞1) 𝜑𝑀 (𝑚, 𝑝) 𝜑𝑁 (𝑛, 𝑞) (13)

is random for random values of (𝑚, 𝑛). Its statistical proper-
ties for (𝑝, 𝑞) ̸= (𝑝1, 𝑞1) are studied next. Special cases are
considered in Appendix.The initial 2D-DCT estimate can be
written in the form

𝐶0 (𝑝, 𝑞) = ∑
(𝑚,𝑛)∈NA

𝑥𝑝1𝑞1 (𝑚, 𝑛, 𝑝, 𝑞) . (14)

When (𝑝, 𝑞) ̸= (𝑝1, 𝑞1), the 2D-DCT coefficients corre-
spond to nonsignal (noise) position and 𝐶0(𝑝, 𝑞) behaves as
a random Gaussian variable [7]. Using the basis functions
orthogonality

𝑀−1∑
𝑚=0

𝑁−1∑
𝑛=0

𝑥𝑝1𝑞1 (𝑚, 𝑛, 𝑝, 𝑞) = 𝛿 (𝑝 − 𝑝1, 𝑞 − 𝑞1) (15)

and the fact that values of 𝑥𝑝1𝑞1(𝑚, 𝑛, 𝑝, 𝑞) are equally dis-
tributed, it can be concluded that the mean-value of 𝐶0(𝑝, 𝑞)
is equal to zero:

𝜇𝐶0(𝑝,𝑞) = 𝐸 {𝐶0 (𝑝, 𝑞)} = 0, (𝑝, 𝑞) ̸= (𝑝1, 𝑞1) . (16)

In the case of the coefficient corresponding to the image
component, using the same orthogonality property and the
assumption of equal distribution of values 𝑥𝑝1𝑞1(𝑚, 𝑛, 𝑝, 𝑞), it
follows that

𝜇𝐶0(𝑝,𝑞) = 𝐸 {𝐶0 (𝑝, 𝑞)} = 𝑁𝐴𝑀𝑁, (𝑝, 𝑞) = (𝑝1, 𝑞1) . (17)
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For the zero-mean random variable, the variance definition
is

𝜎2𝐶0(𝑝,𝑞) = 𝐸{{{{{{{
∑
(𝑚,𝑛)∈NA

𝑥2𝑝1𝑞1 (𝑚, 𝑛, 𝑝, 𝑞)

+ ∑
(𝑚,𝑛)∈NA

∑
(𝑖,𝑗)∈NA
(𝑖,𝑗) ̸=(𝑚,𝑛)

𝑥𝑝1𝑞1 (𝑚, 𝑛, 𝑝, 𝑞)

⋅ 𝑥𝑝1𝑞1 (𝑖, 𝑗, 𝑝, 𝑞)
}}}}}}}
.

(18)

As in the case when (𝑝, 𝑞) ̸= (𝑝1, 𝑞1) is observed, it can be
concluded that

𝑀−1∑
𝑚=0

𝑁−1∑
𝑛=0

𝑥𝑝1𝑞1 (𝑚, 𝑛, 𝑝, 𝑞) = 0. (19)

Multiplying the left and right side of (19) by 𝑥𝑝1𝑞1(𝑖, 𝑗, 𝑝, 𝑞)
and taking the expectation of both sides we get

𝐸{𝑀−1∑
𝑚=0

𝑁−1∑
𝑛=0

𝑥𝑝1𝑞1 (𝑚, 𝑛, 𝑝, 𝑞) 𝑥𝑝1𝑞1 (𝑖, 𝑗, 𝑝, 𝑞)} = 0, (20)

with (𝑖, 𝑗) ∈ N. Values 𝑥𝑝1𝑞1(𝑚, 𝑛, 𝑝, 𝑞) are equally dis-
tributed. Therefore, terms 𝐸{𝑥𝑝1𝑞1(𝑚, 𝑛, 𝑝, 𝑞)𝑥𝑝1𝑞1(𝑖, 𝑗, 𝑝, 𝑞)}
for (𝑚, 𝑛) ̸= (𝑖, 𝑗) are the same and equal to a constant 𝐷.
The total number of these terms is𝑀𝑁−1. Further, based on
(20) we get

