
Foundations and Trends
R�

in Machine Learning

Data Analytics on Graphs Part I:

Graphs and Spectra on Graphs

Suggested Citation: Ljubiöa StankoviÊ, Danilo Mandic, Miloö DakoviÊ, Miloö Bra-

joviÊ, Bruno Scalzo, Shengxi Li and Anthony G. Constantinides (2020), “Data Analytics

on Graphs Part I: Graphs and Spectra on Graphs”, Foundations and Trends
R�

in Machine

Learning: Vol. 13, No. 1, pp 1–157. DOI: 10.1561/2200000078-1.

Ljubiöa StankoviÊ

University of Montenegro
Montenegro
ljubisa@ucg.ac.me

Danilo Mandic

Imperial College London
UK
d.mandic@imperial.ac.uk

Miloö DakoviÊ

University of Montenegro
Montenegro
milos@ucg.ac.me

Miloö BrajoviÊ

University of Montenegro
Montenegro
milosb@ucg.ac.me

Bruno Scalzo

Imperial College London
UK
bruno.scalzo-dees12@imperial.ac.uk

Shengxi Li

Imperial College London
UK
shengxi.li17@imperial.ac.uk

Anthony G. Constantinides

Imperial College London
UK
a.constantinides@imperial.ac.uk

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval. Boston — Delft

Contents

1 Introduction 3

2 Graph Definitions and Properties 7

2.1 Basic Definitions . 7
2.2 Some Frequently Used Graph Topologies 14
2.3 Properties of Graphs and Associated Matrices 19

3 Spectral Decomposition of Graph Matrices 29

3.1 Eigenvalue Decomposition of the Adjacency Matrix 29
3.2 Spectral Graph Theory 32
3.3 Eigenvalue Decomposition of the Graph Laplacian 39

4 Vertex Clustering and Mapping 49

4.1 Clustering Based on Graph Topology 50
4.2 Spectral Methods for Graph Clustering 58
4.3 Spectral Clustering Implementation 75
4.4 Vertex Dimensionality Reduction Using the

Laplacian Eigenmaps . 91
4.5 Pseudo-Inverse of Graph Laplacian-Based Mappings 104
4.6 Summary of Embedding Mappings 116

5 Graph Sampling Strategies 118

5.1 Graph Down-Sampling Strategies 118
5.2 Graph Sparsification . 120
5.3 Graph Coarsening . 126
5.4 Kron Reduction of Graphs 133

6 Conclusion 134

Appendices 136

A Power Method for Eigenanalysis 137

B Algorithm for Graph Laplacian Eigenmaps 141

C Other Graph Laplacian Forms 143

C.1 Graph Laplacian for Directed Graphs 143
C.2 Signed Graphs and Signed Graph Laplacian 145
C.3 Graph p-Laplacian . 146

Acknowledgments 148

References 149

Data Analytics on Graphs Part I:

Graphs and Spectra on Graphs

Ljubiöa StankoviÊ1, Danilo Mandic2, Miloö DakoviÊ3, Miloö
BrajoviÊ4, Bruno Scalzo5, Shengxi Li6 and Anthony G. Constantinides7

1University of Montenegro, Montenegro; ljubisa@ucg.ac.me
2Imperial College London, UK; d.mandic@imperial.ac.uk
3University of Montenegro, Montenegro; milos@ucg.ac.me
4University of Montenegro, Montenegro; milosb@ucg.ac.me
5Imperial College London, UK; bruno.scalzo-dees12@imperial.ac.uk
6Imperial College London, UK; shengxi.li17@imperial.ac.uk
7Imperial College London, UK; a.constantinides@imperial.ac.uk

ABSTRACT
The area of Data Analytics on graphs promises a paradigm
shift, as we approach information processing of new classes
of data which are typically acquired on irregular but struc-
tured domains (such as social networks, various ad-hoc sen-
sor networks). Yet, despite the long history of Graph Theory,
current approaches tend to focus on aspects of optimisation
of graphs themselves rather than on eliciting strategies rel-
evant to the objective application of the graph paradigm,
such as detection, estimation, statistical and probabilistic
inference, clustering and separation from signals and data
acquired on graphs. In order to bridge this gap, we first
revisit graph topologies from a Data Analytics point of
view, to establish a taxonomy of graph networks through
a linear algebraic formalism of graph topology (vertices,
connections, directivity). This serves as a basis for spectral

Ljubiöa StankoviÊ, Danilo Mandic, Miloö DakoviÊ, Miloö BrajoviÊ, Bruno

Scalzo, Shengxi Li and Anthony G. Constantinides (2020), “Data Analytics on

Graphs Part I: Graphs and Spectra on Graphs”, Foundations and Trends
R•

in

Machine Learning: Vol. 13, No. 1, pp 1–157. DOI: 10.1561/2200000078-1.

2

analysis of graphs, whereby the eigenvalues and eigenvectors
of graph Laplacian and adjacency matrices are shown to
convey physical meaning related to both graph topology and
higher-order graph properties, such as cuts, walks, paths,
and neighborhoods. Through a number of carefully chosen
examples, we demonstrate that the isomorphic nature of
graphs enables both the basic properties of data observed
on graphs and their descriptors (features) to be preserved
throughout the data analytics process, even in the case of
reordering of graph vertices, where classical approaches fail.
Next, to illustrate the richness and flexibility of estimation
strategies performed on graph signals, spectral analysis of
graphs is introduced through eigenanalysis of mathematical
descriptors of graphs and in a generic way. Finally, benefit-
ing from enhanced degrees of freedom associated with graph
representations, a framework for vertex clustering and graph
segmentation is established based on graph spectral repre-
sentation (eigenanalysis) which demonstrates the power of
graphs in various data association tasks, from image cluster-
ing and segmentation trough to low-dimensional manifold
representation. The supporting examples demonstrate the
promise of Graph Data Analytics in modeling structural and
functional/semantic inferences. At the same time, Part I
serves as a basis for Part II and Part III which deal with
theory, methods and applications of processing Data on
Graphs and Graph Topology Learning from data.

Keywords: graph theory; random data on graphs; big data on graphs;
signal processing on graphs; machine learning on graphs; graph
topology learning; systems on graphs; vertex-frequency estimation;
graph neural networks; graphs and tensors.

1

Introduction

Data analytics on graphs is a multidisciplinary research area, of which
the roots can be traced back to the 1970s (Afrati and Constantinides,
1978; Christofides, 1975; Morris et al., 1986), one that is witnessing
significant rapid growth. The recent developments, in response to the
requirements posed by radically new classes of data sources, typically
embark upon the classical results on “static” graph topology optimiza-
tion, to treat graphs as irregular data domains, which make it possible
to address completely new paradigms of “information processing on
graphs” and “signal processing on graphs”. This has already resulted
in advanced and physically meaningful solutions in manifold applica-
tions (Grady and Polimeni, 2010; Jordan, 1998; Krim and Hamza, 2015;
Marques et al., 2017; Ray, 2012). For example, while the emerging
areas of Graph Machine Learning (GML) and Graph Signal Process-
ing (GSP) do comprise the classic methods of optimization of graphs
themselves (Bapat, 1996; Bunse-Gerstner and Gragg, 1988; Fujiwara,
1995; Grebenkov and Nguyen, 2013; Jordan, 2004; Maheswari and
Maheswari, 2016; O’Rourke et al., 2016), significant progress has been
made towards redefining basic data analysis objectives (spectral es-
timation, probabilistic inference, filtering, dimensionality reduction,

3

4 Introduction

clustering, statistical learning), to make them amenable for direct es-
timation of signals on graphs (Chen et al., 2014; Ekambaram, 2014;
Gavili and Zhang, 2017; Hamon et al., 2016a; Moura, 2018; Sandryhaila
and Moura, 2013, 2014a,b; Shuman et al., 2013; Vetterli et al., 2014;
Wainwright et al., 2008). Indeed, this is a necessity in numerous practi-
cal scenarios where the signal domain is not designated by equidistant
instants in time or a regular grid in a space or a transform domain.
Examples include modern Data Analytics for e.g., social network mod-
eling or in smart grid – data domains which are typically irregular
and, in some cases, not even related to the notions of time or space,
where ideally, the data sensing domain should also reflect domain-
specific properties of the considered system/network; for example, in
social or web related networks, the sensing points and their connec-
tivity may be related to specific individuals, objectives, or topics, and
their relations, whereby the processing on irregular domains requires
the consideration of data properties other than time or space relation-
ships. In addition, even for the data sensed in well-defined time and
space domains, the new contextual and semantic-related relations be-
tween the sensing points, introduced through graphs, promise to equip
problem definition with physical relevance, and consequently provide
new insights into analysis and can lead to enhanced data processing
results.

In applications which admit the definition of the data domain as a
graph (such as social networks, power grids, vehicular networks, and
brain connectivity), the role of classic temporal/spatial sampling points
is assumed by graph vertices – the nodes – where the data values
are observed, while the edges between vertices designate the existence
and nature of vertex connections (directionality, strength). In this way,
graphs are perfectly well equipped to exploit the fundamental relations
among both the measured data and the underlying graph topology;
this inherent ability to incorporate physically relevant data properties
has made GSP and GML key technologies in the emerging field of Big
Data Analytics (BDA). Indeed, in applications defined on irregular
data domains, Graph Data Analytics (GDA) has been shown to o�er a
quantum step forward from the classical time (or space) series analyses
(Brouwer and Haemers, 2012; CvetkoviÊ and Doob, 1985; CvetkoviÊ

5

and Gutman 2011; CvetkoviÊ et al., 1980; Chung, 1997; Jones, 2013;
Mejia et al., 2017; StankoviÊ et al., 2017b, 2019), including the following
aspects.

• Graph-based data processing approaches can be applied not only
to technological, biological, and social networks, but also they
can lead to both improvements of the existing and even to the
creation of radically new methods in classical signal processing and
machine learning (Dong et al., 2012; Hamon et al., 2016b; Horaud,
2009; Lu et al., 2014; Masoumi and Hamza, 2017; Masoumi et al.,
2016; StankoviÊ et al., 2017a, 2018).

• The involvement of graphs makes it possible for the classical
sensing domains of time and space (which may be represented as
a linear or circular graph) to be structured in a more advanced
way, e.g., by considering the connectivity of sensing points from a
signal similarity or sensor association point of view.

The first step in graph data analytics is to decide on the properties of
the graph as a new signal/information domain. However, while the data
sensing points (graph vertices) may be well-defined by the application
itself, that is not the case with their connectivity (graph edges), where:

• In the case of the various computer, social, road, transportation
and electrical networks, the vertex connectivity is often naturally
defined, resulting in an exact underlying graph topology.

• In many other cases, the data domain definition in a graph form
becomes part of the problem definition itself, as is the case with,
e.g., graphs for sensor networks, in finance or smart cities. In such
cases, a vertex connectivity scheme needs to be determined based
on the properties of the sensing positions or from the acquired data,
as e.g., in the estimation of the temperature field in meteorology
(StankoviÊ et al., 2019).

This additional aspect of the definition of an appropriate graph struc-
ture is of crucial importance for a meaningful and e�cient application
of the GML and GSP approaches.

6 Introduction

With that in mind, this monograph was written in response to
the urgent need of multidisciplinary data analytics communities for a
seamless and rigorous transition from classical data analytics to the
corresponding paradigms which operate directly on irregular graph
domains. To this end, we start our approach from a review of basic
definitions of graphs and their properties, followed by a physical intuition
and step-by-step introduction of graph spectral analysis (eigen-analysis).
Particular emphasis is on eigendecomposition of graph matrices, an area
which serves as a basis for mathematical formalisms in graph signal
and information processing. As an example of the ability of GML and
GSP to generalize standard methodologies for graphs, we elaborate in a
step-by-step way the introduction of Graph Discrete Fourier Transform
(GDFT), and show that it simplifies into standard Discrete Fourier
Transform (DFT) for directed circular graphs; this also exemplifies the
generic nature of graph approaches. Finally, spectral vertex analysis
and spectral graph segmentation are used as the basis for understanding
relations among distinct but physically meaningful regions in graphs; this
is demonstrated through examples of regional infrastructure modeling,
brain connectivity, clustering, and dimensionality reduction.

2

Graph Definitions and Properties

Graph theory has been established for almost three centuries as a branch
in mathematics, and has become a staple methodology in science and
engineering areas including chemistry, operational research, electrical
and civil engineering, social networks, and computer sciences. The
beginning of graph theory applications in electrical engineering can be
traced back to the mid-19th century with the introduction of Kircho�’s
laws. Fast forward two centuries or so, the analytics of data acquired
on graphs has become a rapidly developing research paradigm in Signal
Processing and Machine Learning (Grady and Polimeni, 2010; Krim
and Hamza, 2015; Marques et al., 2017; Ray, 2012).

2.1 Basic Definitions

Definition: A graph G = {V, B} is defined as a set of vertices, V, which
are connected by a set of edges, B µ V ◊V , where the symbol ◊ denotes
a direct product operator.

Examples of graph topologies with N = 8 vertices, with

V = {0, 1, 2, 3, 4, 5, 6, 7}

7

8 Graph Definitions and Properties

0 1

2

3

4

56
7

(a)

0 1

2

3

4

56
7

(b)

Figure 2.1: Basic graph structures. (a) Undirected graph and (b) Directed graph.

are presented in Figure 2.1, along with the corresponding edges. The
vertices are usually depicted as points (circles) and the edges as lines
that connect the vertices. More formally, a line between the vertices
m and n indicates the existence of an edge between vertices m and n,
that is, (m, n) œ B, so that, for example, the graph from Figure 2.1(b)
can be described as

V = {0, 1, 2, 3, 4, 5, 6, 7}
B µ {0, 1, 2, 3, 4, 5, 6, 7} ◊ {0, 1, 2, 3, 4, 5, 6, 7}

B = {(0, 1), (1, 2), (2, 0), (2, 3), (2, 4), (2, 7), (3, 0),
(4, 1), (4, 2), (4, 5), (5, 7), (6, 3), (6, 7), (7, 2), (7, 6)}.

Regarding the directionality of vertex connections, a graph can be
undirected and directed, as illustrated respectively in Figures 2.1(a)
and (b).

2.1. Basic Definitions 9

Definition: A graph is undirected if the edge connecting a vertex m to
a vertex n also connects the vertex n to the vertex m, for all m and n.

In other words, for an undirected graph, if (n, m) œ B then also
(m, n) œ B, as in the case, for example, with edges (1, 2) and (2, 1) in
Figure 2.1(a). For directed graphs, in general, this property does not
hold, as shown in Figure 2.1(b). Observe, for example, that the edge
(2, 1) does not exist, although the edge (1, 2) connects vertices 1 and 2.
Therefore, undirected graphs can be considered as a special case of
directed graphs.

For a given set of vertices and edges, a graph can be formally
represented by its adjacency matrix, A, which describes the vertex
connectivity; for N vertices A is an N ◊ N matrix.

Definition: The elements Amn of the adjacency matrix A assume values
Amn œ {0, 1}. The value Amn = 0 is assigned if the vertices m and
n are not connected with an edge, and Amn = 1 if these vertices are
connected, that is

Amn

def=

Y
]

[
1, if (m, n) œ B
0, if (m, n) /œ B.

Therefore, the respective adjacency matrices, Aun and Adir, for the
undirected and directed graphs from Figures 2.1(a) and (b) are given by

Aun =

0

1

2

3

4

5

6

7

S

WWWWWWWWWWWWWU

0 1 1 1 0 0 0 0
1 0 1 0 1 0 0 0
1 1 0 1 1 0 0 0
1 0 1 0 0 0 1 0
0 1 1 0 0 1 0 1
0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 0

T

XXXXXXXXXXXXXV

0 1 2 3 4 5 6 7

, (2.1)

10 Graph Definitions and Properties

Adir =

0

1

2

3

4

5

6

7

S

WWWWWWWWWWWWWU

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 1
1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0

T

XXXXXXXXXXXXXV

. (2.2)

Adjacency matrices not only fully reflect the structure arising from
the topology of data acquisition, but also they admit analysis through
linear algebra, and can be sparse, or exhibit some other interesting and
useful matrix properties.
Remark 1: The adjacency matrix of an undirected graph is symmetric,
that is,

A = A
T .

Since a graph is fully determined by its adjacency matrix, defined
over a given set of vertices, any change in vertex ordering will cause the
corresponding changes in the adjacency matrix.
Remark 2: Observe that a vertex indexing scheme does not change
the graph itself (graphs are isomorphic domains), so that the relation
between adjacency matrices of the original and renumerated graphs, A1
and A2 respectively, is straightforwardly defined using an appropriate
permutation matrix, P, in the form

A2 = P A1P
T . (2.3)

Recall that each row and each column of a permutation matrix has
exactly one nonzero element equal to unity.

In general, in the context of an application the edges can also
convey information about a relative importance about the vertices they
interconnect, through a weighted graph.
Remark 3: The set of weights, W, corresponds morphologically to
the set of edges, B, so that a weighted graph represents a generic
extension of an unweighted graph. It is commonly assumed that edge

2.1. Basic Definitions 11

0 1

2

3

4

56
7

0.23

0.74
0.2

4 0.35 0
.23

0.26 0.24

0.
32 0.510.1

4

0.150.32

Figure 2.2: Example of a weighted graph.

weights are nonnegative real numbers; therefore, if weight 0 is associated
with a nonexisting edge, then the graph can be described by a weight
matrix, W, similar to the description by the adjacency matrix A.

Definition: A nonzero element in the weight matrix W, Wmn œ W,
designates both an edge between the vertices m and n and the corre-
sponding weight. The value Wmn = 0 indicates no edge connecting the
vertices m and n. The elements of a weight matrix are nonnegative real
numbers.

Figure 2.2 shows an example of a weighted undirected graph, with
the corresponding weight matrix given by

W =

0

1

2

3

4

5

6

7

S

WWWWWWWWWWU

0 0.23 0.74 0.24 0 0 0 0
0.23 0 0.35 0 0.23 0 0 0
0.74 0.35 0 0.26 0.24 0 0 0
0.24 0 0.26 0 0 0 0.32 0

0 0.23 0.24 0 0 0.51 0 0.14
0 0 0 0 0.51 0 0 0.15
0 0 0 0.32 0 0 0 0.32
0 0 0 0 0.14 0.15 0.32 0

T

XXXXXXXXXXV

.

0 1 2 3 4 5 6 7

(2.4)

In this sense, the adjacency matrix, A, can be considered as a special
case of the weight matrix, W, whereby all nonzero weights are equal
to unity. It then follows that the weight matrix of undirected graphs is
also symmetric

W = W
T , (2.5)

while, in general, for directed graphs this property does not hold.

12 Graph Definitions and Properties

Definition: A degree matrix, D, of an undirected graph is a diagonal
matrix with elements, Dmm, which are equal to the sum of weights of
all edges connected to the vertex m, that is, the sum of elements in the
m-th row of the weight matrix, W,

Dmm

def=
N≠1ÿ

n=0
Wmn.

Remark 4: For an unweighted and undirected graph, the value of the
element Dmm is equal to the number of edges connected to the m-th
vertex.

The degree matrices for directed graphs will be consider in the
Appendix on the Laplacian of directed graphs.

Vertex degree centrality. The degree centrality of a vertex is defined
as the number of vertices connected to the considered vertex with a
single edge, and in this way it models the importance of a given vertex.
For undirected and unweighted graphs, the vertex degree centrality of
a vertex m is equal to the element, Dmm, of the degree matrix.
Example 1: For the undirected weighted graph from Figure 2.2, the
degree matrix is given by

D =

0

1

2

3

4

5

6

7

S

WWWWWWWWWWU

1.21 0 0 0 0 0 0 0
0 0.81 0 0 0 0 0 0
0 0 1.59 0 0 0 0 0
0 0 0 0.82 0 0 0 0
0 0 0 0 1.12 0 0 0
0 0 0 0 0 0.66 0 0
0 0 0 0 0 0 0.64 0
0 0 0 0 0 0 0 0.61

T

XXXXXXXXXXV

.

0 1 2 3 4 5 6 7

(2.6)

Another important descriptor of graph connectivity is the graph
Laplacian matrix, L, which combines the weight matrix and the degree
matrix.

Definition: The graph Laplacian matrix is defined as

L
def= D ≠ W, (2.7)

2.1. Basic Definitions 13

where W is the weight matrix and D the diagonal degree matrix
with elements Dmm =

q
n

Wmn. The elements of a Laplacian matrix
are therefore nonnegative real numbers at the diagonal positions, and
nonpositive real numbers at the o�-diagonal positions.

For an undirected graph, the Laplacian matrix is symmetric, that
is, L = L

T . For example, the graph Laplacian for the weighted graph
from Figure 2.2 is given by

L =

S

WWWWWWWWWWU

1.21 ≠0.23 ≠0.74 ≠0.24 0 0 0 0
≠0.23 0.81 ≠0.35 0 ≠0.23 0 0 0
≠0.74 ≠0.35 1.59 ≠0.26 ≠0.24 0 0 0
≠0.24 0 ≠0.26 0.82 0 0 ≠0.32 0

0 ≠0.23 ≠0.24 0 1.12 ≠0.51 0 ≠0.14
0 0 0 0 ≠0.51 0.66 0 ≠0.15
0 0 0 ≠0.32 0 0 0.64 ≠0.32
0 0 0 0 ≠0.14 ≠0.15 ≠0.32 0.61

T

XXXXXXXXXXV

. (2.8)

For practical reasons, it is often advantageous to use the normalized
Laplacian, defined as

LN

def= D
≠1/2(D ≠ W)D≠1/2 = I ≠ D

≠1/2
WD

≠1/2. (2.9)

Remark 5: For undirected graphs, the normalized Laplacian matrix is
symmetric, and has all diagonal values equal to 1, with its trace equal
to the number of vertices N .

Other interesting properties, obtained through Laplacian normaliza-
tion, shall be described later in the various application contexts.

One more form of the graph Laplacian is the so called random-walk

Laplacian, defined as

LRW

def= D
≠1

L = I ≠ D
≠1

W. (2.10)

The random-walk graph Laplacian is rarely used, since it has lost the
symmetry property of the original graph Laplacian for undirected graphs,
LRW ”= L

T

RW
.

Vertex-weighted graphs. Most of the applications of graph theory
are based on edge-weighted graphs, where edge-weighting is designated
by the weight matrix, W. Note that weighting can be also introduced
into graphs based on vertex-weighted approaches (although rather

14 Graph Definitions and Properties

rarely), whereby a weight is assigned to each vertex of a graph. To this
end, we can use a diagonal matrix, V, to define the vertex weights vi,
i = 0, 1, . . . , N ≠ 1, with one possible (Chung and Langlands, 1996)
version of the vertex-weighted graph Laplacian, given by

LV

def= V
1/2

LV
1/2. (2.11)

Observe that for V = D
≠1, the vertex-weighted graph Laplacian in

(2.11) reduces to the standard edge-weighted normalized graph Laplacian
in (2.9).

2.2 Some Frequently Used Graph Topologies

When dealing with graphs, it is useful to introduce a taxonomy of graph
topologies, as follows.

1. Complete graph. A graph is complete if there exists an edge
between every pair of its vertices. Therefore, the adjacency matrix
of a complete graph has elements Amn = 1 for all m ”= n, and
Amm = 0, that is, no self-connections are present. Figure 2.3(a)
gives an example of a complete graph.

2. Bipartite graph. A graph for which the vertices, V, can be
partitioned into two disjoint subsets, E and H, whereby V = E fiH
and E fl H = ÿ, such that there are no edges between the vertices
within the same subset E or H, is referred to as a bipartite graph.
Figure 2.3(b) gives an example of a bipartite undirected graph
with E = {0, 1, 2} and H = {3, 4, 5, 6}, whereby all edges designate
only connections between the sets E and H. Observe also that
the graph in Figure 2.3(b) is a complete bipartite graph, since all
possible edges between the sets E and H are present.
For convenience of mathematical formalism, if vertex ordering
is performed in a such way that all vertices belonging to E are
indexed before the vertices belonging to H, then the resulting
adjacency matrix can be written in a block form

A =
C

0 AEH

AHE 0

D

, (2.12)

2.2. Some Frequently Used Graph Topologies 15

0 1

2

3

45

6

7
0

1

2

3

4

5

6

0 1

2

3

45

6

7

0

1

2

3

45

6

7

0

1

2

3

4

0 1

2

3

45

6

7

0 1

2

3

45

6

7

4

3

2

1

0

(a) Complete graph (b) Bipartite graph

(c) Regular graph (d) Star graph

(f) Path graph(e) Circular graph
(h) Directed
path graph

(g) Directed
circular graph

Figure 2.3: Special graph topologies. (a) Complete graph with 8 vertices. (b) Com-

plete bipartite graph. (c) Regular graph whereby each vertex is connected to 4 vertices.

(d) Star graph. (e) Circular graph. (f) Path graph. (g) Directed circular graph. (h) Di-

rected path graph.

16 Graph Definitions and Properties

where the submatrices AEH and AHE define the respective connec-
tions between the vertices belonging to the disjoint sets E and H.
Observe that for an undirected bipartite graph, AEH = A

T

HE
.

Bipartite graphs are also referred to as Kuratowski graphs, de-
noted by KNE ,NH

, where NE and NH are the respective numbers
of vertices in the sets E and H. It is important to mention that a
complete bipartite graph with three vertices in each of the sets,
H and E , is referred to as the first Kuratowski graph, denoted
by K3,3, which may be used to define conditions for a graph to
be planar (more detail is given in the sequel).
Multipartite graph. A generalization of the concept of bipartite
graph is a multipartite (M -partite) graph for which the vertices
are partitioned into M subsets, whereby each edge connects only
vertices that belong to di�erent subsets.

3. Regular graph. An unweighted graph is said to be regular (or J -
regular) if all its vertices exhibit the same degree of connectivity, J ,
which is defined as the number of edges connected to each vertex.
An example of a regular graph with J = 4 is given in Figure 2.3(c).
From (2.7) and (2.9), the Laplacian and the normalized Laplacian
of a J -regular graph are

L = J I ≠ A and LN = I ≠ 1
J A. (2.13)

4. Planar graph. A graph that can be drawn on a two-dimensional
plane without the crossing of any of its edges is called planar.
For example, if the edges (0, 2), (2, 4), (4, 6), and (6, 0) in the
regular graph from Figure 2.3(c) are plotted as arches outside the
circle defined by the vertices, all instances of edge crossing will be
avoided and such graph presentation will be planar. The graphs
shown in Figures 2.3(d)–(h) are examples of planar graphs.

5. Star graph. This type of graph has one central vertex that is
connected to all other vertices, with no other edges present. An
example of star graph is given in Figure 2.3(d). Observe that
a star graph can be considered as a special case of a complete

2.2. Some Frequently Used Graph Topologies 17

bipartite graph, with only one vertex in the first set, E . The vertex
degree centrality for the central vertex of a star graph with N
vertices is therefore N ≠ 1.

6. Circular (ring) graph. A graph is said to be circular if the
degree of its every vertex is J = 2. This graph is also a regular
graph with J = 2. An example of a circular graph with 8 vertices
is given in Figure 2.3(e).

7. Path graph. A series of connected vertices defines a path graph,
whereby the first and the last vertex are of connectivity degree
J = 1, while all other vertices are of the connectivity degree
J = 2. An example of a path graph with 5 vertices is presented
in Figure 2.3(f).

8. Directed circular graph. A directed graph is said to be circular
if each vertex is related to only one predecessor vertex and only
one successor vertex. An example of a directed circular graph with
8 vertices is given in Figure 2.3(g), with the adjacency matrix

A =

0

1

2

3

4

5

6

7

S

WWWWWWWWWWWWWU

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

T

XXXXXXXXXXXXXV

0 1 2 3 4 5 6 7

. (2.14)

Remark 6: The adjacency matrix of any directed or undirected
circular graph is a circulant matrix.

9. Directed path graph. A directed path graph consists of a series
of vertices connected in only one direction, whereby the first and
the last vertex do not have a respective predecessor or successor.

18 Graph Definitions and Properties

An example of a directed path graph with 5 vertices is presented
in Figure 2.3(h).

Remark 7: Path and circular graphs (directed and undirected)
are of particular interest in Data Analytics, since their domain
properties correspond to classical time or space domains. There-
fore, any graph signal processing or machine learning paradigm
which is developed for path and circular graphs is equivalent to its
corresponding standard time and/or spatial domain paradigm.

10. Erdös-Renyi graph model. This is an N -vertex graph model,
denoted by G(N, p) and introduced by Gilbert, which is formed
in such a way that the presence of an edge between any two
vertices m and n is designated with a probability p. Since the
number of edges in a complete graph is N(N ≠ 1)/2, the expected
number of edges in this graph model is pN(N ≠ 1)/2. A variant
of this model, denoted by G(N, M), is obtained when exactly M
randomly chosen edges are used in a graph with N vertices.
These two closely related graph models are commonly used within
probabilistic approaches, for example, to demonstrate that a cer-
tain property holds for almost all graphs.

11. Stochastic block graph model. Here, the N vertices of a graph
are grouped into K communities, each comprising sets of vertices
that behave similarly (we shall later refer to these groups as
clusters of vertices). The vertices are then randomly connected
with edges, typically with denser connections within one commu-
nity, than between the di�erent communities. The probabilities
of the existence of an edge connection between the community i
and the community k are denoted by pik, where i, k = 1, 2, . . . , K
are the community indices; this means that commonly pkk > pik

for i ”= k. If pik is constant, then this model reduces to a special
case of the Erdös-Renyi model, since there is no inter-community
preference on the probability for edge existence.

12. Preferential attachment model. In graphs that model real-
world social and other networks, it is not uncommon that the

2.3. Properties of Graphs and Associated Matrices 19

number of vertices (representing the users) increases over time.
Consider a graph with N vertices, and assume that a new,
(N + 1)th vertex, is added. In the preferential attachment graph
model, this new vertex, (N + 1), is connected with other ver-
tices, n, with a probability proportional to their degrees, pn =
Dnn/

q
N

m=1 Dmm, calculated before the new vertex is added. In
this way, the more connected vertices accumulate more new edges
(connections).

2.3 Properties of Graphs and Associated Matrices

The notions from graph analysis that are most relevant to the processing
of data on graphs are as follows.

M1: Symmetry: For an undirected graph, the matrices A, W, and L

are all symmetric.

M2: A walk between a vertex m and a vertex n is a connected sequence
of edges and vertices that begins at the vertex m and ends at the
vertex n. Edges and vertices can be included in a walk more than
once. There is also more than one walk between vertices m and n.
The length of a walk is equal to the number of included edges in
unweighted graphs. The number of walks of length K, between a
vertex m and a vertex n, is equal to the value of the mn-th element
of the matrix A

K , which can be proved through mathematical
induction, as follows (Duncan, 2004).
(i) The elements, Amn, of the adjacency matrix A, by definition,
indicate the existence of a walk of length K = 1 (an edge, in this
case) between the vertices m and n in a graph.
(ii) Assume that the elements of matrix A

K≠1 are equal to the
number of walks of length K ≠ 1, between two arbitrary vertices
m and n.
(iii) The number of walks of length K between two vertices, m
and n, is then equal to the number of all walks of length K ≠ 1,
between the vertex m and an intermediate vertex s, s œ V , which
itself is indicated by the element at the position ms of the matrix

20 Graph Definitions and Properties

A
K≠1, according to (ii), for all s for which there is an edge from

vertex s to the destination vertex n. If an edge between the
intermediate vertex s and the final vertex n exists, then Asn = 1.
This means that the number of walks of length K between the
vertices m and n is obtained as the inner product of the m-th row
of A

K≠1 with the n-th column in A, to yield the element mn of
matrix A

K≠1
A = A

K .

Example 2: Consider the vertex 0 and the vertex 4 in the graph
from Figure 2.4, and only the walks of length K = 2. The adjacency
matrix for this graph is given in (2.1). There are two such walks
(0 æ 1 æ 4 and 0 æ 2 æ 4), so that the element A2

04 in the first
row and the fifth column of matrix A

2, is equal to 2, as designated
in bold font in the matrix A

2 below,

A
2 =

0

1

2

3

4

5

6

7

S

WWWWWWWWWWWWWU

3 1 2 1 2 0 1 0
1 3 2 2 1 1 0 1
2 2 4 1 1 1 1 1
1 2 1 3 1 0 0 1
2 1 1 1 4 1 1 1
0 1 1 0 1 2 1 1
1 0 1 0 1 1 2 0
0 1 1 1 1 1 0 3

T

XXXXXXXXXXXXXV

,

0 1 2 3 4 5 6 7

(2.15)

thus indicating K = 2 walks between these vertices.

M3: The number of walks of length not higher than K, between the
vertices m and n, is given by the mn-th element of the matrix

BK = A + A
2 + · · · + A

K , (2.16)

that is, by a value in its m-th row and n-th column. In other
words, the total number of walks is equal to the sum of all walks,
which are individually modeled by A

k, k = 1, 2, . . . , K, as stated
in property M2.

M4: The K-neighborhood of a vertex is defined as a set of vertices that
are reachable from this vertex in walks whose length is up to K.

2.3. Properties of Graphs and Associated Matrices 21

0 1

2

3

4

56
7

Figure 2.4: Walks of length K = 2 from vertex 0 to vertex 4 (thick blue and brown

lines).

For a vertex m, based on the property M3, the K-neighborhood is
designated by the positions and the numbers of non-zero elements
in the m-th row of matrix BK in (2.16). The K-neighborhoods of
vertex 0 for K = 1 and K = 2 are illustrated in Figure 2.5.

M5: A path is a special kind of walk whereby each vertex can be
included only once, whereby the number of edges included in a
path is referred to as the path cardinality or path length, while the
path weight is defined as the sum of weights along these edges.
An Euler path is a graph path that uses every edge of a graph
exactly once. An Euler path for an unweighted graph does exist if
and only if at most two of its vertices are of an odd degree. An
Euler path which starts and ends at the same vertex is referred to
as an Euler circuit, and it exists if and only if the degree of every
vertex is even.
A Hamiltonian path is a graph path between two vertices of a graph
that visits each vertex in a graph exactly once, while a cycle that
uses every vertex in a graph exactly once is called a Hamiltonian
cycle.

M6: The distance, rmn, between two vertices m and n in an unweighed
graph is equal to the minimum path length between these two
vertices. For example, for the graph in Figure 2.4, the distance
between vertex 1 and vertex 5 is r15 = 2.

22 Graph Definitions and Properties

0 1

2

3

4

56
7

(a)

0 1

2

3

4

6 5
7

(a)

Figure 2.5: The K-neighborhoods of vertex 0 for the graph from Figure 2.4, where:

(a) K = 1 and (b) K = 2. The neighboring vertices are shaded.

M7: The diameter, d, of a graph is equal to the largest distance
(number of edges) between all pairs of its vertices, that is, d =
maxm,nœV rmn. For example, the diameter of a complete graph is
d = 1, while the diameter of the graph in Figure 2.4 is d = 3, with
one of the longest paths being 6 æ 3 æ 2 æ 1.

M8: Vertex closeness centrality. The farness (remoteness) of a vertex is
equal the sum of its distances to all other vertices, fn =

q
m”=n

rnm.
The vertex closeness is defined then as an inverse to the farness,
cn = 1/fn, and can be interpreted as a measure of how long it
will take for data to sequentially shift from the considered vertex
to all other vertices. For example, the vertex farness and closeness

2.3. Properties of Graphs and Associated Matrices 23

for the vertices n = 2 and n = 5 in Figure 2.1(a) are respectively
f2 = 10, f5 = 14, and c2 = 0.1, c5 = 0.071.

M9: Vertex or edge betweenness. Vertex/edge betweenness of a vertex n
or edge (m, n) is equal to the number of times that this vertex/edge
acts as a bridge along the shortest paths between any other two
vertices.

M10: Spanning tree and minimum spanning tree. The spanning tree
of a graph is a subgraph that is tree-shaped and connects all
its vertices together. A tree does not have cycles and cannot be
disconnected. The cost of the spanning tree represents the sum of
the weights of all edges in the tree. The minimum spanning tree is
a spanning tree for which the cost is minimum among all possible
spanning trees in a graph. Spanning trees are typically used in
graph clustering analysis.
In the classical literature on graph theory, it is commonly assumed
that the values of edge weights in weighted graphs are proportional
to the standard vertex distance, rmn. However, this is not the
case in data analytics on graphs, where the edge weights are
typically defined as a function of vertex distance, for example,
through a Gaussian kernel, Wmn ≥ exp(≠r2

mn), or some other
data similarity metric. The cost function to minimize for the
Minimum Spanning Tree (MST) can then be defined as a log-sum
of distances, rmn = ≠2 ln Wmn. A spanning tree for the graph from
Figure 2.2 is shown in Figure 2.6. The cost for this spanning tree,
calculated as a sum of all distances (log-weights), rmn, is 15.67.

M11: An undirected graph is called connected if there exists a walk
between each pair of its vertices.

M12: If the graph is not connected, then it consists of two or more
disjoint but locally connected subgraphs (graph components). Back
to mathematical formalism, such disjoint graphs impose a block-
diagonal form on the adjacency matrix, A, and the Laplacian, L.
For M disjoint components (subgraphs) of a graph, these matrices

24 Graph Definitions and Properties

0 1

2

3

4

6 5
7 (a)

0 1

2

3

4

56
7

0.23

0.74
0.2

4 0.35 0
.23

0.26 0.24

0.
32 0.510.1

4

0.150.32
(b)

Figure 2.6: Concept of the spanning tree for graphs. (a) A spanning tree for the

unweighted graph from Figure 2.1(a). (b) A spanning tree for the weighted graph

from Figure 2.2, designated by thick blue edges. The graph edges in thin blue lines

are not included in this spanning tree.

take the form

A =

S

WWWWU

A1 0 · · · 0

0 A2 · · · 0

...
...

0 0 · · · AM

T

XXXXV
(2.17)

L =

S

WWWWU

L1 0 · · · 0

0 L2 · · · 0

...
...

0 0 · · · LM

T

XXXXV
. (2.18)

Note that this block diagonal form is obtained only if the vertex
numbering follows the subgraph structure.

2.3. Properties of Graphs and Associated Matrices 25

0 1

2

3

4

56
7

Figure 2.7: A disconnected graph which consists of two sub-graphs.

Example 3: Consider a graph derived from Figure 2.1(a) by
removing some edges, as shown in Figure 2.7. The adjacency
matrix for this graph is given by

A =

0

1

2

3

4

5

6

7

S

WWWWWWWWWWWWWU

0 1 1 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 1 1 1 0

T

XXXXXXXXXXXXXV

0 1 2 3 4 5 6 7

(2.19)

with the corresponding Laplacian in the form

L =

S

WWWWWWWWWWWWWU

3 ≠1 ≠1 ≠1 0 0 0 0
≠1 2 ≠1 0 0 0 0 0
≠1 ≠1 3 ≠1 0 0 0 0
≠1 0 ≠1 2 0 0 0 0

0 0 0 0 2 ≠1 0 ≠1
0 0 0 0 ≠1 2 0 ≠1
0 0 0 0 0 0 1 ≠1
0 0 0 0 ≠1 ≠1 ≠1 3

T

XXXXXXXXXXXXXV

. (2.20)

Observe that, as elaborated above, these matrices are in a block-
diagonal form with the two constituent blocks clearly separated.

26 Graph Definitions and Properties

Therefore, for an isolated vertex in a graph, the corresponding
row and column of the matrices A and L will be zero-valued.

M13: For two graphs defined on the same set of vertices, with the
corresponding adjacency matrices A1 and A2, the summation
operator produces a new graph, for which the adjacency matrix
is given by

A = A1 + A2.

To maintain the binary values in the resultant adjacency matrix,
Amn œ {0, 1}, a logical (Boolean) summation rule, e.g., 1 + 1 = 1,
may be used for matrix addition. In this monograph, the arithmetic
summation rule is assumed in data analytics algorithms, as for
example, in Equation (2.16) in property M3.

M14: The Kronecker (tensor) product of two disjoint graphs G1 =
(V1, B1) and G2 = (V2, B2) yields a new graph G = (V, B) where
V = V1 ◊ V2 is a direct product of the sets V1 and V2, and
((n1, m1), (n2, m2)) œ B only if (n1, n2) œ B1 and (m1, m2) œ B2.
The adjacency matrix A of the resulting graph G is then equal to
the Kronecker product of the individual adjacency matrices A1
and A2, that is

A = A1 ¢ A2.

An illustration of the Kronecker product for two simple graphs is
given in Figure 2.8.

M15: The Cartesian product (graph product) of two disjoint graphs G1 =
(V1, B1) and G2 = (V2, B2) gives a new graph G = G1⇤G2 = (V, B),
where V = V1 ◊ V2 is a direct product of the sets V1 and V2, and
((m1, n1), (m2, n2)) œ B, only if

m1 = m2 and (n1, n2) œ B2 or
n1 = n2 and (m1, m2) œ B1.

The adjacency matrix of a Cartesian product of two graphs is
then given by the Kronecker sum

A = A1 ¢ IN2 + IN1 ¢ A2
def= A1 ü A2,

2.3. Properties of Graphs and Associated Matrices 27

0

1

2

3

4

⌦ a b =

0a

1a

2a

3a

4a

0b

1b

2b

3b

4b

Figure 2.8: Kronecker (tensor) product of two graphs.

where A1 and A2 are the respective adjacency matrices of graphs
G1, G2, while N1 and N2 are the corresponding numbers of vertices
in G1 and G2, with IN1 and IN2 being the identity matrices of
orders N1 and N2. The Cartesian product of two simple graphs is
illustrated in Figure 2.9. Notice that a Cartesian product of two

1

2

3

4

5

a b c =

1a

2a

3a

4a

5a

1b

2b

3b

4b

5b

1c

2c

3c

4c

5c

Figure 2.9: Cartesian product of two graphs.

28 Graph Definitions and Properties

graphs that reside in a two-dimensional space can be considered
as a three-dimensional structure of vertices and edges (cf. tensors
Saito et al., 2018).

3

Spectral Decomposition of Graph Matrices

As a prerequisite for the optimization and data analytics on graphs,
we next introduce several intrinsic connections between standard linear
algebraic tools and graph topology (Bapat, 1996; Brouwer and Haemers,
2012; Chung, 1997; CvetkoviÊ et al., 1980; Fujiwara, 1995; Jones, 2013;
Maheswari and Maheswari, 2016; O’Rourke et al., 2016).

3.1 Eigenvalue Decomposition of the Adjacency Matrix

Like any other general matrix, graph description matrices can be ana-
lyzed using eigenvalue decomposition. In this sense, a column vector u

is an eigenvector of the adjacency matrix A if
Au = ⁄u, (3.1)

where the constant ⁄, that corresponds to the eigenvector u, is called
the eigenvalue.

The above relation can be equally written as (A ≠ ⁄I)u = 0, and a
nontrivial solution for u does exist if

det|A ≠ ⁄I|= 0.

In other words, the problem turns into that of finding zeros of det|A≠⁄I|
as roots of a polynomial in ⁄, called the characteristic polynomial of

29

30 Spectral Decomposition of Graph Matrices

matrix A, which is given by

P (⁄) = det|A ≠ ⁄I|= ⁄N + c1⁄N≠1 + c2⁄N≠2 + · · · + cN . (3.2)

Remark 8: The order of the characteristic polynomial of graphs has
the physical meaning of the number of vertices, N , within a graph while
the eigenvalues represent the roots of the characteristic polynomial,
that is, P (⁄) = 0.

In general, for a graph with N vertices, its adjacency matrix has N
eigenvalues, ⁄0, ⁄1, . . . , ⁄N≠1. Some eigenvalues may also be repeated,
which indicates that zeros of algebraic multiplicity higher than one
exist in the characteristic polynomial. The total number of roots of a
characteristic polynomial, including their multiplicities, must be equal
to its degree, N , whereby

• the algebraic multiplicity of an eigenvalue, ⁄k, is equal to its multi-
plicity when considered as a root of the characteristic polynomial;

• the geometric multiplicity of an eigenvalue, ⁄k, represents the
number of linearly independent eigenvectors that can be associated
with this eigenvalue.

The geometric multiplicity of an eigenvalue is always equal or lower
than its algebraic multiplicity.

Denote the distinct eigenvalues in (3.2) by µ1, µ2, . . . , µNm , and their
corresponding algebraic multiplicities by p1, p2, . . . , pNm , where p1+p2+
· · ·+pNm = N is equal to the order of the considered matrix/polynomial
and Nm Æ N is the number of distinct eigenvalues. The characteristic
polynomial can now be rewritten in the form

P (⁄) = (⁄ ≠ µ1)p1(⁄ ≠ µ2)p2 · · · (⁄ ≠ µNm)pNm .

Definition: The minimal polynomial of the considered adjacency ma-
trix, A, is obtained from its characteristic polynomial by reducing the
algebraic multiplicities of all eigenvalues to unity, and has the form

Pmin(⁄) = (⁄ ≠ µ1)(⁄ ≠ µ2) · · · (⁄ ≠ µNm).

3.1. Eigenvalue Decomposition of the Adjacency Matrix 31

3.1.1 Properties of the Characteristic and Minimal Polynomial

P1: The degree of the characteristic polynomial is equal to the number
of vertices in the considered graph.

P2: For ⁄ = 0, P (0) = det(A) = ≠⁄0(≠⁄1) · · · (≠⁄N≠1).

P3: The sum of all the eigenvalues is equal to the sum of the diagonal
elements of the adjacency matrix, A, that is, its trace, tr{A}. For
the characteristic polynomial of the adjacency matrix, P (⁄), this
means that the value of c1 in (3.2) is c1 = tr{A} = 0.

P4: The coe�cient c2 in P (⁄) in (3.2) is equal to the number of edges
multiplied by ≠1.
This property, together with P3, follows from the Faddeev–Le-
Verrier algorithm to calculate the coe�cients of the characteristic
polynomial of a square matrix, A, as c1 = ≠tr{A}, c2 =
≠1

2(tr{A
2} ≠ (tr{A})2), and so on. Since tr{A} = 0 and the

diagonal elements of A
2 are equal to the number of edges con-

nected to each vertex (vertex degree), the total number of edges
is equal to tr{A

2}/2 = ≠c2.

P5: The degree of the minimal polynomial, Nm, is strictly larger than
the graph diameter, d.

Example 4: Consider a connected graph with N vertices and
only two distinct eigenvalues, ⁄0 and ⁄1. The order of minimal
polynomial is then Nm = 2, while the diameter of this graph is
d = 1, which indicates a complete graph.

Example 5: For the graph from Figure 2.1(a), the characteristic poly-
nomial of its adjacency matrix, A, defined in (2.1), is given by

P (⁄) = ⁄8 ≠ 12⁄6 ≠ 8⁄5 + 36⁄4 + 36⁄3 ≠ 22⁄2 ≠ 32⁄ ≠ 8,

with the eigenvalues

⁄ œ {≠2, ≠1.741, ≠1.285, ≠0.677, ≠0.411, 1.114, 1.809, 3.190}.

32 Spectral Decomposition of Graph Matrices

With all the eigenvalues di�erent, the minimal polynomial is equal to
the characteristic polynomial, Pmin(⁄) = P (⁄).

Example 6: The adjacency matrix for the disconnected graph from
Figure 2.7 is given in (2.19), and its characteristic polynomial has the
form

P (⁄) = ⁄8 ≠ 9⁄6 ≠ 6⁄5 + 21⁄4 + 26⁄3 + 3⁄2 ≠ 4⁄

with the eigenvalues

⁄ œ {≠1.5616, ≠1.4812, ≠1, ≠1, 0, 0.3111, 2.1701, 2.5616}.

Observe that the eigenvalue ⁄ = ≠1 is of multiplicity higher than
1 (multiplicity of 2), so that the corresponding minimal polynomial
becomes

Pmin(⁄) = ⁄7 ≠ ⁄6 ≠ 8⁄5 + 2⁄4 + 19⁄3 + 7⁄2 ≠ 4⁄.

Although this graph is disconnected, the largest eigenvalue of its adja-
cency matrix, ⁄max = 2.5616, is of multiplicity 1. Relation between the
graph connectivity and the multiplicity of eigenvalues will be discussed
later.

3.2 Spectral Graph Theory

If all the eigenvalues of A are distinct (of algebraic multiplicity 1), then
the N equations in the eigenvalue problem in (3.1), that is, Auk = ⁄kuk,
k = 0, 1, . . . , N ≠ 1, can be written in a compact form as one matrix
equation with respect to the adjacency matrix, as

AU = U�

or
A = U�U

≠1, (3.3)

where � = diag(⁄0, ⁄1, . . . , ⁄N≠1) is the diagonal matrix with the eigen-
values on its diagonal and U is a matrix composed of the eigenvectors,
uk, as its columns. Since the eigenvectors, u, are obtained by solving
a homogeneous system of equations, defined by (3.1) and in the form
(A ≠ ⁄I)u = 0, one element of the eigenvector u can be arbitrarily

3.2. Spectral Graph Theory 33

chosen. The common choice is to enforce unit energy, ÎukÎ2
2 = 1, for

every k = 0, 1, . . . , N ≠ 1.
Remark 9: For an undirected graph, the adjacency matrix A is sym-
metric, that is A = A

T . Any symmetric matrix (i) has real-valued
eigenvalues; (ii) is diagonalizable; and (iii) has orthogonal eigenvectors,
and hence

U
≠1 = U

T .

Remark 10: For directed graphs, in general, A ”= A
T .

Recall that a square matrix is diagonalizable if all its eigenvalues are
distinct (this condition is su�cient, but not necessary) or if the algebraic
multiplicity of each eigenvalue is equal to its geometrical multiplicity.

For some directed graphs, the eigenvalues of their adjacency matrix
may be with algebraic multiplicity higher than one, and the matrix A

may not be diagonalizable. In such cases, the algebraic multiplicity of
the considered eigenvalue is higher than its geometric multiplicity and
the Jordan normal form may be used in decomposition.

Definition: The set of the eigenvalues of an adjacency matrix is called
the graph adjacency spectrum.
Remark 11: The spectral theory of graphs studies properties of graphs
through the eigenvalues and eigenvectors of their associated adjacency
and graph Laplacian matrices.
Example 7: For the graph presented in Figure 2.1(a), the graph ad-
jacency spectrum is given by ⁄ œ {≠2, ≠1.741, ≠1.285, ≠0.677, ≠0.411,
1.114, 1.809, 3.190}, and is shown in Figure 3.1(top).

Example 8: The vertices of the graph presented in Figure 2.1(a) are
randomly reordered, as shown in Figure 3.2. Observe that the graph
adjacency spectrum, given in the same figure, retains the same values,
with vertex indices of the eigenvectors reordered in the same way as the
graph vertices, while the eigenvalues (spectra) retain the same order
as in the original graph in Figure 3.1. By a simple inspection we see
that, for example, the eigenvector elements at the vertex index position
n = 0 in Figure 3.1 are now at the vertex index position n = 3 in all
eigenvectors in Figure 3.2.

34 Spectral Decomposition of Graph Matrices

0 1 2 3 4
5 6 7

0
1 2 3

4
5

6
7

0
1

2
3 4

5

6 7

0
1 2

3 4
5 6

7

0
1

2
3 4

5

6 7

0
1

2
3 4 5 6

7

0
1

2
3 4

5

6 7

0 1
2 3 4

5 6 7

0
1

2
3 4

5

6 7

0
1

2 3
4

5
6 7

0
1

2
3 4

5

6 7

0
1 2

3
4 5

6 7

0
1

2
3 4

5

6 7

0 1 2 3
4 5 6 7

0
1

2
3 4

5

6 7

0 1 2 3 4 5 6 7

0
1

2
3 4

5

6 7

Figure 3.1: Eigenvalues, ⁄k, for spectral indices (eigenvalue numbers) k =

0, 1, . . . , N ≠ 1, and elements of the corresponding eigenvectors, uk(n), as a function

of the vertex index n = 0, 1, . . . , N ≠1, for the adjacency matrix, A, of the undirected

graph presented in Figure 2.1(a). The distinct eigenvectors are shown both on the

vertex index axis, n, (left) and on the graph itself (right).

3.2. Spectral Graph Theory 35

0 1 2 3 4
5 6 7

0
1

2
3

4 5
6

7

3
2

4
5 1

0

6 7

0
1

2
3

4
5

6
7

3
2

4
5 1

0

6 7

0 1 2
3 4

5 6
7

3
2

4
5 1

0

6 7

0
1

2 3
4 5

6 7

3
2

4
5 1

0

6 7

0
1 2

3 4 5
6 7

3
2

4
5 1

0

6 7

0 1 2
3

4
5 6 7

3
2

4
5 1

0

6 7

0 1
2 3 4 5

6 7

3
2

4
5 1

0

6 7

0 1 2 3 4 5 6 7

3
2

4
5 1

0

6 7

Figure 3.2: Eigenvalues, ⁄k, for spectral indices (eigenvalue numbers) k =

0, 1, . . . , N ≠ 1, and elements of the corresponding eigenvectors, uk(n), as a function

of the vertex index n = 0, 1, . . . , N ≠1, for the adjacency matrix, A, of the undirected

graph presented in Figure 2.1(a) with index reordering according to the scheme

[0, 1, 2, 3, 4, 5, 6, 7] æ [3, 2, 4, 5, 1, 0, 6, 7]. The distinct eigenvectors are shown both on

the vertex index axis, n, (left) and on the graph itself (right). Compare with the

results for the original vertex ordering in Figure 3.1.

36 Spectral Decomposition of Graph Matrices

Remark 12: A unique feature of graphs is that vertex reindexing does
not alter the eigenvalues of the adjacency matrix, while the correspond-
ing eigenvectors of the reindexed adjacency matrix contain the same
elements as the original eigenvectors, but reordered according to the
vertex renumbering. This follows from the properties of the permutation
matrix, as in Equation (2.3).

3.2.1 The DFT Basis Functions as a Special Case of Eigenvectors

of the Adjacency Matrix

For continuity with standard spectral analysis, we shall first consider
directed circular graphs, as this graph topology encodes the standard
time and space domains.