(𝑀𝑁 − 1)𝐷 + 𝐸 {𝑥2𝑝1𝑞1 (𝑚, 𝑛, 𝑝, 𝑞)} = 0. (21)

The initial variance definition can be written as

𝜎2𝐶0(𝑝,𝑞) = 𝑁𝐴𝐸 {𝑥2𝑝1𝑞1 (𝑚, 𝑛, 𝑝, 𝑞)} + (𝑁2𝐴 − 𝑁𝐴)𝐷, (22)

as there are exactly𝑁𝐴 expectations with quadratic terms in
the first summation and 𝑁𝐴(𝑁𝐴 − 1) terms in the second
variance summation equal to 𝐷. In order to determine
the unknown term 𝐸{𝑥2𝑝1𝑞1(𝑚, 𝑛, 𝑝, 𝑞)}, several special cases
should be taken into account. Special cases of the 2D-DCT
indices are considered in Appendix.

Consider the general case when 𝑝 ̸= 𝑝1, 𝑝 ̸= 𝑀−𝑝1, 𝑞 ̸=𝑞1, 𝑞 ̸= 𝑁 − 𝑞1 are satisfied. Then

𝐸 {𝑥2𝑝1𝑞1 (𝑚, 𝑛, 𝑝, 𝑞)} = 𝐸 {𝜑2𝑀 (𝑚, 𝑝1) 𝜑2𝑁 (𝑛, 𝑞1)}
× 𝐸 {𝜑2𝑀 (𝑚, 𝑝) 𝜑2𝑁 (𝑛, 𝑞)}

= 1𝑀2𝑁2
(23)

holds. Incorporating this result into (21) we get that

𝐷 = − 1𝑀2𝑁2 1𝑀𝑁 − 1. (24)

Further, based on (22) the variance can be written as

𝜎2𝐶0(𝑝,𝑞) = 𝑁𝐴 (𝑀𝑁 −𝑁𝐴)𝑀2𝑁2 (𝑀𝑁 − 1) . (25)

This result also holds when (𝑝1, 𝑞1) = (0, 0). Note that when𝐴1 ̸= 1, the result is multiplied by 𝐴21.
It can be easily concluded that the average value of the

variance (A.12) when all special cases from Appendix are
included is constant and equal to

𝜎2𝐶0 = 𝐴21 𝑁𝐴 (𝑀𝑁 −𝑁𝐴)𝑀2𝑁2 (𝑀𝑁 − 1)2 (𝑀𝑁 − 214 ) . (26)

As 𝑀𝑁 ≫ 1, an accurate approximation for the average
variance of noise-only coefficients follows

𝜎2𝑁 = 𝜎2𝐶0 ≈ 𝐴21 𝑁𝐴 (𝑀𝑁 −𝑁𝐴)𝑀2𝑁2 (𝑀𝑁 − 1) . (27)

4.3. Noise-Only Coefficients in Multicomponent Signals. In
the multicomponent signal case, the observed random vari-
able becomes

𝐶0 (𝑝, 𝑞) = ∑
(𝑚,𝑛)∈NA

𝐾∑
𝑙=1

𝐴 𝑙𝜑𝑀 (𝑚, 𝑝𝑙) 𝜑𝑁 (𝑛, 𝑞𝑙)
× 𝜑𝑀 (𝑚, 𝑝) 𝜑𝑁 (𝑛, 𝑞) .