Eigenvalue decomposition for the directed circular graph in
Figure 2.3(g), assuming N vertices, follows from the definition Auk =
⁄kuk, and the form of the adjacency matrix in (2.14). Then, the elements
of vector Auk are uk(n ≠ 1), as e�ectively matrix A here represents a
shift operator, while the elements of vector ⁄kuk are ⁄kuk(n), to give

uk(n ≠ 1) = ⁄kuk(n), (3.4)

where uk(n) are the elements of the eigenvector uk for given vertex
indices n = 0, 1, . . . , N ≠ 1, and k is the index of an eigenvector, k =
0, 1, . . . , N ≠ 1. This is a first-order linear di�erence equation, whose
general form for a discrete signal x(n) is x(n) = ax(n ≠ 1), for which
the solution is

uk(n) = 1Ô
N

ej2fink/N and ⁄k = e≠j2fik/N , (3.5)

with k = 0, 1, . . . , N ≠1. It is straightforward to verify that this solution
satisfies the di�erence equation (3.4). Since the considered graph is
circular, the eigenvectors also exhibit circular behavior, that is, uk(n) =
uk(n + N). For convenience, a unit energy condition is used to find the
constants within the general solution of this first-order linear di�erence
equation. Observe that the eigenvectors in (3.5) correspond exactly to
the standard harmonic basis functions in DFT.
Remark 13: Classic DFT analysis may be obtained as a special case of
the graph spectral analysis in (3.5), when considering directed circular

3.2. Spectral Graph Theory 37

graphs. Observe that for circular graphs, the adjacency matrix plays the
role of a shift operator, as seen in (3.4), with the elements of Auk equal
to uk(n ≠ 1). This property will be used to define the shift operator on
a graph in the following sections.

3.2.2 Decomposition of Graph Product Adjacency Matrices

We have already seen in Figures 2.8 and 2.9 that complex graphs, for
example those with a three-dimensional vertex space, may be obtained
as a Kronecker (tensor) product or a Cartesian (graph) product of
two disjoint graphs G1 and G2. Their respective adjacency matrices, A1
and A2, are correspondingly combined into the adjacency matrices of
the Kronecker graph product, A¢ = A1 ¢ A2 and the Cartesian graph
product, Aü = A1 ü A2, as described in properties M14 and M15.

Graph Kronecker product. For the eigendecomposition of the
Kronecker product of matrices A1 and A2, the following holds

A¢ = A1 ¢ A2 = (U1�1U
H

1) ¢ (U2�2U
H

2)
= (U1 ¢ U2)(�1 ¢ �2)(U1 ¢ U2)H ,

or in other words, the eigenvectors of the adjacency matrix of the
Kronecker product of graphs are obtained by a Kronecker product of
the eigenvectors of the adjacency matrices of individual graphs, as
uk+lN1 = u

(A1)
k

¢ u
(A2)
l

, k = 0, 1, 2, . . . , N1 ≠ 1, l = 0, 1, 2, . . . , N2 ≠ 1.
Remark 14: The eigenvectors of the individual graph adjacency ma-
trices, u

(A1)
k

and u
(A2)
k

, are of much lower dimensionality than those of
the adjacency matrix of the resulting graph Kronecker product. This
property can be used to reduce computational complexity when analyz-
ing data observed on this kind of graph. Recall that the eigenvalues of
the resulting graph adjacency matrix are equal to the product of the
eigenvalues of adjacency matrices of the constituent graphs, G2 and G2,
that is,

⁄k+lN1 = ⁄(A1)
k

⁄(A2)
l

.

Graph Cartesian product. The eigendecomposition of the adjacency
matrix of the Cartesian product of graphs, whose respective adjacency

38 Spectral Decomposition of Graph Matrices

matrices are A1 and A2, is of the form

Aü = A1 ü A2 = (U1 ¢ U2)(�1 ü �2)(U1 ¢ U2)H . (3.6)

with uk = u
(A1)
k

¢ u
(A2)
k

and ⁄k+lN1 = ⁄(A1)
k

+ ⁄(A2)
l

, k = 0, 1, 2, . . . ,
N1 ≠ 1, l = 0, 1, 2, . . . , N2 ≠ 1 (Barik et al., 2015).
Remark 15: The Kronecker product and the Cartesian product of
graphs share the same eigenvectors, while their spectra (eigenvalues)
are di�erent.
Example 9: The basis functions of classic two-dimensional (image)
2D-DFT follow from the spectral analysis of a Cartesian graph product
which is obtained as a product the circular directed graph from Figure 2.3
with itself. Since from (3.5), the eigenvector elements of each graph
are uk(n) = ej2fink/N /

Ô
N , then the elements of the resulting basis

functions are given by

uk+lN (m + nN) = 1
N

ej2fimk/N ej2finl/N ,

for k = 0, 1, . . . , N ≠ 1, l = 0, 1, . . . , N ≠ 1, m = 0, 1, . . . , N ≠ 1, and
n = 0, 1, . . . , N ≠ 1. Figure 3.3 illustrates the Cartesian product of two
circular undirected graphs with N1 = N2 = 8.

Remark 16: Cartesian products of graphs may be used for multidi-
mensional extensions of vertex spaces and graph data domains, whereby

Figure 3.3: Graph Cartesian product of two planar circular unweighted graphs,

with N = 8 vertices, produces a three-dimensional torus topology.

3.3. Eigenvalue Decomposition of the Graph Laplacian 39

the resulting eigenvectors (basis functions) can be e�ciently calcu-
lated using the eigenvectors of the original graphs, which are of lower
dimensionality.

3.2.3 Decomposition of Matrix Powers and Polynomials

From the eigendecomposition of the adjacency matrix A in (3.3), eigen-
value decomposition of the squared adjacency matrix, AA = A

2, is
given by

A
2 = U�U

≠1
U�U

≠1 = U�
2
U

≠1,

under the assumption that U
≠1 exists. For an arbitrary natural num-

ber, m, the above result generalizes straightforwardly to

A
m = U�

m
U

≠1. (3.7)

Further, for any matrix function, f(A), that can be written in a poly-
nomial form, given by

f(A) = h0A
0 + h1A

1 + h2A
2 + · · · + hN≠1A

N≠1,

its eigenvalue decomposition is, in general, given by

f(A) = Uf(�)U≠1.

This is self-evident from the properties of eigendecomposition of matrix
powers, defined in (3.7), and the linearity of the matrix multiplication
operator, U(h0A

0 + h1A
1 + h2A

2 + · · · + hN≠1A
N≠1)U≠1.

3.3 Eigenvalue Decomposition of the Graph Laplacian

Spectral analysis for graphs can also be performed based on the graph
Laplacian, L, defined in (2.7). For convenience, we here adopt the same
notation for the eigenvalues and eigenvectors of the graph Laplacian, as
we did for the adjacency matrix A, although the respective eigenvalues
and eigenvectors are not directly related. The Laplacian of an undirected
graph can be therefore written as

L = U�U
T or LU = U�,

40 Spectral Decomposition of Graph Matrices

where � = diag(⁄0, ⁄1, . . . , ⁄N≠1) is a diagonal matrix of Laplacian
eigenvalues and U is the orthonormal matrix of its eigenvectors (in
columns), with U

≠1 = U
T . Note that the Laplacian of an undirected

graph is always diagonalizable, since its matrix L is real and symmetric.
Then, every eigenvector, uk, k = 0, 1, . . . , N ≠ 1, of a graph Lapla-

cian, L, satisfies
Luk = ⁄kuk. (3.8)

Definition: The set of the eigenvalues, ⁄k, k = 0, 1, . . . , N ≠ 1, of the
graph Laplacian is referred to as the graph spectrum or graph Laplacian
spectrum (cf. graph adjacency spectrum based on A).
Example 10: The Laplacian spectrum of the undirected graph from
Figure 2.2, is given by

⁄ œ {0, 0.29, 0.34, 0.79, 1.03, 1.31, 1.49, 2.21},

and shown in Figure 3.4, along with the corresponding eigenvectors.
The Laplacian spectrum of the disconnected graph from Figure 3.5, is
given by

⁄ œ {0, 0, 0.22, 0.53, 0.86, 1.07, 1.16, 2.03},

and is illustrated in Figure 3.6. The disconnected nature of this graph
is indicated by the zero-valued eigenvalue of algebraic multiplicity 2,
that is, ⁄0 = ⁄1 = 0.

Remark 17: Observe that when graph-component (sub-graph) based
vertex indexing is employed, then even though the respective graph
spectra for the connected graph in Figure 3.4 and the disconnected
graph Figure 3.6 are similar, for a given spectral index, the eigenvectors
of a disconnected graph take nonzero values on only one of the individual
disconnected graph components.

3.3.1 Properties of Laplacian Eigenvalue Decomposition

L1: The graph Laplacian matrix is defined in (2.7) in such a way
that the sum of elements in its each row (column) is zero. As
a consequence, this enforces the inner products of every row
of L with any constant vector, u, to be zero-valued, that is,

3.3. Eigenvalue Decomposition of the Graph Laplacian 41

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0
1

2
3 4

5

6 7

0 1 2 3
4 5 6 7

0
1

2
3 4

5

6 7

0
1

2 3
4 5

6 7

0
1

2
3 4

5

6 7

0 1 2
3 4 5 6

7

0
1

2
3 4

5

6 7

0
1

2 3
4 5 6

7

0
1

2
3 4

5

6 7

0
1

2
3 4

5 6
7

0
1

2
3 4

5

6 7

0 1
2

3
4

5
6

7

0
1

2
3 4

5

6 7

0 1
2

3 4
5 6 7

0
1

2
3 4

5

6 7

Figure 3.4: Eigenvalues, ⁄k, for spectral indices (eigenvalue number) k =

0, 1, . . . , N ≠ 1, and elements of the corresponding eigenvectors, uk(n), as a function

of the vertex index n = 0, 1, . . . , N ≠1, for the Laplacian matrix, L, of the undirected

graph presented in Figure 2.2. The distinct eigenvectors are shown both on the

vertex index axis, n, (left) and on the graph itself (right). A comparison with the

eigenvectors of the adjacency matrix in Figure 3.1, shows that for the adjacency

matrix the smoothest eigenvector corresponds to the largest eigenvalue, while for the

graph Laplacian the smoothest eigenvector corresponds to the smallest eigenvalue, ⁄0.

42 Spectral Decomposition of Graph Matrices

0 1

2

3

4

56
7

0.23

0.74
0.2

4 0.35

0.26

0.510.1
4

0.150.32

Figure 3.5: A disconnected weighted graph which consists of two sub-graphs.

Lu = 0 = 0 · u, for any constant vector u. This means that
at least one eigenvalue of the Laplacian is zero, ⁄0 = 0, and
its corresponding constant unit energy eigenvector is given by
u0 = [1, 1, . . . , 1]T /

Ô
N = 1/

Ô
N .

L2: The multiplicity of the eigenvalue ⁄0 = 0 of the graph Lapla-
cian is equal to the number of connected components (connected
subgraphs) in the corresponding graph.
This property follows from the fact that the Laplacian matrix of
disconnected graphs can be written in a block diagonal form, as
in (2.18). The set of eigenvectors of a block-diagonal matrix is
obtained by grouping together the sets of eigenvectors of individual
block submatrices. Since each subgraph of a disconnected graph
behaves as an independent graph, then for each subgraph ⁄0 = 0
is the eigenvalue of the corresponding block Laplacian submatrix,
according to property L1. Therefore, the multiplicity of the eigen-
value ⁄0 = 0 corresponds to the number of disjoint components
(subgraphs) within a graph.
This property does not hold for the adjacency matrix, since there
are no common eigenvalues in the adjacency matrices for the
blocks (subgraphs) or arbitrary graphs, like in the case of ⁄0 = 0
for the graph Laplacian matrix and any graph. In this sense, the
graph Laplacian matrix carries more physical meaning than the
corresponding adjacency matrix.

3.3. Eigenvalue Decomposition of the Graph Laplacian 43

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0
1

2
3 4

5

6 7

0 1 2 3 4 5 6 7

0
1

2
3 4

5

6 7

0 1 2 3
4 5

6 7

0
1

2
3 4

5

6 7

0 1 2
3 4 5 6 7

0
1

2
3 4

5

6 7

0 1 2 3
4 5 6

7

0
1

2
3 4

5

6 7

0
1

2
3

4 5 6 7

0
1

2
3 4

5

6 7

0 1 2 3
4

5 6
7

0
1

2
3 4

5

6 7

0 1
2

3
4 5 6 7

0
1

2
3 4

5

6 7

Figure 3.6: Eigenvalues, ⁄k, for spectral indices (eigenvalue number) k =

0, 1, . . . , N ≠ 1, and elements of the corresponding eigenvectors, uk(n), as a function

of the vertex index n = 0, 1, . . . , N ≠1, for the Laplacian matrix, L, of the undirected

graph presented in Figure 3.5. The distinct eigenvectors are shown both on the vertex

index axis, n, (left) and on the graph itself (right). This graph is characterized with

the zero eigenvalue of algebraic multiplicity 2, that is, ⁄0 = ⁄1 = 0. Observe that for

every spectral index, k, the corresponding eigenvectors take nonzero values on only

one of the disconnected graph components.

44 Spectral Decomposition of Graph Matrices

Remark 18: If ⁄0 = ⁄1 = 0, then the graph is not connected.
If ⁄2 > 0, then there are exactly two individually connected but
globally disconnected components in this graph. If ⁄1 ”= 0 then
this eigenvalue may be used to describe the so called algebraic
connectivity of a graph, whereby very small values of ⁄1 indicate
that the graph is weakly connected. This can be used as an
indicator of the possibility of graph segmentation, as elaborated
in Section 4.2.3.

L3: As with any other matrix, the sum of the eigenvalues of the Lapla-
cian matrix is equal to its trace. For the normalized Laplacian,
the sum of its eigenvalues is equal to the number of vertices, N ,
if there are no isolated vertices.

L4: The coe�cient, cN , in the characteristic polynomial of the graph
Laplacian matrix

P (⁄) = det|L ≠ ⁄I|= ⁄N + c1⁄N≠1 + · · · + cN≠1⁄ + cN

is equal to 0, since ⁄ = 0 is an eigenvalue for the Laplacian matrix.
For unweighted graphs, the coe�cient c1 is equal to the number of
edges multiplied by ≠2. This is straightforward to show following
the relations from property P4 which state that c1 = ≠tr{L}.
For unweighted graphs, the diagonal elements of the Laplacian
are equal to the corresponding vertex degrees (number of edges).
Therefore, the number of edges in an unweighted graph is equal
to ≠c1/2.

Example 11: The characteristic polynomial of the Laplacian for
the graph from Figure 2.1(a) is given by

P (⁄) = ⁄8 ≠ 24⁄7 + 238⁄6 ≠ 1256⁄5 + 3777⁄4

≠ 6400⁄3 + 5584⁄2 ≠ 1920⁄

with the eigenvalues ⁄ œ {0, 1, 1.4384, 3, 4, 4, 5, 5.5616}. Observe
that the eigenvalue ⁄ = 4 is of multiplicity higher than one. The
minimal polynomial therefore becomes Pmin(⁄) = ⁄7 ≠ 20⁄6 +
158⁄5 ≠ 624⁄4 + 1281⁄3 ≠ 1276⁄2 + 480⁄.

3.3. Eigenvalue Decomposition of the Graph Laplacian 45

For the disconnected graph in Figure 2.7, the characteristic poly-
nomial of the Laplacian is given by

P (⁄) = ⁄8 ≠ 18⁄7 + 131⁄6 ≠ 490⁄5 + 984⁄4 ≠ 992⁄3 + 384⁄2,

with the eigenvalues ⁄ œ {0, 0, 1, 2, 3, 4, 4, 4}. The eigenvalue ⁄ = 0
is of algebraic multiplicity 2 and the eigenvalue ⁄ = 4 of algebraic
multiplicity 3, so that the minimal polynomial takes the form

Pmin(⁄) = ⁄5 ≠ 10⁄4 + 35⁄3 ≠ 50⁄2 + 24⁄.

Since the eigenvalue ⁄ = 0 is of algebraic multiplicity 2, property
L2 indicates that this graph is disconnected, with two disjoint
sub-graphs as its constituent components.

L5: Graphs with identical spectra are called isospectral or cospectral
graphs. However, isospectral graphs are not necessary isomorphic,
and construction of isospectral graphs that are not isomorphic is
an important topic in graph theory.

Remark 19: A complete graph is uniquely determined by its
Laplacian spectrum (Van Dam and Haemers, 2003). The Laplacian
spectrum of a complete unweighted graph, with N vertices, is
⁄k œ {0, N, N, . . . , N}. Therefore, two complete isospectral graphs
are also isomorphic.

L6: For a J -regular graph, as in Figure 2.3(c), the eigenvectors of the
graph Laplacian and the adjacency matrices are identical, with
the following relation for the eigenvalues,

⁄(L)
k

= J ≠ ⁄(A)
k

,

where the superscript L designates the Laplacian and superscript
A the corresponding adjacency matrix. This follows directly from
U

T
LU = U

T (J I ≠ A)U.

L7: The eigenvalues of the normalized graph Laplacian, LN = I ≠
D

≠1/2
AD

≠1/2, are nonnegative and upper-bounded by

0 Æ ⁄ Æ 2.

46 Spectral Decomposition of Graph Matrices

The equality for the upper bound holds if and only if the graph is
a bipartite graph, as in Figure 2.3(b). This will be proven within
the next property.

L8: The eigenvalues and eigenvectors of the normalized Laplacian of a
bipartite graph, with the disjoint sets of vertices E and H, satisfy
the relation, referred to as the graph spectrum folding, given by

⁄k = 2 ≠ ⁄N≠k (3.9)

uk =
C

uE

uH

D

and uN≠k =
C

uE

≠uH

D

, (3.10)

where uk designates the k-th eigenvector of a bipartite graph, uE

is its part indexed on the first set of vertices, E , while uH is the
part of the eigenvector uk indexed on the second set of vertices, H.
In order to prove this property, we shall write the adjacency
and the normalized Laplacian matrices of an undirected bipartite
graph in their block forms

A =
C

0 AEH

A
T

EH
0

D

and LN =
C

I LEH

L
T

EH
I

D

.

The eigenvalue relation, LN uk = ⁄kuk, can now be evaluated as

LN uk =
C
uE + LEHuH

L
T

EH
uE + uH

D

= ⁄k

C
uE

uH

D

.

From there, we have uE + LEHuH = ⁄kuE and L
T

EH
uE + uH =

⁄kuH, resulting in LEHuH = (⁄k ≠1)uE and L
T

EH
uE = (⁄k ≠1)uH,

to finally yield

LN

C
uE

≠uH

D

= (2 ≠ ⁄k)
C

uE

≠uH

D

.

This completes the proof.
Since for the graph Laplacian ⁄0 = 0 always holds (see the prop-
erty L1), from ⁄k = 2 ≠ ⁄N≠k in (3.9), it then follows that the
largest eigenvalue is ⁄N = 2, which also proves the property L7
for a bipartite graph.

3.3. Eigenvalue Decomposition of the Graph Laplacian 47

3.3.2 Fourier Analysis as a Special Case of the Laplacian Spectrum

Consider the undirected circular graph from Figure 2.3(e). Then, from
the property L1, the eigendecomposition relation for the Laplacian of
this graph, Lu = ⁄u, admits a simple form

≠u(n ≠ 1) + 2u(n) ≠ u(n + 1) = ⁄u(n). (3.11)

This is straightforward to show by inspecting the Laplacian for the
undirected circular graph from Figure 2.3(e), with N = 8 vertices for
which the eigenvalue analysis is based on

Lu =

S

WWWWWWWWWWWWWU

2 ≠1 0 0 0 0 0 ≠1
≠1 2 ≠1 0 0 0 0 0

0 ≠1 2 ≠1 0 0 0 0
0 0 ≠1 2 ≠1 0 0 0
0 0 0 ≠1 2 ≠1 0 0
0 0 0 0 ≠1 2 ≠1 0
0 0 0 0 0 ≠1 2 ≠1

≠1 0 0 0 0 0 ≠1 2

T

XXXXXXXXXXXXXV

S

WWWWWWWWWWWWWU

u(0)
u(1)
u(2)
u(3)
u(4)
u(5)
u(6)
u(7)

T

XXXXXXXXXXXXXV

. (3.12)

This directly gives the term ≠u(n≠1)+2u(n)≠u(n+1), while a simple
inspection of the values u(0) and u(N) illustrates the circular nature
of the eigenvectors; see also Remark 6. The solution to the second
order di�erence equation in (3.11) is uk(n) = cos(2fikn

N
+ „k), with

⁄k = 2(1 ≠ cos(2fik

N
)). Obviously, for every eigenvalue, ⁄k (except for ⁄0

and for the last eigenvalue, ⁄N≠1, for an even N), we can choose to have
two orthogonal eigenvectors with, for example, „k = 0 and „k = fi/2.
This means that most of the eigenvalues are of algebraic multiplicity 2,
i.e., ⁄1 = ⁄2, ⁄3 = ⁄4, and so on. This eigenvalue multiplicity of two
can be formally expressed as

⁄k =

Y
]

[
2 ≠ 2 cos(fi(k + 1)/N), for odd k = 1, 3, 5, . . . ,

2 ≠ 2 cos(fik/N), for even k = 2, 4, 6,
(3.13)

For an odd N , ⁄N≠2 = ⁄N≠1, whereas for an even N we have ⁄N≠1 = 2
which is of algebraic multiplicity 1.

48 Spectral Decomposition of Graph Matrices

The corresponding eigenvectors u0, u1, . . . , uN≠1, then have the form

uk(n) =

Y
__]

__[

sin(fi(k + 1)n/N), for odd k, k < N ≠ 1
cos(fikn/N), for even k

cos(fin), for odd k, k = N ≠ 1,

(3.14)

where k = 0, 1, . . . , N ≠ 1 and n = 0, 1, . . . , N ≠ 1.

Relation between graph Fourier analysis based on the graph

adjacency matrix and graph Laplacian matrix. Recall that an
arbitrary linear combination of eigenvectors u2k≠1 and u2k, 1 Æ k <
N/2, is also an eigenvector since the corresponding eigenvalues are equal
(in this case both their algebraic and geometric multiplicities are equal
to 2, see Equation (3.13)). With this in mind, we can rewrite the full
set of eigenvectors in an alternative compact form, given by

uk(n) =

Y
_____]

_____[

1, for k = 0
ejfi(k+1)n/N = ej2firn/N , for odd k = 2r ≠ 1, k < N ≠ 1
e≠j2fikn/N = e≠j2firn/N , for even k = 2r, k > 0
cos(fin), for odd k, k = N ≠ 1,

where j2 = ≠1. The above eigenvectors are assumed to be normalized. It
is now clear that, as desired, this set of eigenvectors is also orthonormal,
so that the individual eigenvectors, uk, correspond to the harmonic
basis functions within the standard temporal/spatial DFT obtained by
the directed circular graph adjacency matrix decomposition.

If the vertices correspond to the pixels of a two-dimensional N ◊ N
image in a stacked-column representation, then the edge weights for a
given vertex, n, are wmn = 1, m œ {n ≠ N, n ≠ 1, n + 1, n + N}, while
the degree of every vertex, n, is equal to 4. The corresponding graph
Laplacian now becomes a discrete approximation of second-order partial
derivatives, and is used as a standard tool in image processing for edge
detection, while two-dimensional Fourier analysis can be defined using
eigenvalue decomposition of this Laplacian. Notice that the Laplacians
in the graph Cartesian product exhibit similar relations to those for the
adjacency matrix in Equation (3.6) and Figure 3.3.

4

Vertex Clustering and Mapping

An important task for data analytics on graphs is to identify groups of
vertices which exhibit similar behavior, referred to as vertex clustering.
This is of particular importance in machine learning for data on irregular
domains, while vertex clustering also represents a basis for collaborative
data processing. Spectral domain analysis for vertex clustering may be
performed based on several measures appropriate to the task at hand
including the graph Laplacian, normalized graph Laplacian, general-
ized Laplacian eigenvectors, principal component analysis of the graph
Laplacian, commute time (e�ective resistance) spectral vectors, the
di�usion spectral vectors or other factors.

Definition: Vertex clustering is a type of graph learning which aims to
group together vertices from the set V into multiple disjoint subsets, Vi,
called clusters. Vertices which are clustered into a subset of vertices,
Vi, are expected to exhibit a larger degree of within-cluster mutual
similarity (in some sense) than with the vertices in other subsets, Vj ,
j ”= i.

While the clustering of graph vertices refers to the process of identi-
fying and arranging the vertices of a graph into nonoverlapping vertex
subsets, with data in each subset expected to exhibit relative similarity

49

50 Vertex Clustering and Mapping

in some sense, the segmentation of a graph refers to its partitioning into
nonoverlapping graph segments (components).

The notion of vertex similarity metrics and their use to accordingly
cluster the vertices into sets, Vi, of “related” vertices in graphs, has been
a focus of significant research e�ort in machine learning and pattern
recognition; this has resulted in a number of established vertex similarity
measures and corresponding methods for graph clustering (Schae�er,
2007). These can be considered within two main categories (i) clustering
based on graph topology and (ii) spectral (eigenvector-based) methods
for graph clustering.

Notice that in traditional clustering, a vertex is assigned to one
cluster only. The type of clustering where a vertex may belong to more
than one cluster is referred to as fuzzy clustering (Mordeson and Nair,
2012; Schae�er, 2007), an approach that is not yet widely accepted in
the context of graphs.

4.1 Clustering Based on Graph Topology

Among many such existing methods, the most popular ones are based on:
• Finding the minimum set of edges whose removal would disconnect

a graph in some “optimal” or “least disturbance” way (minimum
cut based clustering).

• Designing clusters within a graph based on the disconnection of
vertices or edges which belong to the highest numbers of shortest
paths in the graph (vertex betweenness and edge betweenness based
clustering).

• The minimum spanning tree of a graph has been a basis for a
number of widely used clustering methods (Kleinberg and Tardos,
2006; Morris et al., 1986).

• Analysis of highly connected subgraphs (HCS) (Khuller, 1998)
has also been used for graph clustering.

• Finally, graph data analysis may be used for machine learned

graph clustering, like for example, the k-means based clustering
methods (Dhillon et al., 2004; Jain, 2010).

4.1. Clustering Based on Graph Topology 51

4.1.1 Minimum Graph Cut

We shall first briefly review the notion of graph cuts, as spectral methods
for graph clustering may be introduced and interpreted based on the
analysis and approximation of the (graph topology-based) minimum
cut clustering.

Definition: Consider an undirected graph which is defined by a set of
vertices, V , and the corresponding set of edge weights, W . Assume next
that the vertices are grouped into k = 2 disjoint subsets of vertices,
E µ V and H µ V, with E fi H = V and E fl H = ÿ. A cut of this
graph, for the given subsets of vertices, E and H, is equal to a sum
of all weights that correspond to the edges which connect the vertices
between the subsets, E and H, that is

Cut(E , H) =
ÿ

mœE

nœH

Wmn.