(28)

In this case, the coefficients at noise-only positions(𝑝, 𝑞) ̸= (𝑝𝑙, 𝑞𝑙) are random variables Gaussian in nature
and zero-mean, as they are formed as the summation of
independent zero-mean Gaussian variables over 𝑙. Namely,
now the missing pixels in each image component contribute
to the noise, and the noise originating from each component
is proportional to the squared amplitude of that component,
following (27) with 𝐴 𝑙, 𝑙 = 1, . . . , 𝐾. Therefore, 2D-DCT
coefficients mean-value for a multicomponent signal (image)
can be written as

𝜇𝐶0(𝑝,𝑞) = 𝑁𝐴𝑀𝑁
𝐾∑
𝑙=1

𝐴 𝑙𝛿 (𝑝 − 𝑝𝑙, 𝑞 − 𝑞𝑙) . (29)

The average variance of noise-only coefficients in this case
easily follows

𝜎2𝐶0 =
𝐾∑
𝑙=1

𝐴2𝑙 𝑁𝐴 (𝑀𝑁 −𝑁𝐴)𝑀2𝑁2 (𝑀𝑁 − 1) . (30)

However, it is important to mention that components
of the image multiplied with basis functions may cause
a coupling effect if they are placed at positions satisfying
certain conditions. Consequently, this effect may cause the
increase of the previously derived variance at these positions.
However, if it appears, for example, at the position (𝑝1, 𝑞1)
then the variancewill be decreased for the same amount at the
position (𝑀 − 𝑝1, 𝑁 − 𝑞1). Therefore, we can further neglect
this effect and assume that the variance expression in (30)
holds in mean, which is crucial for the following derivation
of the error in the nonsparse image reconstruction.
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4.4. Nonsparse Signal Reconstruction. We consider that an
image is reconstructed under the assumption that it is 𝐾-
sparse and that it satisfies the condition for unique recon-
struction in the compressive sensing theory. The number
of reconstructed components is 𝐾. According to (30), each
unreconstructed component in the image behaves as a Gaus-
sian input noise with variance

𝜎2𝑁 = 𝐴2𝑙 𝑁𝐴 (𝑀𝑁 −𝑁𝐴)𝑀2𝑁2 (𝑀𝑁 − 1) . (31)

Therefore, all𝑀𝑁−𝐾 unreconstructed components will
behave as a noise with variance

𝜎2𝑇 =
𝑀𝑁∑
𝑙=𝐾+1

𝐴2𝑙 𝑁𝐴 (𝑀𝑁 −𝑁𝐴)𝑀2𝑁2 (𝑀𝑁 − 1) . (32)

After reconstruction, the total noise energy from the
unreconstructed components (in 𝐾 reconstructed compo-
nents) will be

󵄩󵄩󵄩󵄩C𝐾 − C𝑅
󵄩󵄩󵄩󵄩22 = 𝐾𝑀2𝑁2𝑁2𝐴 𝜎2𝑇 = 𝐾 (𝑀𝑁 −𝑁𝐴)𝑁𝐴 (𝑀𝑁 − 1)

𝑀𝑁∑
𝑙=𝐾+1

𝐴2𝑙 . (33)

The noise of unreconstructed components can easily be
related to the energy of the unreconstructed components

󵄩󵄩󵄩󵄩C𝐾 − C󵄩󵄩󵄩󵄩22 =
𝑀𝑁∑
𝑙=𝐾+1

𝐴2𝑙 . (34)

That is, the total error in the reconstructed components is

󵄩󵄩󵄩󵄩C𝐾 − C𝑅
󵄩󵄩󵄩󵄩22 = 𝐾 (𝑀𝑁 −𝑁𝐴)𝑁𝐴 (𝑀𝑁 − 1) 󵄩󵄩󵄩󵄩C𝐾 − C󵄩󵄩󵄩󵄩22 . (35)

This completes the proof of the theorem.