Remark 20: For clarity, we shall focus on the case with k = 2 disjoint
subsets of vertices. However, the analysis can be straightforwardly
generalized to k Ø 2 disjoint subsets of vertices and the corresponding
minimum k-cuts.
Example 12: Consider the graph in Figure 2.2, and the sets of vertices
E = {0, 1, 2, 3} and H = {4, 5, 6, 7}, shown in Figure 4.1. Its cut into
the two components (sub-graphs), E and H, involves the weights of
all edges which exist between these two sets, that is, Cut(E , H) =
0.32 + 0.24 + 0.23 = 0.79. Such edges are shown by thin red lines in
Figure 4.1.
Definition: A cut which exhibits the minimum value of the sum of
weights between the disjoint subsets E and H, considering all possible
divisions of the set of vertices, V, is referred to as the minimum cut.
Finding the minimum cut of a graph in this way is a combinatorial
problem.
Remark 21: The number of all possible combinations to split an even
number of vertices, N , into two disjoint subsets is given by

C =
A

N

1

B

+
A

N

2

B

+ · · · +
A

N

N/2 ≠ 1

B

+
A

N

N/2

B?
2.

52 Vertex Clustering and Mapping

0 1

2

3

4

56
7

0.23

0.74
0.2

4 0.35

0.510.1
4

0.150.32

0.26

0
.23

0.24

0.
32

E = {0, 1, 2, 3}

H = {4, 5, 6, 7}

Cut(E, H) = 0.79

Figure 4.1: A cut for the weighted graph from Figure 2.2, with the disjoint subsets

of vertices defined by E = {0, 1, 2, 3} and H = {4, 5, 6, 7}. The edges between the

sets E and H are designated by thin red lines. The cut, Cut(E , H), is equal to the

sum of the weights that connect sets E and H, and has the value Cut(E , H) =

0.32 + 0.24 + 0.23 = 0.79.

To depict the computational burden associated with this “brute force”
graph cut approach, even for a relatively small graph with N = 50
vertices, the number of combinations to split the vertices into two
subsets is C = 5.6 · 1014.
Example 13: The minimum cut for the graph from Figure 4.1 is

Cut(E , H) = 0.32 + 0.14 + 0.15 = 0.61

for E = {0, 1, 2, 3, 4, 5} and H = {6, 7}. This can be confirmed by
considering all

!8
1
"

+
!8

2
"

+
!8

3
"

+
!8

4
"
/2 = 127 possible cuts, that is, all

combinations of the subsets E and H for this small size graph or by
using, for example, the Stoer-Wagner algorithm (Stoer and Wagner,
1997).

4.1.2 Maximum-Flow Minimum-Cut Approach

This approach to the minimum cut problem employs the framework of
flow networks.
Definition: A flow network is a directed graph with an arbitrary num-
ber of vertices, N Ø 3, but which involves two given vertices (nodes)
called the source vertex, s, and the sink vertex, t, whereby the capacity

4.1. Clustering Based on Graph Topology 53

of edges (arcs) is defined by their weights. The flow (of information,
water, tra�c, . . .) through an edge cannot exceed its capacity (the value
of edge weight). For any vertex in the graph the sum of all input flows
is equal to the sum of all its output flows (except for the source and
sink vertices).

Problem formulation. The maximum-flow minimum-cut solution to
the graph partitioning aims to find the maximum value of flow that can
be passed through the graph (network flow) from the source vertex, s, to
the sink vertex, t. The solution is based on the max-flow min-cut theorem
which states that the maximum flow through a graph from a given source
vertex, s, to a given sink vertex, t, is equal to the minimum cut, that is,
the minimum sum of those edge weights (capacities) which, if removed,
would disconnect the source, s from the sink, t (minimum cut capacity)
(Kleinberg and Tardos, 2006; Kron, 1963). Physical interpretation of
this theorem is obvious, since the maximum flow is naturally defined
by the graph flow bottleneck between the source and sink vertices.
The capacity of the bottleneck (maximum possible flow) will then be
equal to the minimum capacity (weight values) of the edges which, if
removed, would disconnect the graph into two parts, one containing
vertex s and the other containing vertex t. Therefore, the problem of
maximum flow is equivalent to the minimum cut (capacity) problem,
under the assumption that the considered vertices, s and t, must belong
to di�erent disjoint subsets of vertices E and H. This kind of cut, with
predefined vertices s and t, is called the (s, t) cut.
Remark 22: In general, if the source and sink vertices are not given,
the maximum flow algorithm should be repeated for all combinations
of the source and sink vertices in order to find the minimum cut of a
graph.

The most widely used approach to solve the minimum-cut maximum-
flow problem is the Ford–Fulkerson method (Kleinberg and Tardos, 2006;
Kron, 1963).
Example 14: Consider the weighted graph from Figure 2.2, with
the assumed source and sink vertices, s = 0 and t = 6, as shown in
Figure 4.2(a). The Ford–Fulkerson method is based on the analysis of
paths and the corresponding flows between the source and sink vertex.

54 Vertex Clustering and Mapping

1

2

3

4

5
7

0

6

0.08

0.74
0.2

4 0.35 0
.08

0.26 0.24

0.
32

0.32
0.360.1

4

0.15
00.17

s

t (a)

1

2

3

4

5
7

0

6

0.08

0.520 0.35 0
.08

0.18 0.10

0 0.360

00.03

E = {0, 1, 2, 3, 4, 5}

H = {6, 7}

Cut(E, H) = 0.61

s

t

(b)

1

2

3

4

5
7

0

6

0.08

0.38

0.
08

0.
38

0.36

0.66

0.17

0.47

0

0.30

s

t (c)

0.51

0
.23

0.23

Figure 4.2: Principle of the maximum flow minimum cut method. (a) The weighted

graph from Figure 2.2, with the assumed source vertex s = 0 and sink vertex t = 6,

and a path between these two vertices for which the maximum flow is equal to the

minimum capacity (weight) along this path, W57 = 0.15. This maximum flow value,

W57 = 0.15, is then subtracted from all the original edge capacities (weights) to yield

the new residual edge capacities (weights) which are shown in red. (b) The final edge

capacities (weights) after the maximum flows are subtracted for all paths 0 æ 3 æ 6,

0 æ 2 æ 4 æ 7 æ 6, and 0 æ 2 æ 3 æ 6, between vertices s = 0 and t = 6, with the

resulting minimum cut now crossing only the zero-capacity (zero-weight) edges with

its value equal to the sum of their initial capacities (weights), shown in Panel (a) in

black. (c) A directed form of the undirected graph from (a), with the same path and

the residual capacities (weights) given for both directions.

4.1. Clustering Based on Graph Topology 55

One such possible path between s and t, 0 æ 1 æ 4 æ 5 æ 7 æ 6, is
designated by the thick line in Figure 4.2(a). Recall that the maximum
flow, for a path connecting the vertices s = 0 and t = 6, is restricted
by the minimum capacity (equal to the minimum weight) along the
considered path. For the considered path 0 æ 1 æ 4 æ 5 æ 7 æ 6 the
maximum flow from s = 0 to t = 6 is therefore equal to

max-flow
0æ1æ4æ5æ7æ6

= min{0.23, 0.23, 0.51, 0.15, 0.32} = 0.15,

since the minimum weight along this path is that connecting vertices 5
and 7, W57 = 0.15. The value of this maximum flow is then subtracted
from each capacity (weight) in the considered path, with the new
residual edge capacities (weights) designated in red in the residual graph
in Figure 4.2(a). The same procedure is repeated for the remaining
possible paths 0 æ 3 æ 6, 0 æ 2 æ 4 æ 7 æ 6, and 0 æ 2 æ 3 æ 6,
with appropriate corrections to the capacities (edge weights) after
consideration of each path. The final residual form of the graph, after
zero-capacity edges are obtained in such a way that no new path with
nonzero flow from s to t can be defined, is given in Figure 4.2(b). For
example, if we consider the path 0 æ 1 æ 2 æ 3 æ 6 (or any other
path), in the residual graph, then its maximum flow would be 0, since
the residual weight in the edge 3 æ 6 is equal to 0. The minimum cut has
now been obtained as that which separates the sink vertex, t = 6, and its
neighborhood from the the source vertex, s = 0, through the remaining
zero-capacity (zero-weight) edges. This cut is shown in Figure 4.2(b),
and separates the vertices H = {6, 7} from the rest of vertices by cutting
the edges connecting vertices 3 æ 6, 4 æ 7, and 5 æ 7. The original
total weights of these edges are Cut(E , H) = 0.32 + 0.14 + 0.15 = 0.61.

We have so far considered an undirected graph, but since the
Ford–Fulkerson algorithm is typically applied to directed graphs, notice
that an undirected graph can be considered as a directed graph with
every edge being split into a pair of edges having the same weight
(capacity), but with opposite directions. After an edge is used in one
direction (for example, edge 5–7 in Figure 4.2(a)) with a flow equal
to its maximum capacity of 0.15 in the considered direction, the other
flow direction (sister edge) becomes 0.30, as shown in Figure 4.2(c).
The edge with opposite direction could be used (up the algebraic sum

56 Vertex Clustering and Mapping

of flows in both directions being equal to the total edge capacity) to
form another path (if possible) from the source to the sink vertex. More
specifically, the capacity of an edge (from the pair) in the assumed
direction is reduced by the same value of the considered flow, while the
capacity of the opposite-direction edge (from the same pair) is increased
by the same flow, and can be used to send the flow in reverse direction
if needed. All residual capacities for the path from Figure 4.2(a) are
given in Figure 4.2(c). For clarity, the edge weights which had not been
changed by this flow are not shown in Figure 4.2(c).

Ratio Minimum Cut

A number of optimization approaches may be employed to enforce
some desired properties on graph clusters. One such approach is the
ratio minimum cut, which is commonly used in graph theory, and is
introduced by penalizing the value of Cut(E , H) by an additional term
(cost) to enforce the subsets E and H to be simultaneously as large as
possible. An obvious form of the ratio cut is given by Hagen and Kahng
(1992)

CutN(E , H) =
3 1

NE

+ 1
NH

4 ÿ

mœE

nœH

Wmn, (4.1)

where NE and NH are the respective numbers of vertices in the sets E
and H. Since NE + NH = N , the term 1

NE
+ 1

NH
reaches its minimum

for NE = NH = N/2.

Example 15: Consider again Example 12, and the graph from
Figure 4.1. For the sets of vertices, E = {0, 1, 2, 3} and H = {4, 5, 6, 7},
the ratio cut is calculated as CutN(E , H) = (1/4 + 1/4)0.79 = 0.395.
This cut also represents the minimum ratio cut for this graph; this
can be confirmed by checking all possible cut combinations of E and
H in this (small) graph. Figure 4.3 illustrates the clustering of vertices
according to the minimum ratio cut. Notice, however, that in general
the minimum cut and the minimum ratio cut do not produce the same
vertex clustering into E and H.
Graph separability. Relevant to this section, the minimum cut value
admits a physical interpretation as a measure of graph separability.

4.1. Clustering Based on Graph Topology 57

0 1

2

3

4

56
7

Figure 4.3: A clustering scheme based on the minimum ratio cut of the vertices in

the graph from Figure 2.2 into two vertex clusters, E = {0, 1, 2, 3} and H = {4, 5, 6, 7}.

This cut corresponds to the arbitrarily chosen cut presented in Figure 4.1.

An ideal separability is possible if the minimum cut is equal to zero,
meaning that there are no edges between subsets E and H. In Example
15, the minimum cut value was CutN(E , H) = 0.395, which is not
close to 0, and indicates that the segmentation of this graph into two
subgraphs would not yield a close approximation of the original graph.

4.1.3 Volume Normalized Minimum Cut

A more general form of the normalized cut may also involve vertex
weights when designing the size of subsets E and H. By defining, respec-
tively, the volumes of these sets as VE =

q
nœE

Dnn and VH =
q

nœH
Dnn,

and using these volumes instead of the numbers of vertices NE and NH

in the definition of the ratio cut in (4.1), we arrive at Shi and Malik
(2000)

CutV(E , H) =
3 1

VE

+ 1
VH

4 ÿ

mœE

nœH

Wmn, (4.2)

where Dnn =
q

mœV
Wmn is the degree of a vertex n. The vertices with

a higher degree, Dnn, are considered as structurally more important
than the vertices with lower degrees.

The above discussion shows that finding the normalized minimum
cut is also a combinatorial problem, for which an approximative spectral-
based solution will be discussed later in this section.

58 Vertex Clustering and Mapping

4.1.4 Other Forms of the Normalized Cut

In addition to the two presented forms of the normalized cut, based on
the number of vertices and volume, other frequently used forms are:

1. The sparsity of a cut which is defined as

fl(E) = 1
NENV≠E

ÿ

mœE

nœV≠E

Wmn, (4.3)

where V ≠ E is the set di�erence of V and E . The sparsity of a cut,
fl(E), is related to the ratio cut as Nfl(E) = CutN(E , H), since
H = V ≠ E and NE + NV≠E = N . The sparsity of a graph is then
defined as the minimum sparsity of a cut. It then follows that the
cut which exhibits minimum sparsity and the minimum ratio cut
in (4.1) produce the same set E .

2. The edge expansion of a subset, E µ V, is defined by

–(E) = 1
NE

ÿ

mœE

nœV≠E

Wmn, (4.4)

with NE Æ N/2. Observe a close relation of edge expansion to the
ratio cut in (4.1).

3. The Cheeger ratio of a subset, E µ V, is defined as

„(E) = 1
min{VE , VV≠E}

ÿ

mœE

nœV≠E

Wmn. (4.5)

The minimum value of „(E) is denoted by „(V) and called the
Cheeger constant or conductance of a graph (Mohar, 1989). This
form is closely related to the volume normalized cut in (4.2).

4.2 Spectral Methods for Graph Clustering

This class of methods is a modern alternative to the classical direct
graph topology analysis, whereby vertex clustering is based on the
eigenvectors of the graph Laplacian. Practical spectral methods for

4.2. Spectral Methods for Graph Clustering 59

graph clustering typically employ several smoothest eigenvectors of the
graph Laplacian.

Simplified algorithms for vertex clustering may even employ only one
eigenvector, namely the second (Fiedler, 1973) eigenvector of the graph
Laplacian, u1, to yield a quasi-optimal clustering or partitioning scheme
on a graph. These are proven to be e�cient in a range of applications,
including data processing on graphs, machine learning, and computer
vision (Malik et al., 2001). Despite their simplicity, such algorithms
are typically quite accurate, and a number of studies show that graph
clustering and cuts based on the second eigenvector, u1, give a good
approximation to the optimal cut (Ng et al., 2002; Spielman and Teng,
2007; Von Luxburg, 2007). Using more than one smooth eigenvector in
graph clustering and partitioning will increase the number of degrees of
freedom to consequently yield more physically meaningful clustering,
when required for practical applications in data analytics.

For an enhanced insight we shall next review the smoothness index,
before introducing the notions of graph spectral vectors and their
distance, followed by the notions of similarity and clustering of vertices.

4.2.1 Smoothness of Eigenvectors on Graphs

Definition: The smoothness of an eigenvector, uk, is introduced through
its quadratic Laplacian form, u

T

k
Luk, with the smoothness index equal

to the corresponding eigenvalue, ⁄k, that is

u
T

k (Luk) = u
T

k (⁄kuk) = ⁄k. (4.6)

To demonstrate physical intuition behind the use of quadratic form,
u

T

k
Luk, as a smoothness metric of uk, consider

u
T

k Luk = u
T

k (D ≠ W)uk.

Then, an n-th element of the vector Luk is given by
N≠1ÿ

m=0
Wnmuk(n) ≠

N≠1ÿ

m=0
Wnmuk(m),

60 Vertex Clustering and Mapping

since Dnn =
q

N≠1
m=0 Wnm. Therefore,

u
T

k Luk =
N≠1ÿ

m=0
uk(m)

N≠1ÿ

n=0
Wmn(uk(m) ≠ uk(n))

=
N≠1ÿ

m=0

N≠1ÿ

n=0
Wmn(u2

k(m) ≠ uk(m)uk(n)). (4.7)

Owing to the symmetry of the weight matrix, W (as shown in (2.5)),
we can use Wnm = Wmn to replace the full summation of u2

k
(n) over m

and n with a half of the summations for both u2
k
(m) and u2

k
(n), over

all m and n. The same applies for the term u(m)u(n). With that, we
can write

u
T

k Luk = 1
2

N≠1ÿ

m=0

N≠1ÿ

n=0
Wmn(u2

k(m) ≠ uk(m)uk(n))

+ 1
2

N≠1ÿ

m=0

N≠1ÿ

n=0
Wmn(u2

k(n) ≠ uk(n)uk(m))

= 1
2

N≠1ÿ

m=0

N≠1ÿ

n=0
Wmn(uk(n) ≠ uk(m))2 Ø 0. (4.8)

Obviously, a small u
T

k
Luk = ⁄k implies that all terms Wnm(uk(n) ≠

uk(m))2 Æ 2⁄k are also small, thus indicating close values of uk(m)
and uk(n) for vertices m and n with significant connections, Wmn. The
eigenvectors corresponding to a small ⁄k are therefore slow-varying and
smooth on a graph.
Example 16: An exemplar of eigenvectors with a small, a moderate and
a large smoothness index, ⁄k, is given on the three graphs in Figure 4.4.

In order to illustrate the interpretation of the smoothness index
in classical time-domain data processing, the time-domain form of the
eigenvectors/basis functions in the real-valued Fourier analysis (3.14) is
also shown in Figure 4.4 (middle). In this case, the basis functions can
be considered as the eigenvectors of a directed circular graph, where
the vertices assume the role of time instants.

Observe that in all three graphs the smooth eigenvectors, u0 and u1,
have similar elements on the neighboring vertices (in the case of a path
graph – time instants), and thus may be considered as smooth data on

4.2. Spectral Methods for Graph Clustering 61

(a)

(b)

(c)

Figure 4.4: Illustration of the concept of smoothness of the graph Laplacian

eigenvectors for three di�erent graphs: The graph from Figure 2.2 (left), a path

graph corresponding to classic temporal data analysis (middle), and an example of a

more complex graph with N = 64 vertices (right). (a) Constant eigenvector, u0(n),

shown on the three considered graphs. This is the smoothest possible eigenvector

for which the smoothness index is ⁄0 = 0. (b) Slow-varying Fiedler eigenvector (the

smoothest eigenvector whose elements are not constant), u1(n), for the three graphs

considered. (c) Fast-varying eigenvectors, for k = 5 (left), and k = 30 (middle and

right). Graph vertices are denoted by black circles, and the values of elements of the

eigenvectors, uk(n), by red lines, for n = 0, 1, . . . , N ≠ 1. The smoothness index, ⁄k,

is also given for each case.

the corresponding graph domains. Such similarity does not hold for the
fast-varying eigenvectors, u5 (left of Figure 4.4) and u30 (middle and
right of Figure 4.4), which exhibit a much higher smoothness index.

Remark 23: The eigenvector of the graph Laplacian which corresponds
to ⁄0 = 0 is constant (maximally smooth for any vertex ordering) and
is therefore not appropriate as a template for vertex ordering. The next
smoothest eigenvector is u1, which corresponds to the eigenvalue ⁄1.

Ordering of vertices for smoothest Fiedler vector. It is natural
to order vertices within a graph in such a way so that the presentation of

62 Vertex Clustering and Mapping

the sequence of elements of the smoothest eigenvector, u1, as a function
of the vertex index, n, is also maximally smooth. This can be achieved
by sorting (rank ordering) the elements of the Fiedler vector, u1, in a
nondecreasing order. Recall from Remark 12 that the isomorphic nature
of graphs means that the reindexing of vertices does not change any
graph property. The new order of graph vertices in the sorted u1 then
corresponds to the smoothest sequence of elements of this vector along
the vertex index line.

A unique feature of graphs, which renders them indispensable in
modern data analytics on irregular domains, is that the ordering of
vertices of a graph can be arbitrary, an important di�erence from classi-
cal data analytics where the ordering is inherently sequential and fixed
(StankoviÊ et al., 2019). Therefore, in general, any change in data order-
ing (indexing) would cause significant changes in the results of classical
methods, while when it comes to graphs, owing to their topological
invariance (as shown in Figures 3.1 and 3.2 in the previous section),
reordering of vertices would automatically imply the corresponding
reordering of indices within each eigenvector, with no implication on
the analysis results. However, the presentation of data sensed at the
graph vertices, along a line of vertex indices, as in Figure 3.1(left), a
common case for practical reasons, would benefit from an appropriate
vertex ordering. Notice that vertex ordering in a graph is just a one-
dimensional simplification of an important paradigm in graph analysis,
known as graph clustering (Dong et al., 2012; Horaud, 2009; Hamon
et al., 2016b; Lu et al., 2014; Masoumi and Hamza, 2017; Masoumi
et al., 2016; Mejia et al., 2017).

4.2.2 Spectral Space and Spectral Similarity of Vertices

For a graph with N vertices, the orthogonal eigenvectors of its graph
Laplacian form the basis of an N -dimensional space, called the spec-
tral space. In this way, the elements, uk(n), of every eigenvector uk,
k = 0, 1, 2, . . . , N ≠ 1, are assigned to the corresponding vertices,
n = 0, 1, 2, . . . , N ≠ 1, as shown in Figure 4.5(a). This, in turn, means
that a set of elements, u0(n), u1(n), u2(n), . . . , uN≠1(n), is assigned to
every vertex n, as shown in Figure 4.5(b). For every vertex, n, we can

4.2. Spectral Methods for Graph Clustering 63

Figure 4.5: Illustration of spectral vectors for the graph from Figure 2.2, with N = 8

vertices. For an intuitive analogy with the classical Discrete Fourier Transform, notice

that the complex harmonic basis functions within the DFT would play the role of

eigenvectors in graph spectral representation, uk, k = 0, 1, . . . , 7. Then, the spectral

vectors, qn, n = 0, 1, . . . , 7, would be analogous to the basis functions of the inverse

Discrete Fourier transform (excluding the first constant element).

then group these elements into an N -dimensional spectral vector

qn

def= [u0(n), u1(n), . . . , uN≠1(n)],

which is associated with the vertex n. Since the elements of the first
eigenvector, u0, are constant, they do not convey any spectral di�erence
to the graph vertices. Therefore, the elements of u0 are commonly

64 Vertex Clustering and Mapping

omitted from the spectral vector for vertex n, to yield

qn = [u1(n), . . . , uN≠1(n)], (4.9)

as illustrated in Figure 4.5(b).

Vertex dimensionality in the spectral space. Now that we have
associated a unique spectral vector qn in (4.9), to every vertex n =
0, 1, . . . , N ≠ 1, it is important to note that this (N ≠ 1)-dimensional
representation of every vertex in a graph (whereby the orthogonal
graph Laplacian eigenvectors, u1, u2, . . . , uN≠1, serve as a basis of that
representation) does not a�ect the graph itself; this just means that
the additional degrees of freedom introduced through spectral vectors
facilitate more sophisticated and e�cient graph analysis. For example,
we may now talk about vertex similarity in the spectral space, or about
the spectrum based graph cut, segmentation, and vertex clustering.

An analogy with classical signal processing would be to assign a
vector of harmonic basis function values at a time instant (vertex) n, to
“describe” this instant, that is, to assign the n-th column of the Discrete
Fourier transform matrix to the instant n. This intuition is illustrated
in Figures 4.5(a) and (b).

The spectral vectors shall next be used to define spectral similarity
of vertices.

Definition: Two vertices, m and n, are called spectrally similar if their
distance in the spectral space is within a small predefined threshold.
The spectral similarity between vertices m and n is typically measured
through the Euclidean norm of their spectral space distance, given by

dmn

def= Îqm ≠ qnÎ2.

Spectral manifold. Once graph is characterized by the original
(N ≠ 1)-dimensional spectral vectors, the so obtained vertex positions
in spectral vertex representation may reside near some well defined
surface (commonly a hyperplane) called a spectral manifold which is of
a reduced dimensionality M < (N ≠ 1). The aim of spectral vertex map-
ping is then to map each spectral vertex representation from the original
N -dimensional spectral vector space to a new spectral manifold which
lies in a reduced M -dimensional spectral space, to a position closest

4.2. Spectral Methods for Graph Clustering 65

to its original (N ≠ 1)-dimensional spectral position. This principle is
related to the Principal Component Analysis (PCA) method, and this
relation will be discussed later in this section. An analogy with classical
Discrete Fourier Transform analysis would imply a restriction of the
spectral analysis from the space of N harmonics to the reduced space of
the M slowest-varying harmonics (excluding the constant one).

These spectral dimensionality reduction considerations suggest to
restrict the definition of spectral similarity to only a few lower-order
(smooth) eigenvectors in the spectral space of reduced dimensionality.
For example, if the spectral similarity is restricted to the two smoothest
eigenvectors, u1 and u2 (omitting the constant u0), then the spectral
vector for a vertex n would become

qn = [u1(n), u2(n)],

as illustrated in Figures 4.5(c) and 4.6(a). If for two vertices, m and n,
the values of u1(m) are close to u1(n) and the values of u2(m) are close
to u2(n), then these two vertices are said to be spectrally similar, that
is, they exhibit a small spectral distance, dmn = Îqm ≠ qnÎ2.

Finally, the simplest spectral description uses only one (smoothest
nonconstant) eigenvector to describe the spectral content of a vertex,
so that the spectral vector reduces to a spectral scalar

qn = [qn] = [u1(n)],

whereby the so reduced spectral space is a one-dimensional line.
Example 17: The two-dimensional and three-dimensional spectral
vectors, qn = [u1(n), u2(n)] and qn = [u1(n), u2(n), u3(n)], of the graph
from Figure 2.2 are shown in Figure 4.6, for n = 2 and n = 6.
Spectral embedding. The mapping from the reduced dimensionality
spectral space back onto the original vertices is referred to as Spectral
embedding.

We can proceed in two ways with the reduced spectral vertex space
representation: (i) to assign the reduced dimension spectral vectors to
the original vertex positions, for example, in the form of vertex coloring,
as a basis for subsequent vertex clustering (Section 4.2.3), or (ii) to
achieve new vertex positioning in the reduced dimensionality space of

66 Vertex Clustering and Mapping

0 1 2 3
4 5 6 7

0 1

2
3

4

56
7

0
1

2 3
4 5

6 7

0 1

2
3

4

5

6
7

(a)

0 1 2 3
4 5 6 7

0 1

2
3

4

56
7

0
1

2 3
4 5

6 7

0 1

2
3

4

5

6
7

0 1 2
3 4 5 6

7

0 1

2
3

4

56
7

(b)

Figure 4.6: Illustration of the spectral vectors, qn = [u1(n), u2(n)] and qn =

[u1(n), u2(n), u3(n)], for the Laplacian matrix of the graph in Figure 2.2. (a) Two-

dimensional spectral vectors, q2 = [u1(2), u2(2)] and q6 = [u1(6), u2(6)]. (b) Three-

dimensional spectral vectors, q2 = [u1(2), u2(2), u3(2)] and q6 = [u1(6), u2(6), u3(6)].

For clarity, the spectral vectors are shown on both the vertex index axis and directly

on graph.

4.2. Spectral Methods for Graph Clustering 67

eigenvectors (reduced spectral space), using eigenmaps (Section 4.4).
Both yield similar information and can be considered as two sides of the
same coin (Belkin and Niyogi, 2003). For visualization purposes, we will
use colors of the RGB system to represent the spectral vector values in
a reduced (one, two, or three) dimensional spectral space. Vertices at
the original graph positions will be colored according to the spectral
vector values.

4.2.3 Indicator Vector

Remark 21 shows that the combinatorial approach to minimum cut
problem is computationally infeasible, as even for a graph with only 50
vertices we have 5.6 · 1014 such potential cuts.