5. Numerical Results

In this section, the theoretical result from (35) is numerically
checked on a number of test images. The images are used for
the numerical calculation of the expected squared error with
various sparsity 𝐾 per block. The block size is assumed to be𝐵 × 𝐵. The squared errors in one block are calculated as

𝐸stat = 10 log (󵄩󵄩󵄩󵄩C𝐾 − C𝑅
󵄩󵄩󵄩󵄩22) (36)

to obtain the numerical result, whereas the theoretical curves
are calculated using the right side of (35), that is,

𝐸theor = 10 log(𝐾 𝐵2 − 𝑁𝐴𝑁𝐴 (𝐵2 − 1) 󵄩󵄩󵄩󵄩C𝐾 − C󵄩󵄩󵄩󵄩22) . (37)

These errors are calculated for each block separately and
then the results are averaged over all blocks in an image. The
statistical peak signal-to-noise ratio (PSNRstat) is defined as

PSNRstat = 10 log( 2552󵄩󵄩󵄩󵄩C𝐾 − C𝑅
󵄩󵄩󵄩󵄩22) (38)

Table 1: Error and PSNR for 8 test images.

Test image Error PSNR
Statistics Theory Statistics Theory

Boat −19.13 −19.20 81.97 82.13
Pout −27.32 −27.38 80.35 80.42
Pirate −10.10 −10.23 70.97 71.10
Lifting Body −24.78 −24.86 82.97 83.11
Pears −25.60 −25.67 78.77 78.86
Autumn −15.80 −15.88 90.81 90.92
Peppers −22.16 −22.22 79.16 79.23
Football −18.72 −18.87 68.69 68.83

and the theoretical one is calculated according to
PSNRteor = 10

⋅ log( 2552
𝐾((𝐵2 − 𝑁𝐴) / (𝑁𝐴 (𝐵2 − 1))) 󵄩󵄩󵄩󵄩C𝐾 − C󵄩󵄩󵄩󵄩22) , (39)

where 255 is considered as the maximal pixel value of an
image. They are used to additionally validate the results. In
all following examples the reconstruction is performed using
the OMP algorithm.

Example 1. The considered image is the grayscale image
“Barbara” of size 512×512. The image is first split into blocks𝐵 × 𝐵 = 16 × 16. It is assumed that 60% of pixels are available.
In the reconstruction, the sparsity is assumed to be 𝐾 = 16
per each block. The original image is shown in Figure 1(a),
the image with the available pixels is shown in Figure 1(b),
and the reconstructed image from reduced set of pixels, with
assumed sparsity, is shown in Figure 1(c).

The statistical error and the theoretical one are shown in
Figure 2. We considered various sparsity levels 𝐾 per each
block, changing between 1 and 16.The red asterisk represents
the statistical values and the theoretical result is presented
with the black line.

Example 2. Let us consider the RGB image “Lena” of size512 × 512. We will again split the image into blocks of size𝐵 × 𝐵 = 16 × 16. It is assumed that 60% of pixels are
available.The sparsity is assumed to be𝐾 = 16 per each block.
The original image, image with the available pixels, and the
reconstructed image are shown in Figure 3.

The statistical error and the theoretical one are shown in
Figure 4. The results are obtained by averaging errors from
each block and each channel. Sparsity 𝐾 per each block was
varied between 1 and 16.The red asterisk represents the statis-
tical values and the black line represents the theoretical result.

Example 3. A test image set with standard MATLAB images,
shown in Figure 5, is used for this example. Each image is
split into 𝐵 × 𝐵 = 16 × 16 blocks. The reconstruction is
performed under the sparsity assumption 𝐾 = 16, with 60%
of randomly positioned available pixels. The statistical and
the theoretical errors are calculated according to (36) and
(37), whereas the PSNR is calculated using (38) and (39).The
results are presented in Table 1, confirming a high agreement
between the theory and statistics.
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(a) (b) (c)
Figure 1: Reconstruction of image “Barbara” with 60% available pixels and sparsity𝐾 = 16 per each block of size 16 × 16: original image (a);
noisy image (b); reconstructed image (c).
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Figure 2: Error caused by the unreconstructed components with
various sparsity per block in image “Barbara”; red asterisk: statistics,
black line: theory.