To break this Curse of Dimensionality it would be very convenient
to relate the problem of the minimization of the ratio cut in (4.1)
and (4.2) to that of eigenanalysis of graph Laplacian. To this end, we
shall introduce the notion of indicator vector x on a graph, for which
the elements take subgraph-wise constant values within each disjoint
subset (cluster) of vertices, with these constants taking di�erent values
for di�erent clusters of vertices (subset-wise constant vector). While
this does not immediately reduce the computational burden (the same
number of combinations remains as in the brute force method), the
elements of x now uniquely reflect the assumed cut of the graph into
disjoint subsets E , H µ V.

Establishing a further link with only the smoothest eigenvector of the
graph Laplacian will convert the original, computationally intractable,
combinatorial minimum cut problem into a manageable algebraic eigen-
value problem, for which the computation complexity is of the O(N3)
order. By casting the problem into the linear algebra framework, com-
plexity of calculation can be additionally reduced through e�cient
eigenanalysis methods, such as the Power Method which sequentially
computes the desired number of largest eigenvalues and the correspond-
ing eigenvectors, at an a�ordable O(N2) computations per iteration, as
shown in the appendix.

However, unlike the indicator vector, x, the smoothest eigenvector
(corresponding to the smallest nonzero eigenvalue) of graph Laplacian

68 Vertex Clustering and Mapping

is not subset-wise constant, and such solution would be approximate,
but computationally feasible.
Remark 24: The concept of indicator vector can be introduced through
the analysis with an ideal minimum cut of a graph, given by

Cut(E , H) =
ÿ

mœE

nœH

Wmn = 0,

that is, when considering an already disjoint graph for which
Cut(E , H) = 0 indicates that there exist no edges between the sub-
sets E and H, that is, Wmn = 0 for m œ E , and n œ H. Obviously, this
ideal case can be solved without resorting to the combinatorial approach,
since this graph is already in the form of two disconnected subgraphs,
defined by the sets of vertices E and H. For such a disconnected graph,
the second eigenvalue of the graph Laplacian is ⁄1 = 0, as established
by the graph Laplacian property L2. When ⁄1 = 0, then

2u
T

1 Lu1 =
N≠1ÿ

m=0

N≠1ÿ

n=0
Wmn(u1(n) ≠ u1(m))2 = 2⁄1 = 0,

which follows from (4.6) and (4.8). Since all terms in the last sum are
nonnegative, this implies that they must be zero-valued, that is, the
eigenvector u1 is subset-wise constant, with u1(n) = u1(m) = c1 for
m, n œ E and u1(n) = u1(m) = c2 for m, n, œ H. Since the eigenvector
u1 is orthogonal to the constant eigenvector u0, then

q
N≠1
n=0 u1(n) = 0.

A possible solution for u1(n), that satisfies the subset-wise constant
form and has zero mean, is u1(n) = c1 = 1/NE for n œ E and u1(n) =
c2 = ≠1/NH for n œ H. We can conclude that the problem of finding
an ideal minimum cut can indeed be solved by introducing an indicator
vector x = u1, such that x(n) = 1/NE for n œ E and x(n) = ≠1/NH

for n œ H. The membership of a vertex, n, to either the subset E or
H of the ideal minimum cut is therefore uniquely defined by the sign
of indicator vector x = u1. This form of x is not normalized to unit
energy, as its scaling by any constant would not influence solution for
vertex clustering into subsets E or H.

For a general graph, and following the above reasoning, we here
consider two specific subset-wise constant forms of the indicator vector,
x, which are based on

4.2. Spectral Methods for Graph Clustering 69

(i) the number of vertices in disjoint subgraphs,

x(n) =

Y
__]

__[

1
NE

, for n œ E

≠ 1
NH

, for n œ H,

(4.10)

where NE is the number of vertices in E , and NH is the number of
vertices in H, and
(ii) the volumes of the disjoint subgraphs,

x(n) =

Y
__]

__[

1
VE

, for n œ E

≠ 1
VH

, for n œ H,

(4.11)

where the volumes of the sets, VE and VH, are defined as the sums of
all vertex degrees, Dnn, in the corresponding subsets, VE =

q
nœE

Dnn

and VH =
q

nœH
Dnn.

Before proceeding further with the analysis of these two forms of
indicator vector (in the next two remarks), it is important to note that
if we can find the vector x which minimizes the ratio cut, CutN(E , H)
in (4.1), then the elements of vector x (their signs, sign(x(n)) = 1 for
n œ E and sign(x(n)) = ≠1 for n œ H) may be used to decide whether
to associate a vertex, n, to either the set E or H of the minimum ratio
cut.
Remark 25: The ratio cut, CutN(E , H), defined in (4.1), for the in-
dicator vector x with the elements x(n) = 1/NE for n œ E and
x(n) = ≠1/NH for n œ H, is equal to the Rayleigh quotient of the
matrix L and vector x, that is

CutN(E , H) = x
T

Lx

xT x
. (4.12)

To prove this relation we rewrite (4.8) as

x
T

Lx = 1
2

N≠1ÿ

m=0

N≠1ÿ

n=0
Wmn(x(n) ≠ x(m))2. (4.13)

For all vertices m and n within the same subgraph, that is, such that
m œ E and n œ E , the elements of vector x are therefore the same

70 Vertex Clustering and Mapping

and equal to x(m) = x(n) = 1/NE . In turn, this means that the terms
(x(n) ≠ x(m))2 in (4.13) are zero-valued. The same holds for any two
vertices belonging to the set H, that is, for m œ H and n œ H. Therefore,
only the terms corresponding to the edges which define the cut, when
m œ E and n œ H, and vice versa, remain in the sum, and they are
constant and equal to (x(n) ≠ x(m))2 = (1/NE ≠ (≠1/NH))2, to yield

x
T

Lx =
3 1

NE

+ 1
NH

42 ÿ

mœE

nœH

Wmn

=
3 1

NE

+ 1
NH

4
CutN(E , H), (4.14)

where the ratio cut, CutN(E , H), is defined in (4.1). Finally, from the
energy of the indicator vector, x

T
x = e2

x,

x
T

x = ÎxÎ2
2= e2

x = NE

N2
E

+ NH

N2
H

= 1
NE

+ 1
NH

, (4.15)

which proves (4.12).
The same analysis holds if the indicator vector is normalized to unit

energy, whereby x(n) = 1/(NEex) for n œ E and x(n) = ≠1/(NHex) for
n œ H, with ex defined in (4.15) as ex = ÎxÎ2.

We can therefore conclude that the indicator vector, x, which solves
the problem of minimization of the ratio cut, is also a solution to (4.12).
This minimization problem, for the unit energy form of the indicator
vector the elements of which are the minimization variables, can also
be written as

minx {x
T

Lx} subject to x
T

x = 1. (4.16)

In general, this is again a combinatorial problem, since all possible combi-
nations of subsets of vertices, E and H, together with the corresponding
indicator vectors, x, must be considered.

For a moment we shall put aside the very specific (subset-wise con-
stant) form of the indicator vector and consider the general minimization
problem in (4.16). This problem can be solved using the method of
Lagrange multipliers, with the corresponding cost function

L(x) = x
T

Lx ≠ ⁄(xT
x ≠ 1).

4.2. Spectral Methods for Graph Clustering 71

From ˆL(x)/ˆx
T = 0, it follows that Lx = ⁄x, which is precisely the

eigenvalue/eigenvector relation for the graph Laplacian L, the solution
of which is ⁄ = ⁄k and x = uk, for k = 0, 1, . . . , N ≠ 1. In other
words, upon replacing x by uk in the term min{x

T
Lx} above, we

obtain mink{u
T

k
Luk} = mink{⁄k}. After neglecting the trivial solution

⁄0 = 0, since it produces a constant eigenvector u0, we next arrive at
mink{⁄k} = ⁄1 and x = u1. Note that this solution yields a general
form of vector x that minimizes (4.12). However, such a form does not
necessarily correspond to a subset-wise constant indicator vector, x.
The fact that the trivial solution (constant vector x) is neglected, is
commonly written as an additional constraint in (4.16), of the form (see
also Part III, Section 13.3),

x
T

1 = 0.

4.2.4 Bounds on the Minimum Cut

In general, the subset-wise constant indicator vector, x, may be written
as a linear combination of the graph Laplacian eigenvectors, uk, k =
1, 2, . . . , N ≠ 1, to give

x = –1u1 + –2u2 + · · · + –N≠1uN≠1. (4.17)

This kind of vector expansion onto the set of eigenvectors shall be
addressed in more detail in Part II of this monograph. Note that
the constant eigenvector u0 is omitted since the indicator vector is
zero-mean by definition (orthogonal to a constant vector). The cal-
culation of coe�cients –i would require the indicator vector (that is,
the sets E and H) to be known, leading again to the combinatorial
problem of vertex set partitioning. It is interesting to note that the
quadratic form of indicator vector, x, given by (4.17) is equal to x

T
Lx =

–2
1⁄1+–2

2⁄2+· · ·+–2
N≠1⁄N≠1, and that it assumes the minimum value for

–1 = 1, –2 = · · · = –N≠1 = 0, that is, when x = u1, which corresponds
to imposing the normalized energy condition, x

T
x = –2

1 + –2
2 + · · · +

–2
N≠1 = 1. In other words, we now arrive at a physically meaningful

bound
⁄1 Æ x

T
Lx = CutN(E , H).

72 Vertex Clustering and Mapping

Observe that this inequality corresponds to the lower Cheeger bound
for the minimum ratio cut in (4.1).
Remark 26: If the space of approximative solutions for the indicator
vector, x, is relaxed to allow for vectors that are not subset-wise constant
(while omitting the constant eigenvector of the graph Laplacian, u0),
the approximative solution becomes x = u1 (as previously shown and
illustrated in Example (18)). The above analysis indicates that this
solution is quasi-optimal, however, despite its simplicity, the graph cut
based on only the second graph Laplacian eigenvector, u1, typically
produces a good approximation to the optimal (minimum ratio) cut.

It has been shown that the value of the true ratio minimum cut in
(4.1), when the indicator vector x is subset-wise constant, is bounded on
both sides (upper and lower) with the constants which are proportional
to the smallest nonzero eigenvalue, u

T
1 Lu1 = ⁄1, of the graph Laplacian.

The simplest form of these bounds (Cheeger’s bounds) for the cut
defined by (4.5), has the form (Alon, 1986; Chung, 2005, 2007; Trevisan,
2013)

⁄1
2 Æ „(V)def= min

EµV

{„(E)} Æ


2⁄1. (4.18)

This shows that the eigenvalue ⁄1 is also a good measure of a graph
separability and consequently the quality of spectral clustering in the
sense of a minimum Cheeger’s ratio cut. The value of the minimum
Cheeger’s ratio cut of a graph (also referred to as Cheeger’s constant,
conductivity, or isoperimetric number of a graph) may also be considered
as a numerical measure of the presence of a “bottleneck” in a graph.

4.2.5 Indicator Vector for Normalized Graph Laplacian

We shall now address the cut based on normalized graph Laplacian, in
light of the above analysis.
Remark 27: The volume normalized cut, CutV (E , H), defined in (4.2),
is equal to

CutV(E , H) = x
T

Lx

xT Dx
, (4.19)

where the corresponding, subset-wise constant, indicator vector has the
values x(n) = 1/VE for n œ E and x(n) = ≠1/VH for n œ H, while the
volumes of the sets, VE and VH, are defined in (4.2).

4.2. Spectral Methods for Graph Clustering 73

The proof is identical to that given in Remark 25. For the normalized
indicator vector, we have x

T
Dx = 1, so that the minimization problem

in (4.19), for finding the elements of x, reduces to

min{x
T

Lx} subject to x
T

Dx = 1. (4.20)

If the solution space is restricted to the space of generalized eigenvectors
of the graph Laplacian, defined by

Luk = ⁄kDuk,

then the solution to (4.20) becomes

x = u1,

where u1 is the generalized eigenvector of the graph Laplacian that
corresponds to the lowest nonzero eigenvalue. The fact that the trivial
solution (constant vector x) is avoided as a solution, can be written in
the form of an additional constraint, x

T
1 = 0, in (4.20).

The eigenvectors of the normalized Laplacian, LN = D
≠1/2

LD
≠1/2,

may also be used in optimal cut approximations since the minimization
problem in (4.19) can be rewritten using the normalized Laplacian
through a change of the variable, to yield

x = D
≠1/2

y,

which allows us to arrive at the following form Ng et al. (2002)

min{y
T

D
≠1/2

LD
≠1/2

y} = min{y
T

LN y},

subject to y
T

y = 1. (4.21)

If the space of solutions to this minimization problem is relaxed to the
eigenvectors, vk, of the normalized graph Laplacian, LN , then y = v1.
For more detail on the various forms of the eigenvalues and eigenvectors
of graph Laplacian, we refer to Table 4.1.

It is obvious now from (4.20) and (4.21) that the relation of the form
x = D

≠1/2
y also holds for the corresponding eigenvectors of the nor-

malized graph Laplacian, vk, and the generalized eigenvectors of the
Laplacian, vk, that is,

uk = D
≠1/2

vk.

74 Vertex Clustering and Mapping

Ta
bl

e
4.

1:
S

u
m

m
a
r
y

o
f

g
r
a
p

h
e
m

b
e
d

d
in

g
m

a
p

p
in

g
s
.

T
h

e
G

ra
ph

La
pl

ac
ia

n
m

ap
pi

ng
,

t
h

e
G

en
er

al
ize

d
ei

ge
nv

ec
to

rs
of

th
e

La
pl

ac
ia

n
m

ap
pi

ng
,

t
h

e
N

or
m

al
ize

d
La

pl
ac

ia
n

m
ap

pi
ng

,
t
h

e
Co

m
m

ut
e

tim
e

m
ap

pi
ng

,
t
h

e
D

i�
us

io
n

m
ap

pi
ng

,
a
n

d
t
h

e
Cu

m
ul

at
iv

e
di

�u
sio

n
m

ap
pi

ng
.

M
a
p

p
in

g
E

ig
e
n

-
A

n
a
ly

s
is

R
e
la

t
io

n
R

e
d

u
c
e
d

D
im

e
n

s
io

n
a
li

t
y

S
p

e
c
t
r
a
l

V
e
c
t
o

r

G
ra

ph
La

pl
ac

ia
n

m
ap

pi
ng

L
u

k
=

⁄
k
u

k
q

n
=

[u
1(

n
),

u
(2

),
..

.,
u

M
(n

)]
G

en
er

al
iz

ed
ei

ge
nv

ec
to

rs
of

La
pl

ac
ia

n
m

ap
pi

ng
L

u
k

=
⁄

k
D

u
k

q
n

=
[u

1(
n

),
u

(2
),

..
.,

u
M

(n
)]

N
or

m
al

iz
ed

La
pl

ac
ia

n
m

ap
pi

ng
(D

≠
1/

2 L
D

≠
1/

2)
u

k
=

⁄
k
u

k
q

n
=

[u
1(

n
),

u
(2

),
..

.,
u

M
(n

)]
C

om
m

ut
e

tim
e

m
ap

pi
ng

L
u

k
=

⁄
k
u

k
q

n
=

[u
1
(n

)
Ô

⁄
1

,
u

2
(n

)
Ô

⁄
2

,.
..

,
u

M
(n

)
Ô

⁄
M

]
D

i�
us

io
n

(r
an

do
m

w
al

k)
m

ap
pi

ng
L

u
k

=
⁄

k
D

u
k

q
n

=
[u

1(
n

)(
1

≠
⁄

1)
t ,

..
.,

u
M

(n
)(

1
≠

⁄
M

)t]

C
um

ul
at

iv
e

di
�u

sio
n

m
ap

pi
ng

L
u

k
=

⁄
k
D

u
k

q
n

=
[u

1
(n

)
⁄

1
,

u
2
(n

)
⁄

2
,.

..
,

u
M

(n
)

⁄
M

]

4.3. Spectral Clustering Implementation 75

It is important to note that, in general, clustering results based on
the three forms of eigenvectors:

(i) the smoothest graph Laplacian eigenvector,

(ii) the smoothest generalized eigenvector of the Laplacian, and

(iii) the smoothest eigenvector of the normalized Laplacian,

are di�erent. While the method (i) favors the clustering into subsets with
(almost) equal number of vertices, the methods (ii) and (iii) favor subsets
with (almost) equal volumes (defined as sums of the vertex degrees in
the subsets). Also note that the methods (i) and (ii) approximate the
indicator vector in di�erent eigenvector subspaces. All three methods
will produce the same clustering result for unweighted regular graphs,
for which the volumes of subsets are proportional to the number of
their corresponding vertices, while the eigenvectors for all the three
Laplacian forms are the same in regular graphs, as shown in (2.13).
Generalized eigenvectors of the graph Laplacian and eigenvec-

tors of the normalized Laplacian. Recall that the matrix D
≠1/2

is of a diagonal form, and with positive elements. Then, the solution
to (4.20) which is equal to the generalized eigenvector of the graph
Laplacian, and the solution to (4.21) which is equal to the eigenvec-
tor of the normalized Laplacian, are related as sign(y) = sign(x) or
sign(v1) = sign(u1). This indicates that if the sign of the corresponding
eigenvector is used for the minimum cut approximation (clustering),
both results are the same.

4.3 Spectral Clustering Implementation

Spectral clustering is most conveniently implemented using only low-
dimensional spectral vectors, with the simplest case when only a one-
dimensional spectral vector is used as indicator vector. More degrees of
freedom can be achieved by clustering schemes which use two or three
Laplacian eigenvectors, as discussed next.

76 Vertex Clustering and Mapping

4.3.1 Clustering Based on Only One (Fiedler) Eigenvector

From the analysis in the previous section, we can conclude that only
the smoothest eigenvector, u1, can produce a good (quasi-optimal)
approximation to the problem of minimum ratio cut graph clustering
into two subsets of vertices, E and H. Within the concept of spectral
vectors, presented in Section 4.2.2, this indicates that the simplest form
of spectral vector, qn = u1(n), based on just one (the smoothest) Fiedler
eigenvector, u1, can be used for e�cient spectral vertex clustering. Since
the spectral vector qn = u1(n) is used as an approximative solution to
the indicator vector within the minimum ratio cut definition, its values
may be normalized. One such normalization

yn = qn/ÎqnÎ2 (4.22)

yields a two-level form of the spectral vector

yn = [u1(n)/Îu1(n)Î2] = [sign(u1(n))],

and represents a step before clustering, as proposed in Ng et al. (2002).
This is justified based on the original form of the indicator vector,
whose sign indicates the vertex association to either subset E or H. For
illustrative representation of the normalized spectral vector, we may
use a simple two-level colormap and assign one of two colors to each
vertex. Such a simple algorithm for clustering is given in Algorithm 1
(for an algorithm with more options for clustering and representation
see the appendix (Algorithm 3) and Remarks 30 and 33).
Example 18: Consider the graph from Figure 2.2 and its Lapla-
cian eigenvector, u1, from Figure 3.4. The elements of this single
eigenvector, u1, are used to encode the vertex colormap, as shown in
Figure 4.7(a). Here, the minimum element of u1 was used to select the
red color (vertex 7), while the white color at vertex 0 was designated
by the maximum value of this eigenvector. Despite its simplicity, this
scheme immediately allows us to threshold u1 and identify two possible
graph clusters, {0, 1, 2, 3}, and {4, 5, 6, 7}, as illustrated in Figure 4.7(b).
The same result would be obtained if the sign of u1 was used to color the
vertices, and this would correspond to the minimum ratio cut clustering
in Figure 4.3.

4.3. Spectral Clustering Implementation 77

Algorithm 1. Clustering using the graph Laplacian.

Input:

• Graph vertices V = {0, 1, . . . , N ≠ 1}
• Graph Laplacian L

1: [U, �] Ω eig(L)
2: yn Ω U(2, n)
3: E Ω {n | yn > 0}, H Ω {n | yn Æ 0}
Output:

• Vertex clusters E and H

(a)

0 1

2

3
4

56
7

0 1

2

3
4

56
7 (b)

Figure 4.7: Vertex coloring for the graph from Figure 2.2, with its spectrum

shown in Figure 3.4. (a) The eigenvector, u1, of the Laplacian matrix of this

graph, given in (2.8), is normalized and is used to define the red color in-

tensity levels within the colormap for every vertex. For this example, u1 =

[0.42, 0.38, 0.35, 0.15, ≠0.088, ≠0.34, ≠0.35, ≠0.54]
T

. The largest element of this eigen-

vector is u1(0) = 0.42 at vertex 0, which indicates that this vertex should be colored

by the lowest red intensity (white), while the smallest element is u1(7) = ≠0.54, so

that vertex 7 is colored with the strongest red color intensity. (b) Simplified two-level

coloring based on the sign of the elements of eigenvector u1.

The true indicator vector, x, for the minimum ratio cut of this
graph is presented in Figure 4.8(a). This vector is obtained by checking
all the 127 possible cut combinations of E and H in this small graph,
together with the corresponding x(n). The signs of the elements of
this vector indicate the way for optimal clustering into the subsets
E = {0, 1, 2, 3} and H = {4, 5, 6, 7}, while the minimum cut value is

78 Vertex Clustering and Mapping

0 1 2 3 4 5 6 7

-0.5

0

0.5

(a)

0 1 2 3 4 5 6 7

-0.5

0

0.5

(b)

0 1 2 3 4 5 6 7

-0.5

0

0.5

(c)

0 1 2 3 4 5 6 7

-0.5

0

0.5

(d)

Figure 4.8: Principle of the minimum ratio cut based clustering and its spectral

(graph Laplacian eigenvector) based approximation; all vectors are plotted against the

vertex index n. (a) The ideal indicator vector for a minimum ratio cut, CutN(E , H),

normalized to unit energy. (b) The graph Laplacian eigenvector, u1. (c) The gen-

eralized eigenvector of the Laplacian, u1. (d) The eigenvector of the normalized

Laplacian, v1. The eigenvectors in (c) and (d) are related as u1 = D≠1/2v1. In this

case, the signs of the indicator vector and the eigenvectors, sign(x), sign(u1), and

sign(v1) are the same in all the four vectors. The signs of these vectors then all may

be used to define the minimum ratio cut based clustering into E and H, that is, the

association of a vertex, n, to either the subset E or subset H.

4.3. Spectral Clustering Implementation 79

CutN(E , H) = x
T

Lx = 0.395. Figure 4.8(b) shows an approximation of
the indicator vector within the space of the graph Laplacian eigenvector,
u1. The quadratic form of the eigenvector, u1, is equal to u

T
1 Lu1 =

⁄1 = 0.286. As shown in (4.17), note that the true indicator vector, x,
can be decomposed into the set of all graph Laplacian eigenvectors, uk,
and written as their linear combination.

The generalized Laplacian eigenvector, u1 = [0.37, 0.24, 0.32, 0.13,
≠0.31, ≠0.56, ≠0.34, ≠0.58], which is an approximation of the indicator
vector for the minimum volume normalized cut in (4.2), is presented in
Figure 4.8(c). In this case, the generalized eigenvector indicates the same
clustering subsets, E = {0, 1, 2, 3} and H = {4, 5, 6, 7}. The eigenvector
of the normalized Laplacian, v1, is shown in Figure 4.8(d).
Example 19: Consider the graph from Figure 2.2, with the weight
matrix, W, in (2.4), and the graph Laplacian eigenvector u1 (shown in
Figure 3.4, Figure 4.4(b) (left), and Figure 4.8(b)). When this eigen-
vector is thresholded to only two intensity levels, sign(u1), two graph
clusters are obtained, as shown in Figure 4.7(b). In an ideal case, these
clusters may even be considered as independent graphs (graph segmen-
tation being the strongest form of clustering); this can be achieved by
redefining the weights as Wnm = 0, if m and n are in di�erent clusters,
and Wnm = Wnm otherwise (Ng et al., 2002), for the corresponding
disconnected (segmented) graph, whose weight matrix, Ŵ, is given by

Ŵ =

0

1

2

3

4

5

6

7

S

WWWWWWWWWWU

0 0.23 0.74 0.24 0 0 0 0
0.23 0 0.35 0 0 0 0 0
0.74 0.35 0 0.26 0 0 0 0
0.24 0 0.26 0 0 0 0 0

0 0 0 0 0 0.51 0 0.14
0 0 0 0 0.51 0 0 0.15
0 0 0 0 0 0 0 0.32
0 0 0 0 0.14 0.15 0.32 0

T

XXXXXXXXXXV

.

0 1 2 3 4 5 6 7

(4.23)

4.3.2 “Closeness” of the Segmented and Original Graphs

The issue of how “close” the behavior of the weight matrix of the
segmented graph, Ŵ, in (4.23) (and the corresponding L̂) is to the

80 Vertex Clustering and Mapping

original W and L, in (2.4) and (2.8), is usually considered within matrix
perturbation theory.

It can be shown that a good measure of the “closeness” is the so-
called eigenvalue gap, ” = ⁄2 ≠⁄1, Ng et al. (2002), that is the di�erence
between the eigenvalue ⁄1 associated with the eigenvector u1, which is
used for segmentation, and the next eigenvalue, ⁄2, in the graph spec-
trum of the normalized graph Laplacian (for additional explanation see
Example 23). For the obvious reason of analyzing the eigenvalue gap at
an appropriate scale, we suggest to consider the relative eigenvalue gap

”r = ⁄2 ≠ ⁄1
⁄2

= 1 ≠ ⁄1
⁄2

. (4.24)

The relative eigenvalue gap value range is within the interval 0 Æ ”r Æ 1,
since the eigenvalues are nonnegative real-valued numbers sorted into a
nondecreasing order. The value of this gap may be considered as large
if it is close to the maximum eigengap value, ”r = 1.
Example 20: The Laplacian eigenvalues for the graph in Figure 4.7 are
⁄ œ {0, 0.29, 0.34, 0.79, 1.03, 1.31, 1.49, 2.21}, with the relative eigenvalue
gap, ”r = (⁄2 ≠ ⁄1)/⁄2 = 0.15, which is not large and indicates that the
segmentation in Example 19 is not “close”.

As an illustration, consider three hypothetical but practically rele-
vant scenarios: (i) ⁄2 = 0 and ⁄3 = 1, (ii) ⁄2 = 0 and ⁄3 = Á, (iii) ⁄2 = 1
and ⁄3 = 1 + Á, where Á is small positive number and close to 0. Ac-
cording to Remark 18, the graph in case (i) consists of exactly two
disconnected components, and the subsequent clustering and segmenta-
tion is appropriate, with ”r = 1. For the case (ii), the graph consists of
more than two almost disconnected components and the clustering in
two sets can be performed in various ways, with ”r = 1/Á. Finally, in
the last scenario the relative gap is very small, ”r = Á, thus indicating
that the behavior of the segmented graph is not “close” to the original
graph, that is, L̂ is not “close” to L, and thus any segmentation into
two disconnected subgraphs would produce inadequate results.

Remark 28: The thresholding of elements of the Fiedler vector, u1,
of the normalized graph Laplacian, LN = D

≠1/2
LD

≠1/2, performed in
order to cluster the graph is referred to as the Shi–Malik algorithm (Shi
and Malik, 2000; Weiss, 1999). Note that similar results would have been

4.3. Spectral Clustering Implementation 81

obtained if clustering was based on the thresholding of elements of the
smoothest eigenvector corresponding to the second largest eigenvalue of
the normalized weight matrix, WN = D

≠1/2
WD

≠1/2 (Perona–Freeman
algorithm (Perona and Freeman, 1998; Weiss, 1999)). This becomes
clear after recalling that the relation between the normalized weight
and graph Laplacian matrices is given by

LN = D
≠1/2

LD
≠1/2 = I ≠ D

≠1/2
WD

≠1/2,

LN = I ≠ WN . (4.25)

The eigenvalues of these two matrices are therefore related as ⁄(LN)
k

=
1 ≠ ⁄(WN)

k
, while they share the same eigenvectors.

Clustering Based on More Than One Eigenvector

More complex clustering schemes can be achieved when using more
than one Laplacian eigenvector. In turn, vertices with similar values
of several slow-varying eigenvectors, uk, would exhibit high spectral
similarity.

The concept of using more than one eigenvector in vertex

clustering and possible subsequent graph segmentation was first intro-
duced by Scott and Longuet-Higgins (1990). They used k eigenvectors
of the weight matrix W to form a new N ◊ k matrix V, for which
a further row normalization was performed. Vertex clustering is then
performed based on the elements of the matrix VV

T .
For the normalized weight matrix, WN , the Scott and Longuet-

Higgins algorithm reduces to the corresponding analysis with k eigen-
vectors of the normalized graph Laplacian, LN . Since WN and LN are
related by (4.25), they thus have the same eigenvectors.
Example 21: Consider two independent ratio cuts of a graph, where
the first cut splits the graph into the sets of vertices E1 and H1, and
the second cut further splits all vertices into the sets E2 and H2, and
define this two-level cut as

CutN2(E1, H1, E2, H2) = CutN(E1, H1) + CutN(E2, H2) (4.26)

where both CutN(Ei, Hi), i = 1, 2, are defined by (4.1).

82 Vertex Clustering and Mapping

If we now introduce two indicator vectors, x1 and x2, for the two
respective cuts, then, from (4.12) we may write

CutN2(E1, H1, E2, H2) = x
T
1 Lx1
xT

1 x1
+ x

T
2 Lx2
xT

2 x2
. (4.27)

As mentioned earlier, finding the indicator vectors, x1 and x2, which
minimize (4.27) is a combinatorial problem. However, if the space of
solutions for the indicator vectors is now relaxed from the subset-wise
constant form to the space spanned by the eigenvectors of the graph
Laplacian, then the approximative minimum value of the two cuts,
CutN2(E1, H1, E2, H2), is obtained for x1 = u1 and x2 = u2, since u1
and u2 are maximally smooth but not constant (for the proof see
(4.31)–(4.32) and for the illustration see Example 22).

For the case of two independent cuts, for convenience, we may form
the indicator N ◊ 2 matrix Y = [x1, x2], so that the corresponding
matrix of the solution (within the graph Laplacian eigenvectors space)
to the two ratio cuts minimization problem, has the form

Q = [u1, u2].

The rows of this matrix, qn = [u1(n), u2(n)], are the spectral vectors
which are assigned to each vertex, n.

The same reasoning can be followed for the cases of three or
more independent cuts, to obtain an N ◊ M indicator matrix Y =
[x1, x2, . . . , xM] with the corresponding eigenvector approximation, Q,
the rows of which are the spectral vectors qn = [u1(n), u2(n), . . . , uM (n)].

Remark 29: Graph clustering in the spectral domain may be performed
by assigning the spectral vector,

qn = [u1(n), . . . , uM (n)]

in (4.9), to each vertex, n, and subsequently by grouping the vertices
with similar spectral vectors into the corresponding clusters (Belkin
and Niyogi, 2003; Ng et al., 2002).

Low dimensional spectral vectors (up to M = 3) can be represented by
color coordinates of, for example, standard RGB coloring system. To this

4.3. Spectral Clustering Implementation 83

f

Figure 4.9: Spectral vertex clustering schemes for the graph from Figure 4.4. (a) The

eigenvector, u1, of the Laplacian matrix (plotted in red lines on vertices designated

by black dots) is first normalized and is then used to designate (b) a two-level blue

colormap intensity (through its signs) for every vertex (blue-white circles). (c) The

eigenvector, u2, of the Laplacian matrix is normalized and is then used to provide

(d) a two-level green colormap intensity for every vertex. (e) The eigenvector, u3, of

the Laplacian matrix is normalized and used as (f) a two-level red colormap intensity

for every vertex. (g) Clustering based on the combination of the eigenvectors u1
and u2. (h) Clustering based on the combination of the eigenvectors u1, u2, and

u3. Observe an increase in degrees of freedom with the number of eigenvectors used;

this is reflected in the number of detected clusters, starting from two clusters in (b)

and (d), via four clusters in (g), to 8 clusters in (h).

84 Vertex Clustering and Mapping

end, it is common to use di�erent vertex colors, which represent di�erent
spectral vectors, for the visualization of spectral domain clustering.
Example 22: Figure 4.9 illustrates several spectral vector clustering
schemes for the graph in Figure 4.4 (right), based on the three smoothest
eigenvectors u1, u2, and u3. Clustering based on the eigenvector u1, with
qn = [u1(n)], is shown in Figure 4.9(b), clustering using the eigenvector
u2 only, with qn = [u2(n)], is shown in Figure 4.9(d), while Figure 4.9(e)
illustrates the clustering based on the eigenvectors u3, when qn =
[u3(n)]. Clustering based on the combination of the two smoothest
eigenvectors u1, and u2, with spectral vectors qn = [u1(n), u2(n)],
is shown in Figure 4.9(g), while Figure 4.9(h) illustrates clustering
based on the three smoothest eigenvectors, u1, u2, and u3, whereby
the spectral vector qn = [u1(n), u2(n), u3(n)]. In all cases, two-level
colormaps were used for each eigenvector. The smallest eigenvalues
were ⁄0 = 0, ⁄1 = 0.0286, ⁄2 = 0.0358, ⁄3 = 0.0899, ⁄4 = 0.104, and
⁄5 = 0.167, so that the largest relative gap was obtained when u1 and
u2 were used for clustering, with the corresponding eigenvalue gap of
”r = 1 ≠ ⁄2/⁄3 = 0.6.

Remark 30: k-means algorithm. The above clustering schemes are
based on the quantized levels of spectral vectors. These can be refined
using the k-means algorithm, that is, through postprocessing in the
form of unsupervised learning and in the following way.

(i) After an initial vertex clustering is performed by grouping the
vertices into Vi, i = 1, 2, . . . , k nonoverlapping vertex subsets, a
new spectral vector centroid, ci, is calculated as

ci = meannœVi{qn},

for each cluster of vertices Vi.

(ii) Every vertex, n, is then reassigned to its nearest (most similar)
spectral domain centroid, i, where the spectral distance (spectral
similarity) is calculated as Îqn ≠ ciÎ2.

This two-step algorithm is iterated until no vertex changes clusters.
Finally, all vertices in one cluster are colored based on the corresponding
common spectral vector ci (or visually, a color representing ci).

4.3. Spectral Clustering Implementation 85

Clustering refinement using the k-means algorithm is illustrated
later in Example 29.
Example 23: Graphs represent quite a general mathematical formal-
ism, and we will here provide only one possible physical interpretation
of graph clustering. Assume that each vertex represents one out of the
set of N images, which exhibit both common elements and individual
di�erences. If the edge weights are calculated so as to represent mu-
tual similarities between these images, then spectral vertex analysis
can be interpreted as follows. If the set is complete and with very
high similarity among all vertices, then Wmn = 1, and ⁄0 = 0, ⁄1 =
N, ⁄2 = N, . . . , ⁄N≠1 = N , as shown in Remark 19. The relative eigen-
value gap is then ”r = (⁄2 ≠ ⁄1)/⁄2 = 0 and the segmentation is not
possible.

Assume now that the considered set of images consists of two con-
nected subsets with the respective numbers of N1 and N2 Ø N1 of
very similar photos within each subset. In this case, the graph consists
of two complete components (sub-graphs). According to Remarks 18
and 19, the graph Laplacian eigenvalues are now ⁄0 = 0, ⁄1 = 0, ⁄2 =
N1, . . . , ⁄N1 = N1, ⁄N1+1 = N2, . . . , ⁄N≠1 = N2. Then, this graph may
be well segmented into two components (sub-graphs) since the relative
eigenvalue gap is now large, ”r = (⁄2 ≠ ⁄1)/⁄2 = 1. Therefore, this
case can be used for collaborative data processing within each of these
subsets. The analysis can be continued and further refined for cases with
more than one eigenvector and more than two subsets of vertices. Note
that segmentation represents a “hard-thresholding” operation of cutting
the connections between vertices in di�erent subsets, while clustering
refers to just a grouping of vertices, which exhibit some similarity, into
subsets, while keeping their mutual connections.

Example 24: For enhanced intuition, we next consider a real-world
dataset with eight images, shown in Figure 4.10. The connectivity
weights were calculated using the structural similarity index (SSIM),
with an appropriate threshold (Wang et al., 2003). The so obtained

86 Vertex Clustering and Mapping

0.49

0.33

0.29

0.3
1

0.32

0.300.2
9

0.37

0.
30

0.31

0.3
1

0.
30

0.29

0.40

0.
48

0.64

Figure 4.10: A graph representation of a set of the real-world images which exhibit

an almost constant background but di�erent head orientation, which moves gradually

from the left profile (bottom left) to the right profile (top right). The images

serve as vertices, while the edges and the corresponding weight matrix are defined

through the squared structural similarity index (SSIM) between images, with Wmn =

SSIM
2
T (m, n), and hard thresholded at 0.28 to account for the contribution of the

background to the similarity index, that is, SSIMT (m, n) = hard(SSIM(m, n), 0.53).

weight matrix, W, is given by

W =

0

1

2

3

4

5

6

7

S

WWWWWWWWWWU

0 0.49 0.33 0.29 0.31 0 0 0
0.49 0 0.32 0 0.30 0 0 0.29
0.33 0.32 0 0.37 0.30 0 0 0
0.29 0 0.37 0 0.31 0 0 0
0.31 0.30 0.30 0.31 0 0.31 0.30 0.29

0 0 0 0 0.31 0 0.40 0.48
0 0 0 0 0.30 0.40 0 0.64
0 0.29 0 0 0.29 0.48 0.64 0

T

XXXXXXXXXXV

0 1 2 3 4 5 6 7

. (4.28)

The standard graph form for this real-world scenario in Figure 4.10 is
shown in Figure 4.11, together with the corresponding image/vertex
indexing. Notice the almost constant background in all eight images

4.3. Spectral Clustering Implementation 87

0

1

2

3

4

5

6

7

Figure 4.11: Graph topology for the real-world images from Figure 4.10.

(the photos were taken in the wild by a “hand-held device”), and
that the only di�erences between the images are in that the model
gradually moved her head position from the left profile (bottom left) to
the right profile (top right). Therefore, the two frontal face positions,
at vertices n = 4 and n = 0, exhibit higher vertex degrees than the
other head orientations, which exemplifies physical meaningfulness of
graph representations. The normalized spectral vectors for this graph,
qn = [u1(n)]/Î[u1(n)]Î2 and qn = [u1(n), u2(n)]/Î[u1(n), u2(n)]Î2 were
obtained as the generalized eigenvectors of the graph Laplacian, and
were used to define the coloring scheme for the graph clustering in
Figure 4.12. Recall that similar vertex colors indicate spectral similarity
of the images assigned to the corresponding vertices.

The eigenvalues of the graph Laplacian for this example are ⁄k œ {0,
0.42, 1.12, 1.63, 1.68, 1.89, 2.31, 2.42}. The largest relative eigenvalue gap
is therefore between the eigenvalues ⁄1 = 0.42 and ⁄2 = 1.12, and
indicates that the best clustering will be obtained in a one-dimensional
spectral space (with clusters shown in Figure 4.12(a)). However, the
value of such cut would be large, Cut({0, 1, 2, 3, 4}, {5, 6, 7}) = 1.19,
while the value of the ratio cut,

CutN({0, 1, 2, 3, 4}, {5, 6, 7}) = 0.63 ≥ ⁄1 = 0.42,

88 Vertex Clustering and Mapping

(a) (b)

Figure 4.12: Graph clustering structure for the images from Figure 4.10. (a) Vertices

are clustered (colored) using the row-normalized spectral Fiedler eigenvector to give

the spectral vector u1, qn = [u1(n)]/Î[u1(n)]Î2. (b) Clustering scheme whereby

spectral values of vertices are calculated using the two smoothest eigenvectors,

qn = [u1(n), u2(n)], which are then employed to designate the colormap for the

vertices. Recall that the so obtained similar vertex colors indicate spectral similarity

of the images from Figure 4.10.

indicates that the connections between these two clusters are too sig-
nificant for a segmented graph to produce a “close” approximation of
the original graph with only two components (disconnected subgraphs).
Given the gradual change in head orientation, this again conforms
with physical intuition, and the subsequent clustering based on two
smoothest eigenvectors, u1 and u2, yields three meaningful clusters
of vertices corresponding to the “left head orientation” (red), “frontal
head orientation” (two shades of pink), and “right head orientation”
(yellow).

Example 25: Minnesota roadmap graph. Three eigenvectors of
the graph Laplacian matrix, u2, u3, and u4, were used as the coloring
templates to represent the spectral similarity and clustering in the
benchmark Minnesota roadmap graph, shown in Figure 4.13. The eigen-
vectors u0 and u1 were omitted, since their corresponding eigenvalues
are ⁄0 = ⁄1 = 0 (due to an isolated vertex in the graph data which
behaves as a graph component, see Remark 18). The full (nonquantized)
colormap scale was used to color the vertices (that is, represent three-
dimensional spectral vectors). As elaborated above, regions where the
vertices visually assume similar colors are also spectrally similar, and
with similar behavior of the corresponding slow-varying eigenvectors.

4.3. Spectral Clustering Implementation 89

Figure 4.13: Vertex coloring in the benchmark Minnesota road-map graph using the

three smoothest Laplacian eigenvectors {u2, u3, u4}, as coordinates in the standard

RGB coloring system (a three-dimensional spectral space with the spectral vector

qn = [u2(n), u3(n), u4(n)] for every vertex, n). The vertices with similar colors are

therefore also considered spectrally similar. Observe three di�erent clusters, charac-

terized by the shades of predominantly red, green, and blue color, that correspond

to intensities defined by the eigenvectors u2(n), u3(n), and u4(n).

Example 26: Brain connectivity graph. Figure 4.14 shows the
benchmark Brain Atlas connectivity graph (Mijalkov et al., 2017,
Rubinov and Sporns, 2010), for which the data is given in two matrices:
“Coactivation matrix”, Ŵ, and “Coordinate matrix”. The “Coordinate
matrix” contains the vertex coordinates in a three-dimensional Eu-
clidean space, whereby the coordinate of a vertex n is defined by the
n-th row of the “Coordinate matrix”, that is, [xn, yn, zn].

In our analysis, the graph weight matrix, W, was empirically
formed by:

(i) thresholding the “Coactivation matrix”, Ŵ, to preserve only the
strongest connections within this brain atlas, for example, those
greater than 0.1 max{Ŵmn}, as recommended in Rubinov and
Sporns (2010);

(ii) only the edges between the vertices m and n, whose Euclidean
distance satisfies dmn Æ 20 are kept in the graph representation.

90 Vertex Clustering and Mapping

Figure 4.14: Brain atlas (top) and its graph (bottom), with vertex coloring based

on the three smoothest generalized eigenvectors, u1, u2, and u3, of graph Laplacian.

The spectral vector, qn = [u1(n), u2(n), u3(n)] is employed as the coordinates in the

RGB coloring scheme (Mijalkov et al., 2017; Rubinov and Sporns, 2010).

4.4. Vertex Dimensionality Reduction Using the Laplacian 91

The elements, Wmn, of the brain graph weight matrix, W, are
therefore obtained from the corresponding elements, Ŵmn, of the “Coac-
tivation matrix” as

Wmn =

Y
]

[
Ŵmn, if Ŵmn > 0.1 max{Ŵmn} and dmn Æ 20
0, elsewhere.

(4.29)

The brain connectivity graph with the so defined weight matrix, W,
is shown in Figure 4.14(bottom).

The three smoothest generalized eigenvectors, u1, u2 and u3, of the
corresponding graph Laplacian matrix, L = D ≠ W, were next used to
define the spectral vectors

qn = [u1(n), u2(n), u3(n)]

for each vertex, n = 0, 1, . . . , N ≠ 1. The elements of this spectral
vector, qn, were then used to designate the corresponding RGB coordi-
nates for the coloring of the vertices of the brain graph, as shown in
Figure 4.14.

4.4 Vertex Dimensionality Reduction Using the

Laplacian Eigenmaps

We have seen that graph clustering can be used for collaborative pro-
cessing on the set of data which is represented by the vertices within a
cluster. In general, any form of the presentation of a graph and its corre-
sponding vertices, that employs the eigenvectors of the graph Laplacian
may be considered as a Laplacian eigenmap. The idea which underpins
eigenmap-based approaches presented here is to employ spectral vec-
tors, qn, to define the new positions of the original vertices in such
a “transform-domain” space so that spectrally similar vertices appear
spatially closer than in the original vertex space.
Remark 31: The Laplacian eigenmaps may be employed for vertex
dimensionality reduction, while at the same time preserving the local
properties and natural connections within the original graph (Belkin
and Niyogi, 2003).

Consider a vertex n, n = 0, 1, . . . , N ≠ 1, which resides in an
L-dimensional space RL, at the position defined by the L-dimensional

92 Vertex Clustering and Mapping

vector rn. A spectral vector for vertex n is then defined in a new lower-
dimensional (M -dimensional) space, with M < N , by keeping the M
smoothest eigenvectors of graph Laplacian, u0, u1, . . . , uM . Upon omit-
ting the constant eigenvector, u0, this gives the new basis designated
by the spectral vector

qn = [u1(n), . . . , uM (n)]. (4.30)

Since M < L, this provides the desired dimensionality reduction of the
vertex space. The concepts of spectral vector-based vertex dimensionality
reduction, and physical meaning associated with the spectral vector
space representation are illustrated in the next example.
Example 27: Vertex dimensionality reduction. Consider a set of
N = 70 students and their marks in 40 lecture courses. Every student
can be considered as a vertex located in the original L = 40 dimensional
space at the position rn, where rn(k) is a mark for the n-th student
at k-th course. Assume that the marks are within the set {2, 3, 4, 5}
and that some students have a�nity to certain subsets of courses
(for example, social sciences, natural sciences and skills). This set-up
can be represented in a tabular (70 ◊ 40) compact matrix form as in
Figure 4.15(a), where the columns contain the marks for every student
(the marks are color coded).

The average marks per student and per course are shown in
Figures 4.15(b) and (c). Observe the limitations of this representa-
tion, as for example, the average marks cannot be used to determine
student a�nities to the subsets of their courses.

We can now create a graph representation by connecting with edges
students with similar marks. In our example, the edge weights were
determined through a distance in the 40-dimensional feature (marks)
space, as

Wmn =

Y
]

[
e≠Îrm≠rnÎ

2
2/70, for Îrm ≠ rnÎ2Ø 7

0, otherwise.

With the so obtained connectivity, this graph is presented in
Figure 4.15(d), whereby the vertices (students) are randomly posi-
tioned in a plane and connected with edges. We shall now calculate the

4.4. Vertex Dimensionality Reduction Using the Laplacian 93

10 20 30 40 50 60 70

student (vertex)

5

10

15

20

25

30

35

40

co
ur

se
 in

de
x

2

3

4

5

0 10 20 30 40 50 60 70
2

3

4

5

0 5 10 15 20 25 30 35 40
2

3

4

5

 1

 11

 54

 4

 43

 60

 35 42

 51

 1
 4

-0.2

0.2

0

0.2

 35

0.1

0

 42

 54

0.150.1

 11

-0.1 0.05

 43

0

 51

-0.05-0.1-0.15-0.2

 60

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

 1

 11

 54

 4

 43

 60

 35

 42 51

111 54 4 4360 3542 51

 1

 11

 54

 4

 43

 60

 35

 42 51

Figure 4.15: Illustration of spectral dimensionality reduction through an example of

exam marks for a cohort of students. (a) Each of the 70 columns (students) represents

a 40-dimensional vector with student marks. Therefore the dimensionality of the

original representation space is L = 40. (b) Average mark per student. (c) Average

mark per course. (d) Two-dimensional graph representation of the matrix in (a),

where the individual students are represented by randomly positioned vertices in

the plane. To perform vertex (student) dimensionality reduction we can use spectral

vectors to reduce their original L = 40 dimensional representation space to (e) M = 3,

(f) M = 2, and (g) M = 1 dimensional spectral representation spaces. (h) Vertices

from path graph (g) positioned on a circle (by connecting the ends of the line) which

allows us to also show the edges.

94 Vertex Clustering and Mapping

normalized Laplacian eigenvectors and remap the vertices according to
the three-dimensional, two-dimensional and one-dimensional spectral
vectors, qn, defined by (4.30) that is, for M = 3, M = 2, and M = 1. In
this way, the vertex dimensionality is reduced from the original L = 40
to a much lower M π L. The corresponding graph representations are
respectively shown in Figures 4.15(e)–(g). For M = 2 and M = 3 we can
now clearly divide students into the three a�nity groups (designated
by the red, blue, and black). Although the obtained groups (clusters)
are logically ordered even in the one-dimensional case in Figure 4.15(g),
observe that we cannot use M = 1 for precise grouping since there is
no enough gap between the groups. However, even in this case, if we
re-cast the vertices on a circle instead on a line (by connecting two
ends of a line), and draw the connecting edges (the same edges as in
Figures 4.15(d)–(f)) we can see the benefit of a graph representation
even after such a radical dimensionality reduction.

The dimensionality reduction principle can also be demonstrated
based on Example 24, whereby each vertex is a 640 ◊ 480 RGB color
image which can be represented as a vector in the L = 640 ◊ 480 ◊ 3 =
921600 dimensional space. Indeed, using spectral vectors with M = 2,
this graph can be presented in a two-dimensional space as in Figure 4.10.

Within the Laplacian eigenmaps method, we may use any of the
three forms of graph Laplacian eigenvectors introduced in Section 4.2.3.
The relations among these three presentations are explained in Sec-
tion 4.2.3 and Table 4.1. A unified algorithm for all three variants of
the Laplacian eigenmaps, and the corresponding clustering methods, is
given in Algorithm 3 in the appendix.
Remark 32: The Laplacian eigenmaps are optimal in the sense that
they minimize an objective function which penalizes for the distance
between the neighboring vertices in the spectral space. This ensures that
if the vertices at the positions rm and rn in the original high-dimensional
L-dimensional space are “close” in the sense of some data association
metric, then they will also be close in the Euclidean sense in the reduced
M -dimensional spectral space, where their positions are defined by the
corresponding spectral vectors, qm and qn.

4.4. Vertex Dimensionality Reduction Using the Laplacian 95

4.4.1 Euclidean Distances in the Space of Spectral Vectors

We shall prove the “distance preserving” property of the above spectral
mapping in an inductive way. Assume that a graph is connected, i.e.,
⁄1 ”= 0. The derivation is based on the quadratic form in (4.8)

u
T

k Luk = 1
2

N≠1ÿ

m=0

N≠1ÿ

n=0
(uk(m) ≠ uk(n))2Wmn

which states that u
T

k
Luk is equal to the weighted sum of squared Eu-

clidean distances between the elements of the m-th and n-th eigenvector
at vertices m and n, for all m and n. Recall that u

T

k
Luk is also equal

to ⁄k, by definition (see the elaboration after (4.6)).

Single-dimensional case. To reduce the original L-dimensional ver-
tex space to a single-dimensional path graph with vertex coordinates
qn = uk(n), the minimum sum of the weighted squared distances
between the vertices m and n, that is

1
2

N≠1ÿ

m=0

N≠1ÿ

n=0
Îq(m) ≠ q(n)Î2

2Wmn

= 1
2

N≠1ÿ

m=0

N≠1ÿ

n=0
(uk(m) ≠ uk(n))2Wmn = ⁄k

will be obtained with the new positions of vertices, designated by
qn = [u1(n)], and for k = 1, since mink,⁄k ”=0{⁄k} = ⁄1 is the smallest
nonzero eigenvalue.

Two-dimensional case. If we desire to reduce the original L-dimensi-
onal vertex representation space to a two-dimensional spectral space,
designated by qn = [uk(n), ul(n)] and defined through any two eigen-
vectors of the graph Laplacian, uk and ul, then the minimum sum of
the weighted squared distances between all vertices, m and n, given by

1
2

N≠1ÿ

m=0

N≠1ÿ

n=0
Îqm ≠ qnÎ2

2Wmn

= 1
2

N≠1ÿ

m=0

N≠1ÿ

n=0
(uk(m) ≠ uk(n))2Wmn

96 Vertex Clustering and Mapping

+ 1
2

N≠1ÿ

m=0

N≠1ÿ

n=0
(ul(m) ≠ ul(n))2Wmn

= u
T

k Luk + u
T

l Lul = ⁄k + ⁄l (4.31)

will be obtained with the new spectral positions, qn = [uk(n), ul(n)],
such that qn = [u1(n), u2(n)], since

min
k,l,k ”=l,kl ”=0

{⁄k + ⁄l} = ⁄1 + ⁄2 (4.32)

for nonzero k and l, and keeping in mind that ⁄1 Æ ⁄2 Æ ⁄3 Æ · · · Æ
⁄N≠1. The same reasoning holds for new three- and higher-dimensional
spectral representation spaces for the vertices, which yields (4.30) as the
optimal vertex positions in the reduced M -dimensional vertex space.

The same relations hold for both the generalized eigenvectors of
the Laplacian, defined by Luk = ⁄kDuk, and the eigenvectors of
the normalized Laplacian, defined by D

≠1/2
LD

≠1/2
vk = ⁄kvk. The

only di�erence is in their respective normalization conditions, u
T

k
Duk

and v
T

k
vk. The relation between the eigenvectors of the normalized

graph Laplacian, vk, and the generalized eigenvectors of the graph
Laplacian, uk, in the form uk = D

≠1/2
vk, follows from their definitions

(see Remark 27). Since the elements u1(n) and u2(n) are obtained by
multiplying the elements v1(n) and v2(n) by the same value, 1/Dnn,
that is, [u1(n), u2(n)] = [v1(n), v2(n)]/Dnn, their normalized forms of
uk and vk are identical,

qn

ÎqnÎ2
= [u1(n), u2(n)]

Î[u1(n), u2(n)]Î2
= [v1(n), v2(n)]

Î[v1(n), v2(n)]Î2
.

4.4.2 Examples of Graph Analysis in the Spectral Space

Example 28: The graph from Figure 2.2, where the vertices reside
in a two-dimensional plane, is shown in Figure 4.16(a), while
Figure 4.16(b) illustrates the same graph but represented in a reduced
single-dimensional vertex space (a line). The vertex positions on the
line are defined by the spectral vector, qn = [u1(n)], with u1 = [0.42,
0.38, 0.35, 0.15, ≠0.088, ≠0.34, ≠0.35, ≠0.54]T .