6. Conclusions

In this paper, we considered the influence of nonsparsity in
the reconstruction of images. Images are originally sparse
or approximately sparse in the two-dimensional discrete
cosine transform domain. The reconstruction error relation
is presented in the form of a theorem. The reconstruction
results are checked on a number of images, both grayscale and
color. It is confirmed that the statistical results are close to the
derived theoretical results.

Appendix

Special Cases of Indices

The values of 2D-DCT coefficients variance, for (𝑝, 𝑞) ̸=(𝑝1, 𝑞1), are considered in Section 4.2. Other special cases of
indices are considered in this Appendix.

Case 1. When nonsignal (noise-only) positions satisfy 𝑝 =𝑝1, 𝑞 ̸= 𝑞1, 𝑞 ̸= 𝑁 − 𝑞1 we have
𝐸 {𝑥2𝑝1𝑞1 (𝑚, 𝑛, 𝑝1, 𝑞)}

= 𝐸 {𝜑4𝑀 (𝑚, 𝑝1)} × 𝐸 {𝜑2𝑁 (𝑛, 𝑞1)} 𝐸 {𝜑2𝑁 (𝑛, 𝑞)} .
(A.1)

Using the property 𝐸{𝜑2𝑁(𝑛, 𝑞1)}𝐸{𝜑2𝑁(𝑛, 𝑞)} = 1/𝑁2, we
can further write

𝐸 {𝑥2𝑝1𝑞1 (𝑚, 𝑛, 𝑝1, 𝑞)}
= 1𝑁2 [ 1𝑀2 + 12𝑀𝐸{𝜑2𝑀 (𝑚, 2𝑝1)}] .

(A.2)

This holds for 𝑝1 ̸= 0. In the previous derivation, we used
the fact that the function 𝜑𝑀(𝑚, 2𝑝1) has a zero mean-value
for random𝑚. Using the cosine function periodicity, we may
write 𝐸{𝜑2𝑀(𝑚, 2𝑝)} = 1/𝑀. Finally, we get

𝐸 {𝑥2𝑝1𝑞1 (𝑚, 𝑛, 𝑝1, 𝑞)} = 32𝑀2𝑁2 . (A.3)

Incorporating this into (21) and (22) leads to

𝜎2𝐶0(𝑝,𝑞) = 3𝑁𝐴 (𝑀𝑁 −𝑁𝐴)2𝑀2𝑁2 (𝑀𝑁 − 1) , (A.4)

for 𝑝1 ̸= 0. When additional condition 𝑝 = 𝑝1 = 0 holds,
then

𝐸 {𝑥2𝑝1𝑞1 (𝑚, 𝑛, 𝑝, 𝑞)} = 1𝑀2𝑁2 (A.5)

is obtained, which leads to the same result as (25).

Case 2. Using same derivations as for Case 1, it is easily shown
that the result (A.4) is obtained for 𝑝 ̸= 𝑝1, 𝑝 ̸= 𝑀 − 𝑝1, 𝑞 =𝑞1 ̸= 0. Condition 𝑞 = 𝑞1 = 0 also leads to (25).
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(a) (b) (c)

Figure 3: Reconstruction of image “Lena” with 60% available pixels and sparsity 𝐾 = 16 per each block of size 16 × 16: original image (a);
noisy image (b); reconstructed image (c).
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Figure 4: Error caused by the unreconstructed components with
various sparsity per block in image “Lena”; red asterisk: statistics,
black line: theory.

Case 3. Observe now the case 𝑝 = 𝑀 − 𝑝1, 𝑞 ̸= 𝑞1, 𝑞 ̸= 𝑁 −𝑞1. Also assume that 𝑝1 ̸= 0. The unknown quadratic term
becomes

𝐸 {𝑥2𝑝1𝑞1 (𝑚, 𝑛,𝑀 − 𝑝1, 𝑞)}
= 𝐸 {𝜑2𝑀 (𝑚, 𝑝1) × 𝜑2𝑀 (𝑚,𝑀 − 𝑝1)}
⋅ 𝐸 {𝜑2𝑁 (𝑚, 𝑞) 𝜑2𝑁 (𝑚, 𝑞1)} = 1𝑁2
⋅ 𝐸 {𝜑2𝑀 (𝑚, 𝑝1) 𝜓2𝑀 (𝑚, 𝑝1)} ,

(A.6)

where𝜓𝑀(𝑚, 𝑝1) = √2/𝑀 sin(𝜋(2𝑚+1)𝑝1/(2𝑀)) for 𝑝1 ̸= 0
and 𝜓𝑀(𝑚, 0) = √1/𝑀.

Boat Pout

Pirate Lifting Body

Pears Autumn

Peppers Football

Figure 5: The test image set used for the analysis in Example 3.
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Note that we used identities 𝜓2𝑀(𝑚,𝑀) = 2/𝑀 and𝜑𝑀(𝑚,𝑀) = 0 that appear in 𝜑2𝑀(𝑚,𝑀 − 𝑝1) when it
is expressed as 𝜑𝑀(𝑚,𝑀)𝜑𝑀(𝑚, 𝑝1) + 𝜓𝑀(𝑚,𝑀)𝜓𝑀(𝑚, 𝑝1).
Using the trigonometric identity for the sine of double angle
and expectation 𝐸{𝜓2𝑀(𝑚, 2𝑝1)} = 1/𝑀, analogous to the
quadratic cosine expectation case, we get

𝐸 {𝑥2𝑝1𝑞1 (𝑚, 𝑛,𝑀 − 𝑝1, 𝑞)} = 12𝑀2𝑁2 . (A.7)

Putting this into (22) leads to

𝜎2𝐶0(𝑝,𝑞) = 𝑁𝐴 (𝑀𝑁 −𝑁𝐴)2𝑀2𝑁2 (𝑀𝑁 − 1) . (A.8)

which holds when 𝑝1 ̸= 0. When 𝑝1 = 0 it is easily shown that
(25) holds.

Case 4. In the equivalent case when 𝑝 ̸= 𝑝1, 𝑝 ̸= 𝑀−𝑝1, 𝑞 =𝑁 − 𝑞1 results are the same as in Case 3. When 𝑞1 = 0, result
(25) holds.

Case 5. Observe the condition set 𝑝 = 𝑝1, 𝑞 = 𝑁 − 𝑞1.
Combining the derivations for Cases 1 and 3, it is easily shown
that variance becomes

𝜎2𝐶0(𝑝,𝑞) = 3𝑁𝐴 (𝑀𝑁 −𝑁𝐴)4𝑀2𝑁2 (𝑀𝑁 − 1) . (A.9)

Otherwise, when 𝑝1 ̸= 0 or 𝑞1 ̸= 0 (25) holds as shown in
previously analyzed cases. When (𝑝1, 𝑞1) = (0, 0) is assumed,
result (25) also holds.

Case 6. In the analogous case when conditions 𝑝 = 𝑀 −𝑝1, 𝑞 = 𝑞1 are satisfied result (A.9) holds, whereas under
additional conditions that 𝑝1 ̸= 0 or 𝑞1 ̸= 0 or (𝑝1, 𝑞1) = (0, 0)
the variance becomes (25).