4.4. Vertex Dimensionality Reduction Using the Laplacian 97

0 1

2

3

4

56
7

0.23

0.74
0.2

4 0.35 0
.23

0.26 0.24

0.
32 0.510.1

4

0.150.32

(a)

01234567

(b)

Figure 4.16: Principle of vertex dimensionality reduction based on the spectral

vectors. (a) The weighted graph from Figure 2.2 with its vertices in a two-dimensional

space. (b) The graph from (a) with its vertices located along a line (one-dimensional

vertex space), whereby the positions on the line are defined by the one-dimensional

spectral vector, qn = [u1(n)], with u1 = [0.42, 0.38, 0.35, 0.15, ≠0.088, ≠0.34, ≠0.35,
≠0.54]

T
. Observe that this dimensionality reduction method may be used for clus-

tering, based on the vertex position on the line.

Remark 33: After the vertices are reordered according to the Fiedler
eigenvector, u1, Example 28 indicates the possibility of clustering re-
finement through a recalculation of ratio cuts. For the set of vertices
V = {0, 1, 2, . . . , N ≠1}, Figure 4.16(b) illustrates their ordering along a
line, with the new order {v1, v2, . . . , vN } = {7, 6, 5, 4, 3, 2, 1, 0}. Instead
of using the sign of u1 to cluster the vertices, we can recalculate the
ratio cuts, CutN(Ep, Hp), with this sequential vertex order, where Ep =
{v1, v2, . . . , vp} and Hp = {vp+1, vp+2, . . . , vN }, for p = 1, 2, . . . , N ≠ 1.
The estimation of the minimum ratio cut then becomes

(Ep, Hp) = arg min
p

{CutN(Ep, Hp)}.

98 Vertex Clustering and Mapping

This approximation of the Cheeger’s cut can also be written using the
thresholding of the eigenvector u1, by a threshold t, as

„ú(V) = min
t

; 1
min{NEt , NV≠Et}

ÿ

mœEt
nœV≠Et

Wmn

<
, (4.33)

where the vertex n belongs to Et if u1(n) > t.
This method is computationally e�cient since only (N ≠ 1) cuts,

CutN(Ep, Hp), need to be calculated. In addition, the cuts CutN(Ep, Hp)
can be calculated recursively, using the previous CutN(Ep≠1, Hp≠1) and
the connectivity parameters (degree, Dpp, and weights, Wpm) of vertex p.
Any normalized cut form presented in Section 4.1 can also be used
instead of CutN(Ep, Hp). When the Cheeger ratio, defined in (4.5), is
used in this minimization, then an upper bound on the cut can be
obtained as Trevisan (2013)

min
p

{„(Ep)} Æ


2⁄1 Æ 2
Ò

„(V), (4.34)

where „(V) denotes the combinatorial (true) minimum cut, with bounds
given in (4.18).
Example 29: We shall now revisit the graph in Figure 4.9 and exam-
ine the clustering schemes based on: (i) standard Laplacian
eigenvectors (Figure 4.17), (ii) generalized eigenvectors of graph Lapla-
cian (Figure 4.18), and (iii) eigenvectors of the normalized Laplacian
(Figure 4.19). Figure 4.17(b) illustrates Laplacian eigenmaps based
dimensionality reduction for the graph from Figure 4.9(g), with the two
eigenvectors, u1 and u2, serving as new vertex coordinates, and using
the same vertex coloring scheme as in Figure 4.9(g). While both the
original and the new vertex space are two-dimensional, we can clearly
see that in the new vertex space the vertices belonging to the same
clusters are also spatially closer, which is both physically meaningful
and exemplifies the practical value of the eigenmaps. Figure 4.17(c)
is similar to Figure 4.17(b) but is presented using the normalized
spectral space coordinates, qn = [u1(n), u2(n)]/Î[u1(n), u2(n)]Î2. In
Figure 4.17(d) the clusters are refined using the k-means algorithm, as
per Remark 30. The same representations are repeated and shown in

4.4. Vertex Dimensionality Reduction Using the Laplacian 99

(a) (b)

(c) (d)

Figure 4.17: Principle of Laplacian eigenmaps and clustering based on the eigenvec-

tors of the graph Laplacian, L. (a) The original graph from Figure 4.9, with the spec-

tral vector qn = [u1(n), u2(n)], defined by the graph Laplacian eigenvectors {u1,u2},

which is used to cluster (color) the vertices. (b) Two-dimensional vertex positions

obtained through Laplacian eigenmaps, with the spectral vector qn = [u1(n), u2(n)]

serving as the vertex coordinates (the 2D Laplacian eigenmap). While both the

original and this new vertex space are two-dimensional, the new eigenmaps-based

space is advantageous in that it emphasizes vertex spectral similarity in a spatial way

(physical closeness of spectrally similar vertices). (c) The graph from (b) but produced

using normalized spectral space coordinates qn = [u1(n), u2(n)]/Î[u1(n), u2(n)]Î2, as

in (4.22). (d) The graph from (c) with clusters refined using the k-means algorithm,

as per Remark 30. The centroids of clusters are designated by squares of the same

color. The complexity of graph presentation is also significantly reduced through

eigenmaps, with most of the edges between strongly connected vertices being very

short and located along a circle.

100 Vertex Clustering and Mapping

(a) (b)

(c) (d)

Figure 4.18: Principle of Laplacian eigenmaps and clustering based on the general-
ized eigenvectors of the graph Laplacian, obtained as a solution to Luk = ⁄kDuk.

Vertex coloring was produced using the same procedure as in Figure 4.17.

Figures 4.18(a)–(d) for the representation based on the generalized eigen-
vectors of the graph Laplacian, obtained as a solution to Luk = ⁄kDuk.
Finally, in Figures 4.19(a)–(d), the Laplacian eigenmaps and cluster-
ing are produced based on the eigenvectors of the normalized graph
Laplacian, LN = D

≠1/2
LD

≠1/2. As expected, the eigenmaps obtained
using the generalized Laplacian eigenvectors, in Figure 4.19(b), and
the eigenvectors of the normalized Laplacian, in Figure 4.18(b), are
di�erent; however, they reduce to the same eigenmaps after spectral

4.4. Vertex Dimensionality Reduction Using the Laplacian 101

(a) (b)

(c) (d)

Figure 4.19: Principle of Laplacian eigenmaps and clustering based on the eigen-
vectors of the normalized graph Laplacian, LN = D≠1/2LD≠1/2

. Vertex coloring was

performed using the same procedure as in Figure 4.17. The eigenvectors of the nor-

malized graph Laplacian, vk, are related to the generalized eigenvectors of the graph

Laplacian, uk, through uk = D≠1/2vk, as stated in Remark 27. This means that the

signs of these two eigenvectors are the same, sign(uk) = sign(vk). Since in order to ob-

tain u1(n) and u2(n), the elements v1(n) and v2(n) are multiplied by the same value,

1/Dnn, then [u1(n), u2(n)]/Î[u1(n), u2(n)]Î2= [v1(n), v2(n)]/Î[v1(n), v2(n)]Î2, thus

yielding the same graph forms in (c) and (d) in both this figure and in Figure 4.18.

vector normalization, as shown Figure 4.19(c) and Figure 4.18(c). Af-
ter the k-means based clustering refinement was applied, in all three
cases two vertices switched their initial color (cluster), as shown in
Figures 4.17(d), 4.18(d), and 4.19(d).

102 Vertex Clustering and Mapping

Observe that the eigenmaps obtained with the normalized forms of
the generalized eigenvectors of the Laplacian and the eigenvectors of
the normalized Laplacian are the same, and in this case their clustering
performances are similar to those based on the eigenmaps produced
with the eigenvectors of the original Laplacian.

Remark 34: In general, an independent quantization of two smoothest
eigenvectors of the graph Laplacian, u1 and u2, will produce four
clusters. However, that will not be the case if we analyze the graph
with an almost ideal eigenvalue gap (unit value) between ⁄2 and ⁄3.
In other words, when the gap ”r = 1 ≠ ⁄2/⁄3 tends to 1, that is,
⁄2 æ 0 and ⁄1 < ⁄2 æ 0, then this case corresponds to a graph with
exactly three disjoint subgraph components, with vertices belonging
to the disjoint sets E , H, and K. Without loss of generality, assume
NE > NH > NK. The minimum ratio cut, CutN(E , H fi K) is then
obtained with the first indicator vector x1(n) = c11 for n œ E and
x1(n) = c12 for n œ H fi K. The second indicator vector will produce
the next minimum ratio cut, CutN(E fi K, H) with x2(n) = c21 for
n œ E fi K and x2(n) = c22 for n œ H. Following the same analysis
as in the case of one indicator vector and the cut of graph into two
disjoint subsets of vertices, we can immediately conclude that the two
smoothest eigenvectors, u1 and u2, which correspond to ⁄2 æ 0 and
⁄1 æ 0, can be used to form an indicator matrix Y = [x1, x2], so that
the corresponding matrix of the solution (within the graph Laplacian
eigenvector space) to the minimization problem of two ratio cuts, has
the form [sign(u1), sign(u2)]. The elements of these indicator vectors,
[sign(u1(n)), sign(u2(n))], have therefore a subset-wise constant vector
form, assuming exactly three di�erent vector values that correspond to
individual disjoint sets E , H, and K.

This procedure can be generalized up to every individual vertex
becoming a cluster (no clustering). To characterize N independent
disjoint sets we will need (N ≠ 1) spectral vectors, if the constant
eigenvector, u0, is omitted.
Example 30: The two-dimensional Laplacian eigenmap for the bench-
mark Minnesota roadmap graph (with M = 2) is given in Figure 4.20.
In this new space, the spectral vectors qn = [u2(n), u3(n)], are used as

4.4. Vertex Dimensionality Reduction Using the Laplacian 103

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Figure 4.20: Laplacian eigenmaps for the Minnesota road-map graph, produced

based on the new two-dimensional spectral vertex positions defined by the Laplacian

eigenvectors {u2,u3} as the vertex coordinates (the 2D Laplacian eigenmap).

the coordinates of the new vertex positions. Here, two vertices with
similar slow-varying eigenvectors are located close to one another in
the new coordinate system defined by u2 and u3. This illustrates that
the eigenmaps can be considered as a basis for “scale-wise” graph
representation.

Example 31: The Laplacian eigenmaps of the Brain Atlas graph from
Figure 4.14, whose original vertex locations reside in an L = 3 dimen-
sional space, is presented in a new reduced M = 2 dimensional space
which is defined based on the two smoothest eigenvectors, u1 and u2.

104 Vertex Clustering and Mapping

This example of vertex dimensionality reduction, with new vertex loca-
tions but with the original edges kept, is shown in Figure 4.21.

The generalized eigenvectors of the graph Laplacian, uk, for k =
1, 2, 3, 4, 5, 6, are shown in Figure 4.22(a) using the standard colormap
in both the original three-dimensional and the reduced two-dimensional
space, as shown in Figure 4.22(b).

Example 32: Vertices of a three-dimensional Swiss roll graph are
shown in Figure 4.24(a). The vertex locations in this original L = 3
dimensional space are calculated as xn = –n cos(–n)/(4fi), yn = —n,
and zn = –n sin(–n)/(4fi), n = 0, 1, 2, . . . , N ≠ 1, with –n randomly
taking values between fi and 4fi, and —n from ≠1.5 to 1.5. The edge
weights are calculated using Wmn = exp(≠d2

mn/(2Ÿ2)), where dmn is the
square Euclidean distance between the vertices m and n, and Wmn = 0
if dmn Ø 0.15 with Ÿ = 0.1. The resulting three-dimensional Swiss
roll graph is shown in Figure 4.24(b), while Figure 4.24(c) shows the
same graph but with vertices colored (clustered) using the normalized
graph Laplacian eigenvectors, u1(n) and u2(n), as a colormap. The
same vectors are then used in Figure 4.24(d) as the new coordinates in
the reduced two-dimensional Laplacian eigenmap vertex space (M = 2)
for the Swiss roll graph.

4.5 Pseudo-Inverse of Graph Laplacian-Based Mappings

The graph Laplacian is a singular matrix (since ⁄0 = 0) for which an
inverse does not exist. To deal with this issue, the pseudo-inverse of the
graph Laplacian, L

+, is defined as a matrix that satisfies the property

LL
+ =

C
0 01◊(N≠1)
0(N≠1)◊1 I(N≠1)◊(N≠1)

D

, (4.35)

where we assumed that the graph is connected. The eigenvalues of the
graph Laplacian pseudo-inverse are therefore the inverses of the original
eigenvalues, {0, 1/⁄1, . . . , 1/⁄N≠1}, while it shares the same eigenvectors
with the original graph Laplacian, u0, u1, . . . , uN≠1. The eigenmaps
for which the spectral coordinates are scaled based on the eigenvalues
of the pseudo-inverse of graph Laplacian can be interpreted within the
Principal Component Analysis (PCA) framework in the following way.

4.5. Pseudo-Inverse of Graph Laplacian-Based Mappings 105

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(a)

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

Figure 4.21: Brain atlas representation based on normalized spectral vectors.

(a) A two-dimensional Laplacian eigenmap based on the generalized Laplacian

eigenvectors. The original L = 3 dimensional graph from Figure 4.14 is reduced to

a two-dimensional representation based on the two smoothest eigenvectors, u1(n)

and u2(n), which both serve as spectral coordinates and define color templates

in the colormap, as in Figure 4.14. (b) Eigenmaps from (a) but in the space of

normalized spectral space coordinates, qn = [u2(n), u3(n)]/Î[u2(n), u3(n)]Î2, with

the complexity of graph representation now significantly reduced. Observe that most

edges only exists between strongly connected vertices located along the circle.

106 Vertex Clustering and Mapping

Figure 4.22: Generalized eigenvectors, uk, k = 1, 2, 3, 4, 5, 6, of the graph Laplacian

of the Brain Atlas graph, shown using vertex coloring in the original three-dimensional

vertex space. Each panel visualizes a di�erent uk, k = 1, 2, 3, 4, 5, 6.

4.5. Pseudo-Inverse of Graph Laplacian-Based Mappings 107

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 k= 1

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 k= 2

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 k= 3

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 k= 4

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 k= 5

-0.1 -0.05 0 0.05 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 k= 6

Figure 4.23: Laplacian eigenmaps of the Brain Atlas graph in the reduced two-

dimensional space defined by the two smoothest generalized eigenvectors of the graph

Laplacian, u1 and u2. The panels each visualize a di�erent generalized eigenvector,

uk, k = 1, 2, 3, 4, 5, 6.

108 Vertex Clustering and Mapping

-1

-0.5

0

0.5

1

1
0 10.50-0.5-1 -1 (a)

-1

-0.5

0

0.5

1

1
0 10.50-0.5-1 -1 (b)

(c) (d)

(e) (f)

-0.1 -0.05 0 0.05
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-1

-0.5

0

0.5

1

1
0 10.50-0.5-1 -1

-0.1 -0.05 0 0.05
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-1

-0.5

0

0.5

1

1
0 10.50-0.5-1 -1

Figure 4.24: Laplacian eigenmaps based dimensionality reduction for the Swiss

roll graph. (a) Vertex locations for the Swiss roll graph in the original L = 3

dimensional space with N = 500 points (vertices). (b) The Swiss roll graph with

edges whose weights are calculated based on the Euclidean distances between vertices.

(c) The Swiss roll graph with vertices colored using the normalized graph Laplacian

eigenvectors, u1(n) and u2(n), as a colormap. (d) The same vectors are used as the

new coordinates (spectral vectors) in a reduced two-dimensional Laplacian eigenmap

vertex space (M = 2). The vertices with high similarity (similar values of the

smoothest eigenvectors) are located close to one another, thus visually indicating the

expected similarity of data observed at these vertices. (e) Clustering of the Swiss roll

graph, in the original L = 3 dimensional space, using the two smoothest eigenvectors,

u1(n) and u2(n). (f) Clustering of the Swiss roll graph using the two smoothest

eigenvectors, u1(n) and u2(n), presented in the M = 2 eigenmap space, where for

every vertex its spatial position (quadrant of the coordinate system) indicates the

cluster where it belongs.

4.5. Pseudo-Inverse of Graph Laplacian-Based Mappings 109

Notice that the M -dimensional eigenmaps based on the pseudo-
inverse of the Laplacian are the same as those for the original graph
Laplacian, since they share the same eigenvectors. If the spectral vectors
qn = [u1(n), u2(n), . . . , uM (n)] are scaled with the square roots of the
eigenvalues of the Laplacian pseudo-inverse, we obtain

qn =
5

u1(n)Ô
⁄1

,
u2(n)Ô

⁄2
, . . . ,

uM (n)Ô
⁄M

6
.

The elements of this spectral vector are now equal to the first M
elements (omitting 0 · u0(n)) of the full-dimension spectral vector

qn = [u1(n), u2(n), . . . , uN≠1(n)]�̄≠1/2, (4.36)

where �̄ is a diagonal matrix with elements ⁄1, ⁄2, . . . , ⁄N≠1.

4.5.1 Commute Time Mapping

Physical meaning of the new vector positions in the spectral space,
defined by (4.36), is related to the notion of commute time, which is
a property of a di�usion process on a graph (Horaud, 2009; Qiu and
Hancock, 2007). The commute time, CT (m, n) between vertices m and
n is defined as the expected time for the random walk to reach vertex
n starting from vertex m, and then to return. The commute time is
therefore proportional to the Euclidean distance between these two
vertices, with the vertex positions in the new spectral space defined by
qn in (4.36), that is

CT (m, n) = VVÎqm ≠ qnÎ2
2= VV

N≠1ÿ

i=1
(qi(m) ≠ qi(n))2, (4.37)

where VV is the volume of the whole graph, VV =
q

N≠1
n=0 Dnn.

To put this into perspective, in a graph representation of a resistive
electric circuit/network, for which the edge weights are equal to the
conductances (inverse resistances, see Part III), the commute time,
CT(m, n), is defined as the equivalent resistance between the electric
circuit nodes (vertices) m and n (Chandra et al., 1996).

110 Vertex Clustering and Mapping

The covariance matrix of the scaled spectral vectors in (4.36) is
given by

S = 1
N

N≠1ÿ

n=0
q

T

n qn = 1
N

�̄
≠1.

In other words, the principal directions in the reduced dimensionality
space of M eigenvectors, u1, u2, . . . , uM , correspond to the maximum
variance of the graph embedding, since 1/⁄1 > 1/⁄2 > · · · > 1/⁄M .
This, in turn, directly corresponds to principal component analysis
(PCA).
Remark 35: Two-dimensional case comparison. The two-dimen-
sional spectral space of the standard graph Laplacian eigenvectors is
defined by u1 and u2, while the spectral vector in this space is given by

qn = [u1(n), u2(n)]. (4.38)

In the case of commute time mapping, the two-dimensional spectral
domain of the vertices becomes

qn =
5

u1(n)Ô
⁄1

,
u2(n)Ô

⁄2

6
, (4.39)

that is, the commute time mapping is related to the graph Laplacian
mapping through axis scaling by 1/

Ô
⁄k.

We can conclude that when ⁄1 ¥ ⁄2, the two mappings in (4.38)
and (4.39) are almost the same, when normalized.

However, when ⁄1 π ⁄2, the relative eigenvalue gap between the
one dimensional and two-dimensional spectral space is large, since
”r = 1 ≠ ⁄1/⁄2 is close to 1. This means that the segmentation into two
disjoint subgraphs will be “close” to the original graph, while at the
same time this also indicates that the eigenvector u2 does not contribute
to a new “closer” segmentation (in the sense of Section 4.3.2), since its
gap ”r = 1≠⁄2/⁄3 is not small. Therefore, the influence of u2 should be
reduced, as compared to the standard spectral vector of graph Laplacian
where both u1 and u2 employ unit weights to give qn = [u1(n), u2(n)].
Such downscaling of the influence of the almost irrelevant eigenvector,
u2, when ⁄1 π ⁄2, is equivalent to the commute time mapping, since
qn = [u1(n)

Ô
⁄1

, u2(n)
Ô

⁄2
] = 1

Ô
⁄1

[u1(n), u2(n)
Ò

⁄1
⁄2

] ≥ [u1(n), 0].

4.5. Pseudo-Inverse of Graph Laplacian-Based Mappings 111

For example, for the graph from Example 29, shown in Figure 4.17(a),
the commute time mapping will produce the same vertex presentation
as in Figure 4.17(b), which is obtained with the eigenvectors of the
graph Laplacian, when the vertical axis, u2, is scaled by

Û
⁄1
⁄2

=
Ú

0.0286
0.0358 = 0.8932.

This eigenmap will also be very close to the eigenmap in Figure 4.17(b),
produced based on the graph Laplacian eigenvectors and the spectral
vector qn = [u1(n), u2(n)].

4.5.2 Di�usion (Random Walk) Mapping

Finally, we shall now relate the commute time mapping to the di�usion
mapping.
Definition: Di�usion on a graph deals with the problem of propagation
along the edges of a graph, whereby at the initial step, t = 0, the
random walk starts at a vertex n. At the next step t = 1, the walker
moves from its current vertex n to one of its neighbors l, chosen at
random from the neighbors of n. The probability of going from vertex
n to vertex l is equal to the ratio of the weight Wnl and the sum of all
possible edge weights from the vertex n, that is

Pnl = Wnlq
l
Wnl

= 1
Dnn

Wnl. (4.40)

When considering all vertices together, such probabilities can be written
in a matrix form, within the weight of a random walk matrix, defined
as in (2.10), by

P = D
≠1

W. (4.41)

Di�usion distance. The Di�usion distance between the vertices m
and n, denoted by Df (m, n), is equal to the distance between the vector
(N -dimensional ordered set) of probabilities for a random walk to move
from a vertex m to all other vertices (as in (4.40)), given by

pm = [Pm0, Pm1, . . . , Pm(N≠1)]

112 Vertex Clustering and Mapping

and the corresponding vector of probabilities for a random walk to move
from a vertex n to all other vertices, given by

pn = [Pn0, Pn1, . . . , Pn(N≠1)],

that is

D2
f (m, n) = Î(pm ≠ pn)D≠1/2Î2

2VV

=
N≠1ÿ

i=0
(Pmi ≠ Pni)2 1

Dii

VV

where VV =
q

N≠1
n=0 Dnn is constant for a given graph, which is equal to

the sum of degrees (volume) of all graph vertices in V.
Example 33: For the graph from Figure 2.2, with its weight matrix, W,
and the degree matrix, D, given respectively in (2.4) and (2.6), the
random walk weight matrix in (4.41) is of the form

P =

p0
p1
p2
p3
p4
p5
p6
p7

S

WWWWWWWWWWU

0 0.19 0.61 0.20 0 0 0 0
0.28 0 0.43 0 0.28 0 0 0
0.47 0.22 0 0.16 0.15 0 0 0
0.29 0 0.32 0 0 0 0.39 0

0 0.21 0.21 0 0 0.46 0 0.12
0 0 0 0 0.77 0 0 0.23
0 0 0 0.50 0 0 0 0.50
0 0 0 0 0.23 0.25 0.52 0

T

XXXXXXXXXXV

0 1 2 3 4 5 6 7

(4.42)

with VV = 7.46.
Therefore, the di�usion distance between, for example, the vertices

m = 1 and n = 3, for the t = 1 step, is

Df (1, 3) = Î(p1 ≠ p3)D≠1/2Î2


VV = 1.54,

while the di�usion distance between the vertices m = 6 and n = 3 is
Df (6, 3) = 2.85. From this simple example, we can see that the di�usion
distance is larger for vertices m = 6 and n = 3 than for the neighboring
vertices m = 1 and n = 3. This result is in a perfect accordance with
the clustering scheme (expected similarity) in Figure 4.7(b), where the
vertices m = 1 and n = 3 are grouped into the same cluster, while the
vertices m = 6 and n = 3 belong to di�erent clusters.

4.5. Pseudo-Inverse of Graph Laplacian-Based Mappings 113

The probability vectors, pn, are called the di�usion clouds (in this
case for step t = 1), since they resemble a cloud around a vertex n. The
di�usion distance can then be considered as a distance between the dif-
fusion clouds (sets of data) around a vertex m and a vertex n. If the
vertices are well connected (approaching a complete graph structure)
then this distance is small, while for vertices with long paths between
them, this distance is large.

The di�usion analysis can be easily generalized to any value of the
di�usion step, t, whereby after t steps, the matrix of probabilities in
(4.41) becomes

P
t = (D≠1

W)t.

The elements of this matrix, denoted by P (t)
mn, are equal to the proba-

bilities that a random walker moves from a vertex m to a vertex n, in
t steps. The t-step di�usion distance between the vertices m and n, is
accordingly defined as

D(t)
f

(m, n) = Î(p(t)
m ≠ p

(t)
n)D≠1/2Î2


VV ,

where
p

(t)
m = [P (t)

m0, P (t)
m1, . . . , P (t)

m(N≠1)]

and
p

(t)
n = [P (t)

n0 , P (t)
n1 , . . . , P (t)

n(N≠1)].

It can be shown that the di�usion distance is equal to the Euclidean
distance between the considered vertices when they are presented in a
new space of their generalized Laplacian eigenvectors, which are then
scaled by their corresponding eigenvalues; this new space is referred

to as the di�usion map (cf. eigenmaps).
The eigenanalysis relation for the random walk weight matrix for

the state t = 1 now becomes

(D≠1
W) uk = ⁄(P)

k
uk.

Since the weight matrix can be written as W = D ≠ L, this yields
D

≠1(D ≠ L)uk = ⁄(P)
k

uk, or

(I ≠ D
≠1

L)uk = ⁄(P)
k

uk,

114 Vertex Clustering and Mapping

to finally produce the generalized graph Laplacian equation,

Luk = ⁄kDuk,

with ⁄k = (1 ≠ ⁄(P)
k

). This relation indicates that a one-step di�usion
mapping is directly obtained from the corresponding generalized graph
Laplacian mapping.

After t steps, the random walk matrix (of probabilities) becomes

P
t = (D≠1

W)t,

for which the eigenvalues are ⁄(P)t
k

= (1 ≠ ⁄k)t, while the (right) eigen-
vectors remain the same as for the graph Laplacian, see (3.7).

The spectral space for vertices, for a t-step di�usion process (di�usion
mapping), is then defined based on the spectral vector

qn = [u1(n), u2(n), . . . , uN≠1(n)](I ≠ �̄)t,

and is equal to the generalized Laplacian spectral space mapping,
whereby the axis vectors qn = [u1(n), u2(n), . . . , uN≠1(n)] are mul-
tiplied by the corresponding eigenvalues, (1 ≠ ⁄k)t.