Case 7. When 𝑝 = 𝑀 − 𝑝1 and 𝑞 = 𝑁 − 𝑞1, unknown
expectation becomes

𝐸 {𝑥2𝑝1𝑞1 (𝑚, 𝑛,𝑀 − 𝑝1, 𝑁 − 𝑞1)} = 14𝑀2𝑁2 (A.10)

for (𝑝1, 𝑞1) ̸= (0, 0), leading to

𝜎2𝐶0(𝑝,𝑞) = 𝑁𝐴 (𝑀𝑁 −𝑁𝐴)4𝑀2𝑁2 (𝑀𝑁 − 1) . (A.11)

For (𝑝1, 𝑞1) = (0, 0) we have 𝐸{𝑥200(𝑚, 𝑛,𝑀,𝑁)} =1/(𝑀2𝑁2). Therefore, in the case of noisy coefficient (𝑀 −𝑝1, 𝑁 − 𝑞1), the variance becomes (25). It can be shown that
for either 𝑝1 = 0 or 𝑞1 = 0 this variance is equal to (A.8).

Note that the variance expressions obtained in all consid-
ered cases are multiplied with 𝐴21 when 𝐴1 ̸= 1. Previous
results can be unified as follows:

𝜎2𝐶0(𝑝,𝑞) = 𝐴21 𝑁𝐴 (𝑀𝑁 −𝑁𝐴)𝑀2𝑁2 (𝑀𝑁 − 1) × [1 + (1

− 𝛿 (𝑝1, 𝑞1))(12
𝑁−1∑
𝑖=0

(1 − 𝛿 (𝑝1, 0))

⋅ 𝛿 (𝑝 − 𝑝1, 𝑞 − 𝑖) + 12
𝑀−1∑
𝑖=0

(1 − 𝛿 (0, 𝑞1))

⋅ 𝛿 (𝑝 − 𝑖, 𝑞 − 𝑞1) − 12
𝑁−1∑
𝑖=0

(1 − 𝛿 (𝑀 − 𝑝1, 0))
⋅ 𝛿 (𝑝 − (𝑀 − 𝑝1) , 𝑞 − 𝑖) − 12
⋅ 𝑀−1∑
𝑖=0

(1 − 𝛿 (0,𝑁 − 𝑞1)) 𝛿 (𝑝 − 𝑖, 𝑞 − (𝑁 − 𝑞1))
+ 14 (1 − 𝛿 (𝑝1, 0) − 𝛿 (0, 𝑞1))
⋅ 𝛿 (𝑝 − (𝑀 − 𝑝1) , 𝑞 − (𝑁 − 𝑞1))
− 14 (1 − 𝛿 (𝑝1, 0) − 𝛿 (0, 𝑞1))
⋅ 𝛿 (𝑝 − 𝑝1, 𝑞 − (𝑁 − 𝑞1))
− 14 (1 − 𝛿 (𝑝1, 0) − 𝛿 (0, 𝑞1))
⋅ 𝛿 (𝑝 − (𝑀 − 𝑝1) , 𝑞1))] ,

(A.12)

where 𝛿(𝑝, 𝑞) = 1 if 𝑝 = 0 and 𝑞 = 0 and 𝛿(𝑝, 𝑞) = 0
otherwise.

The variances are statistically checked in the next exam-
ple.

Example A.1. Assume a monocomponent signal in the 2D-
DCT domain, defined as

𝑠 (𝑚, 𝑛) = 𝐴1𝜑𝑝1 (𝑚,𝑀) 𝜑𝑞1 (𝑛,𝑁) , (A.13)

where 𝑀 = 16, 𝑁 = 20, 𝐴1 = 1, 𝑝1 = 9, and 𝑞1 = 16.
Only 𝑁𝐴 = 128 randomly positioned samples of the signal
are available and 20,000 independent random realizations of
the signal are observed. Based on the initial estimates (10), the
variance of 2D-DCT coefficients is calculated numerically,
averaging initial estimates over all realizations.The results are
shown in Figure 6, scaled with constant term (25). Special
cases considered in Appendix are denoted in Figure 6.
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General case
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Figure 6: Variance of the initial 2D-DCT estimate. It is obtained
numerically based on 20,000 independent realizations of a𝑀×𝑁 =16 × 20 monocomponent signal sparse in 2D-DCT domain, with𝑁𝐴 = 128 randomly positioned available samples.
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