It can be shown that the di�usion distance between vertices in the
new di�usion map space is equal to their Euclidean distance (Coifman
and Lafon, 2006), that is

D(t)
f

(m, n) =


VVÎqm ≠ qnÎ2. (4.43)

Example 34: For the graph from Figure 2.2, whose weight matrix, W,
and the degree matrix, D, are defined in (2.4) and (2.6), the di�usion
distance between the vertices m = 1 and n = 3 can be calculated using
(4.43) as

D(1)
f

(1, 3) =


VVÎ(q1 ≠ q3)Î2= 1.54,

where the spectral vectors, q1 = [u1(1)(1 ≠ ⁄1)1, . . . , uN (1)(1 ≠ ⁄N)1]
and q3 = [u1(3)(1 ≠ ⁄1)1, . . . , uN (3)(1 ≠ ⁄N)1] are obtained using the
generalized graph Laplacian eigenvectors, uk, and the corresponding
eigenvalues, ⁄k, from Luk = ⁄kDuk. This is the same di�usion distance
value, Df (1, 3), as in Example 33.
Dimensionality reduced di�usion maps. Dimensionality of the ver-
tex representation space can be reduced in di�usion maps by keeping

4.5. Pseudo-Inverse of Graph Laplacian-Based Mappings 115

only the eigenvectors that correspond to the M most significant eigen-
values, (1 ≠ ⁄k)t, k = 1, 2, . . . , M , in the same way as for the Laplacian
eigenmaps, For example, the two-dimensional spectral domain of the
vertices in the di�usion mapping is defined as

qn = [u1(n)(1 ≠ ⁄1)t, u2(n)(1 ≠ ⁄2)t].

While the analysis and intuition for the di�usion mapping is similar to
that for the commute time mapping, presented in Remark 35, di�usion
maps have an additional degree of freedom, the step t.
Example 35: For the graph in Figure 4.10, which corresponds to a
set of real-world images, the commute time two-dimensional spectral
vectors in (4.39), normalized by the first eigenvector value through a
multiplication of its coordinates by

Ô
⁄1, assume the form

qn =
5
u1(n),

Ô
⁄1Ô
⁄2

u2(n)
6

= [u1(n), 0.62u2(n)].

The corresponding vertex colors designate di�usion-based clustering,
as shown in Figure 4.25(a). Figure 4.25(b) shows the vertices of this
graph, colored with the two-dimensional di�usion map spectral vectors,
which are normalized by (1 ≠ ⁄1), to yield

qn =
5
u1(n), 1 ≠ ⁄2

1 ≠ ⁄1
u2(n)

6
= [u1(n), 0.09u2(n)].

Finally, the sum over all steps, t = 0, 1, 2, . . ., of the di�usion space
yields

qn = [u1(n), u2(n), . . . , uN≠1(n)]�̄≠1,

since the sum of a geometric progression is equal to
Œÿ

t=0
(I ≠ �̄)t = �̄

≠1.

This mapping also corresponds to the cumulative di�usion distance,
given by

Dc(n, l) =
Œÿ

t=0
D(t)

f
(n, l).

116 Vertex Clustering and Mapping

(a) (b)

Figure 4.25: Graph structure for the images from Figure 4.10, with vertex color

embedding which corresponds to the two-dimensional normalized spectral vectors in

(a) the commute time representation, qn = [u1(n), 0.62u2(n)], and (b) the spectral

eigenvectors of the di�usion process, qn = [u1(n), 0.09u2(n)], with t = 1. For the

commute time presentation in (a), the graph Laplacian eigenvectors, u1 and u2, are

used, while for the di�usion process presentation in (b) the generalized Laplacian

eigenvectors, u1 and u2, are used.

The di�usion eigenmaps can be therefore obtained by appropriate
axis scaling of the standard eigenmaps, produced by the generalized
eigenvectors of the graph Laplacian.
Remark 36: The commute time and the di�usion process mappings are
related in the same way as the mappings based on the graph Laplacian
eigenvectors and the generalized eigenvectors of the graph Laplacian.

4.6 Summary of Embedding Mappings

A summary of the considered embedding mappings is given in Table 4.1.
Notice that various normalization schemes may be used to obtain the
axis vectors, yn, from the spectral vectors, qn (see Algorithm 3).

These examples of dimensionality reduction reveal close connections
with spectral clustering algorithms developed in standard machine
learning and computer vision; in this sense, the notions of dimensionality
reduction and clustering can be considered as two sides of the same coin
(Belkin and Niyogi, 2003). In addition to the reduction of dimensionality
for visualization purposes, the resulting spectral vertex space of lower
dimensionality may be used to mitigate the complexity and accuracy
issues experienced with classification algorithms, or in other words to
bypass the course of dimensionality.

4.6. Summary of Embedding Mappings 117

A recent approach to graph dimensionality reduction, called the
Uniform Manifold Approximation and Projection (UMAP), can be
found in McInnes et al. (2018). This dimension reduction technique may
be used for visualization similarly to t-distributed Stochastic Neighbor
Embedding (t-SNE), which employs a probabilistic approach whereby,
with high probability, similar objects are modeled by nearby points and
dissimilar objects by distant points, as in van der Maaten and Hinton
(2008).

5

Graph Sampling Strategies

In the case of extremely large graphs, subsampling and down-scaling of
graphs is a prerequisite for their analysis (Leskovec and Faloutsos, 2006).
For a given large (in general directed) graph, G, with N vertices, its
resampling aims to produce a much simpler graph which retains most of
the properties of the original graph, but is both less complex and more
physically and computationally meaningful. The similarity between the
original large graph G, and the down-scaled graph, S, with M vertices,
where M π N , is defined with respect to the set of parameters of
interest, like for example, the connectivity or distribution on a graph.
Such criteria may also be related to the spectral behavior of graphs.

5.1 Graph Down-Sampling Strategies

Several methods exist for graph down-scaling, of which some are listed
below.

• The simplest method for graph down-sampling is the random
vertex or random node (RN) selection method, whereby a random
subset of vertices is used for the analysis and representation of
large graphs and data observed on such large graphs. Even though

118

5.1. Graph Down-Sampling Strategies 119

the vertices are here selected with equal probabilities, this method
produces good results in practical applications.

• Di�erent from the RN method, where the vertices are selected
with a uniform probability, the random degree vertex/node (RDN)
selection method is based on the probability of vertex selection
that is proportional to the vertex degree. In other words, vertices
with more connections, thus having larger Dn =

q
m

Wnm, are
selected with higher probability. This makes the RDN approach
biased with respect to highly connected vertices.

• The PageRank method is similar to the RDN, and is based on
the vertex rank. The PageRank is defined by the importance
of the vertices connected to the considered vertex n. Then, the
probability that a vertex n will be used in a down-scaled graph is
proportional to the PageRank of this vertex. This method is also
known as the random PageRank vertex (RPN) selection, and is
biased with respect to the highly connected vertices (with a high
PageRank).

• A method based on a random selection of edges that will remain
in the simplified graph is called the random edge (RE) method.
This method may lead to graphs that are not well connected, and
which exhibit large diameters.

• The RE method may be combined with random vertex selection
to yield a combined RNE method, whereby the initial random
vertex selection is followed by a random selection of one of the
edges that is connected to the selected vertex.

• In addition to these methods, more sophisticated methods based
on random vertex selection and random walk (RW) analysis may
be defined. For example, we can randomly select a small subset
of vertices and form several random walks starting from each
selected vertex. The Random Walk (RW), Random Jump (RJ)
and Forest Fire graph down-scaling strategies are all defined in
this way.

120 Graph Sampling Strategies

5.2 Graph Sparsification

We now provide an in-depth discussion of graph sparsification, one of
the main graph sampling strategies that approximates a given graph
by a sparse graph (a graph for which the number of the edges is signifi-
cantly smaller than quadratic in the number of vertices). Appropriately
sparsified graphs allow for a simpler analysis of large graphs, while
producing similar results as if the original graphs were analyzed.

Definition: A subgraph or sparsifier, GÕ, of a graph, G, is a graph
which maintains the same set of vertices, V, but with a fewer edges.
The design of a sparsification strategy should ensure that a desired
property/operation of the original graph is approximately preserved.

5.2.1 Cut-Preserving Sparsification

This approach to the sparsification of graphs aims at preserving (approx-
imately) graph cuts. Consider an unweighted graph G with N vertices.
A new, cut-preserving sparsified graph GÕ is then obtained by randomly
pruning the edges of the original graph G with the aim of preserving the
cut values. The set of vertices is the same for both the original and the
resulting graphs. Assume next that the vertices, V, are grouped into
disjoint subsets, E and H, with E fi H = V. The aim is to ensure that
every cut of the sparsified graph, GÕ, with the same set of vertices, V,
and the new edges with weighs W Õ

mn, denoted by

CutGÕ(E , H) =
ÿ

mœE

nœH

W Õ

mn,

is close to the corresponding cut of the original graph, that is

(1 ≠ ‘)CutG(E , H) Æ CutGÕ(E , H) Æ (1 + ‘)CutG(E , H), (5.1)

where ‘ is su�ciently small.
To this end, random edge selection is achieved in the following way:

• every edge is kept in the new graph, GÕ, with an assumed proba-
bility p;

5.2. Graph Sparsification 121

• the weight of the edge which is kept in the new graph, GÕ, is
changed from 1 to 1/p.

In this way, the number of edges, Ne, in the original graph, G, is
reduced to the expected number of edges equal to pNe.

The inequality in (5.1) is satisfied with a certain probability, for a
given ‘. Consider an undirected and unweighted graph, with M edges
in one cut. Every edge in this cut is either removed (with probability
(1≠p)) or kept with probability p. If the edge is kept, its weight assumes
the value 1/p. For the M edges in a considered cut, the probability that
k of M edges will be kept is equal to

Pk =
A

M

k

B

pk(1 ≠ p)M≠k.

The resulting value of the new cut is a random variable with Bernoulli
distribution, given by

P
3

CutGÕ(E , H) = k
1
p

4
= k

p

A
M

k

B

pk(1 ≠ p)M≠k.

The mean value of this cut is

E{CutGÕ(E , H)} = 1
p

(pM) = M,

while the variance of this Bernoulli distributed random variable is

Var{CutGÕ(E , H)} = 1
p2 p(1 ≠ p)M = 1 ≠ p

p
M.

Having in mind that, for a large M , the Bernoulli distribution approaches
the Gaussian distribution we can conclude that the relation is satisfied
with a probability of 0.95 for ‘ = 2


(1 ≠ p)/(pM), according to the

two-sigma rule for the Gaussian distribution and after the normalization
with CutG(E , H) = M .

For cuts with a very small number of edges, if all edges are sampled
with the same probability, p, there is a significant probability that
the minimum cut would be destroyed by removing all edges in this
cut. A way to overcome this problem is to slightly adapt the selection
procedure, so that the minimum cut is always kept, and the other edges

122 Graph Sampling Strategies

are sparsified in the usual way. This simple scheme therefore adopts
the probability of removing the edges related to the number of the
edges in a cut. For example, in cuts with a small number of edges, the
probability of removing the edges should be very small.

5.2.2 Spectral Graph Sparsification

Recent research e�orts on spectral graph sparsification focus on definition
of subgraphs or sparsifiers that can robustly preserve the spectrum
(eigenvalues and eigenvectors) of the original graph Laplacian (Imre
et al., 2020).

The criterion for spectral similarity of two graphs is based on the
quadratic Laplacian form

x
T

Lx = 1
2

N≠1ÿ

m=0

N≠1ÿ

n=0
Wmn(x(m) ≠ x(n))2, (5.2)

where x is an arbitrary vector with N elements.

Definition: The graphs, G and GÕ, with respective graph Laplacians, L

and L
Õ, are ‡-spectrally similar if their quadratic forms satisfy

1
‡

x
T

L
Õ
x Æ x

T
Lx Æ ‡x

T
L

Õ
x. (5.3)

The quality of the sparsification can be evaluated through the
condition number, ⁄max/⁄min, of the generalized eigenvalue relation

Lu = ⁄L
Õ
u (5.4)

with the constant, ‡, satisfying the relation, ‡2 Ø ⁄max/⁄min, where
⁄max and ⁄min are respectively the maximum and minimum generalized
eigenvalue of (5.4). A smaller ‡ (‡ ¥ 1 or ⁄max ¥ ⁄min) indicates higher
spectral similarity.

The state-of-art techniques in this area employ an analogy with
e�ective resistances in circuit theory (Spielman and Srivastava, 2011).
The underpinning idea is as follows; a graph G with N vertices can
be considered as a resistive network with resistances Rmn = 1/Wmn

between the vertices m and n, which are connected by an edge (more
detail on the equivalence between a general graph and the resistive

5.2. Graph Sparsification 123

network is given in Part III). For any two vertices, m and n, that
are connected by an edge, the e�ective resistance can be calculated in
several ways: (1) Using transformations of the corresponding electrical
circuit (including the so-called star-mesh transformations); (2) Injecting
unit current into the vertex, m, and taking the same current out from
the vertex, n. The e�ective resistance is then equal to the di�erence
of potentials in the vertices m and n; and (3) Through the eigenvalue
(spectral) decomposition of the corresponding graph. The e�ective
resistance, Re�(m, n), is then obtained from (4.37) as

CT (m, n) = VVÎqm ≠ qnÎ2
2= VV

N≠1ÿ

i=1
(qi(m) ≠ qi(n))2 = VVReff (m, n),

(5.5)
where Re�(m, n) denotes the e�ective resistance between vertices m
and n (this relation will be proven in Part III), and is given by

Re�(m, n) =
N≠1ÿ

i=1
(qi(m) ≠ qi(n))2 = Îqm ≠ qnÎ2

2. (5.6)

Spectral graph sparsification can now be thought of as a process
of sampling edges from the graph, with probabilities of keeping edges
proportional to their e�ective resistances. This approach rests upon the
observation that if the e�ective resistance is small with respect to the
resistance of the edge directly connecting the vertices, m and n, then
these two vertices are well connected via other edges and the considered
direct edge can be removed without significant influence on the whole
graph. In turn, upon this edge is removed, from (5.2) we see that the
total dissipated energy in the circuit corresponding to graph G will not
change significantly, and will remain close to the energy in the electric
network corresponding to the new pruned graph.

Note that if the e�ective resistance is close to Re�(m, n) ¥ 1/Wmn,
then the other network connections are weak and the considered edge
should be kept.

Such a simplified pruning algorithm can be implemented as follows.
• For the considered graph, find the graph Laplacian, L.

• Calculate the eigenvectors, uk, and the eigenvalues, ⁄k, of the
graph Laplacian, k = 0, 1, 2, . . . , N ≠ 1.

124 Graph Sampling Strategies

• Form the commute time spectral vectors with elements, qk(n) =
uk(n)/

Ô
⁄k, for k = 1, 2, . . . , N ≠ 1.

• Find the e�ective resistances, Re�(m, n) =
q

N≠1
k=1 (qk(m)≠qk(n))2.

• For every pair of vertices, m and n, connected by an edge, use
Re�(m, n) as a measure for the probability that the considered
edge should be kept in the graph.
The e�ective conductance (inverse to the e�ective resistance)
between the vertices, m and n, is equal to

1
Re�(m, n) = Wmn + Cmn,

where Cmn = 1
Re�(m,n) ≠Wmn is the e�ective conductance between

m and n due to all other connections, except for the direct one
defined by Wmn. Its relative value, normalized by Wmn, is given by

Cmn

Wmn

= 1
WmnRe�(m, n) ≠ 1.

We can now state that the influence of indirect connections be-
tween the vertices, m and n, is significant with respect to the
existing direct connection, if

1
WmnRe�(m, n) ≠ 1 ∫ 1.

The probability of keeping the edge (m, n) becomes

Pmn = Wmn

1
Re�(m,n)

= WmnRe�(m, n).

If there are no indirect connections between m and n, then
1/Re� = Wmn and the edge (m, n) must be kept with proba-
bility Pmn = 1. In general, 1/Re� Ø Wmn holds. By increasing
the number of indirect connections, 1/Re� becomes increasingly
larger than Wmn (cf. Re� increasingly smaller than 1/Wmn), thus
indicating that the probability of keeping this edge should be
decreasing.

5.2. Graph Sparsification 125

0 1

2

3

4

56
7

0.23
1.820.74

0.970.2
4

2.0
4 0.35

1.52

0
.23

2
.30

0.26
1.91

0.24

2.10

0.
322.
46

0.51
1.660.1

4

2.8
7

0.15
3.23

0.32
2.46

0 1

2

3

4

56
7

0.23

0.74
0.2

4 0.35 0
.23

0.26 0.24

0.
32 0.51

0.150.32

)b()a(

Figure 5.1: Principle of spectral graph sparsification. (a) The graph from Figure 2.2

with the edge weights, Wmn, and the e�ective resistances, Re�(m, n), for each pair

of connected vertices. (b) The pruned graph from (a) whereby the edge (4, 7),

characterized by the minimum value of WmnRe�(m, n), is removed.

Example 36: Consider the graph from Figure 2.2. The e�ective resis-
tances are calculated using Re�(m, n) =

q
N≠1
k=1 (qk(m) ≠ qk(n))2, with

the spectral vectors calculated using the graph Laplacian eigenvectors
as qk(n) = uk(n)/

Ô
⁄k, for k = 1, 2, . . . , N ≠ 1. The values of e�ective

resistances are given in red in Figure 5.1(a). When these resistances
are multiplied by the corresponding edge weights, the lowest product
is obtained for W47Re�(4, 7) = 2.87 · 0.14 = 0.40. Therefore, this is the
candidate for an edge with the lowest probability of being kept, and the
best candidate for pruning. The worst candidate for pruning would be
W45Re�(4, 5) = 0.85. After pruning the edge (4, 7), the pruned graph,
GP , is shown in Figure 5.1(b). Another common criterion for pruning
suggests that the edge with the smallest e�ective resistance should be
pruned; this criterion would suggest to prune the edge (0, 2).

In that case, the spectral distance between the original and pruned
graphs becomes (JovanoviÊ and StaniÊ, 2012)

SD(G, GP) =
N≠1ÿ

k=0
|⁄k ≠ ⁄P

k |= 0.28.

Note that if the “worst” edge (4, 5), with the maximum value of
WmnRe�(m, n) is pruned, then the spectral distance becomes
SD(G, GP) = 1.02.

A main obstacle for using spectral sparsification is that for large
graphs it is computationally very demanding, as the estimation of edge

126 Graph Sampling Strategies

e�ective resistances requires computing the eigenvectors and eigenval-
ues of the graph Laplacian. This topic is currently under intensive
investigation.

5.2.3 Uniform Graph Sparsifier

This sparsification strategy randomly selects M edges, with replacement,
with probabilities proportional to their weights (Sadhanala et al., 2016).
The sparsified graph is then formed using the same vertices, but with
the selected edges having equal weights, that is

W Õ

mn = 1
2M

N≠1ÿ

m=0

N≠1ÿ

n=0
Wmn = W

2M
.

The so produced random graph maintains its expected energy equal
to the energy in the original graph, and for any x(n), that is

E{x
T

L
Õ
x} = x

T
Lx. (5.7)

To prove this, note that the number of times, NWmn , that an edge
between vertices m and n, with the corresponding weight Wmn, is
selected, is equal to E{NWmn} = Wmn2M/W . Then, the expected
value of the weight W Õ

mn is E{W Õ
mn} = E{NWmn

W

2M
}, which gives

E{W Õ
mn} = Wmn, and E{L

Õ} = L.

5.3 Graph Coarsening

We have so far addressed graph sparsification based on a reduction in the
number of edges, while the number of vertices remained unaltered. Note
that the number of vertices defines the size and dimensionality of the
graph, with the analysis quickly becoming computationally prohibitive
for large graphs. Graph coarsening belongs to graph down-sampling
strategies and refers to the reduction in the number of vertices of the
original graph. Graph coarsening is typically used in graph partitioning
and for the visualization of large graphs in a computationally e�cient
manner (Tremblay and Loukas, 2020). In general, it can be performed
by grouping the vertices into Nc < N groups, subsequently forming
new vertices, and finally connecting these new vertices (former groups

5.3. Graph Coarsening 127

0 1

2

3

4

56
7

0.32

0.
32

0.26

0.23

0.2
4 0.35

0.1
4

0.15

0.24

0
.23

0.74

0.51

1

02

3

45

6
7

0.32

0.
32

0.24

1.48

1.02

0
.23

0.35 + 0.23

0.1
4 + 0.1

5

0.26 + 0.24

)b()a(

Figure 5.2: Graph coarsening. (a) The original graph from Figure 2.2 with the edges

(0, 2) and (4, 5) used for vertex merging and forming “super-vertices” designated by

circles. (b) The coarsened graph with a reduced number of vertices, obtained by form-

ing two “super-vertices” 02 and 45. The resulting edge weights are obtained by

summing up all corresponding edge weights belonging to the “super-vertices”.

of vertices) with the “equivalent weights”, which represent a sum of all
weights between the groups. Groups of vertices are formed using the
matching in graphs (explained below).
Example 37: Consider the graph G from Figure 2.2. To form a coars-
ened version, Gc, of this graph, which has a reduced number of vertices,
we shall first form two “super-vertices”. For example, the “super-vertices”
02 and 45 can be formed respectively from the vertices 0 and 2 and
vertices 4 and 5, as in Figure 5.2(a). The “super-edges” connecting these
super-vertices are obtained as cumulative values for the vertex edges
forming the new “super-vertices”. The weight matrix of this coarsened
graph is of dimension Nc = 6, and is given by

Wc =

02

1

3

45

6

7

S

WWWWWWU

1.48 0.58 0.50 0.24 0 0
0.58 0 0 0.23 0 0
0.50 0 0 0 0.32 0
0.24 0.23 0 1.02 0 0.29

0 0 0.32 0 0 0.32
0 0 0 0.29 0.32 0

T

XXXXXXV
,

02 1 3 45 6 7

(5.8)

128 Graph Sampling Strategies

with the “super-vertices” exhibiting self-loops with the weights equal to
double the value of the removed edge (edge within the “super-vertex”).
In some applications, the self-loops are filtered-out (removed).

The new, reduced-dimension weight matrix, Wc, of the coarsened
graph could be alternatively obtained using the “super-vertex” indicator
matrix P, whose elements are 1 if the vertex in the original graph G
belongs to the considered “super-vertex” and zero elsewhere, that is

P =

02

1

3

45

6

7

S

WWWWWWU

1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

T

XXXXXXV
.

0 1 2 3 4 5 6 7

(5.9)

The relation between the weight matrix of the coarse graph, Wc,
and that of the original graph, W, is therefore

Wc = PWP
T ,

where W is defined in (2.4) and the resulting coarsened graphs is shown
in Figure 5.2(b).
Graph lifting (uncoarsening). Graph lifting is an inverse operation
to graph coarsening, and represents a process of obtaining a larger scale
(fine) graph from a coarsened (smaller) graph. The weight matrix, WL,
of the lifted graph is obtained from the weight matrix of the coarsened
graph, Wc, as

WL = P
+

Wc(P+)T ,

where P
+ is the pseudo-inverse of the indicator matrix, such that

PP
+ = I, where I is the identity matrix.

5.3. Graph Coarsening 129

For the considered example, the lifted weight matrix is

WL =

0

1

2

3

4

5

6

7

S

WWWWWWWWWWU

0.37 0.29 0.37 0.25 0.06 0.06 0 0
0.29 0 0.29 0 0.11 0.11 0 0
0.37 0.29 0.37 0.25 0.06 0.06 0 0
0.25 0 0.25 0 0 0 0.32 0
0.06 0.11 0.06 0 0.25 0.25 0 0.14
0.06 0.11 0.06 0 0.25 0.25 0 0.14

0 0 0 0.32 0 0 0 0.32
0 0 0 0 0.14 0.14 0.32 0

T

XXXXXXXXXXV

.

0 1 2 3 4 5 6 7

(5.10)

The same relations as for the weights hold for the corresponding
graph Laplacian of the original graph, L, graph Laplacian of the coars-
ened graph, Lc, and the graph Laplacian of the lifted graph, LL, that is

Lc = PLP
T .

LL = P
+

Lc(P+)T .

Notice that for the normalized graph Laplacian, the definition of
the indicator matrix should be slightly modified (Jin et al., 2020).

It is of particular interest to consider spectral similarity of the
original large size graph and the corresponding reduced-size graph (or a
lifted graph). If spectral similarity is preserved by graph coarsening, then
instead of operating on the large graph, G, the eigendecomposition is
first performed at a lower computational cost on the smaller dimensional
coarsened graph (Nc π N). Then, spectral analysis is performed by
lifting the graph to the original large dimensionality and refining the
results (Loukas and Vandergheynst, 2018; Tremblay and Loukas, 2020).

Various criteria for spectral similarity exist, including an element-
wise form of (5.3). We here employ as a spectral similarity metric a
simple spectral distance between the original graph, G, and the coarsened
and lifted graph of the same dimension, GL, defined by

SD(G, GL) =
N≠1ÿ

k=0
|⁄k ≠ ⁄cL

k |,

130 Graph Sampling Strategies

where ⁄k are the eigenvalues of the original graph, and ⁄cL

k
the eigen-

values of the coarsened and lifted graph. For the considered example,
the spectral distance is SD(G, GL) = 1.48.

Generalization. The process of graph coarsening may be continued
until a desired number of vertices is obtained. For example, the vertex
1 and the “super-vertex” 02 can be grouped into a new “super-vertex”
102. Then, the new edges are calculated using the indicator matrix and
the matrix Wc.

In general, the coarsening involves a sequence of graphs

G = G0 = {V, B, W} = {V0, B0, W0}
G1 = {V1, B1, W1}

...
Gc = {Vc, Bc, Wc},

whereby at every iteration, the coarsened graph, Gl+1 = {Vl+1, Bl+1,
Wl+1}, is obtained from the previous one through a weight matrix
transformation based on the corresponding indicator matrices,

Wl = PlWl≠1P
T

l ,

while the lifting is performed as Wl≠1 = P
+
l

Wl(P+
l

)T .

Matching. In forming the “super-vertices” for graph coarsening, the
notion of matching is commonly used.

Definition: A matching in a graph is a set of edges such that no vertex
belongs to more than one edge.

For example, the edges (0, 2) and (4, 5) form a matching {02, 45} in
the graph from Example 37 given in Figure 5.2, while the edges (0, 2)
and (2, 3) are not a matching, since they are both connected to vertex 2.

Definition: A matching is maximal if no more edges can be added to
this matching.

For example, for the graph from Figure 5.2, the maximal matching
would be the set of edges {02, 45, 36}, as no more edges can be added
to this matching. However, this is not the largest possible number of

5.3. Graph Coarsening 131

edges in a matching for this graph, and we can define a matching with a
larger number of edges, like for example, the matching {02, 14, 57, 36}.

Definition: The maximum matching in a graph is a set of edges such
that no vertex belongs to more than one edge, and another matching
with a larger number of edges does not exist.
Example 38: Consider the graph, G, from Figure 2.2. In forming
a coarsened version, G1, of this graph we will create “super-vertices”
using the maximal matching {02, 45, 36}, shown in Figure 5.3(a). The
coarsened version of this graph, using the maximal matching, is given in
Figure 5.3(b); this graph is coarsened again, by forming “super-vertices”
102 and 367, as in Figure 5.3(c); the final form is obtained with only
two “super-vertices”, as shown in Figure 5.3(d).

Notice that the edge weight in the final two-vertex graph is equal
to the original graph cut for E = {9, 1, 2, 3, 6, 7} and H = {4, 5}, that
is, Cut(E , H) = 0.23 + 0.24 + 0.14 + 0.15 = 0.76.

This example can be repeated by using the maximum matching
{02, 14, 57, 36} in the first step.

Maximal matching strategies for graph coarsening include:

• Random matching, when a vertex n and one of its edges (m, n) are
selected randomly. Next, another neighboring (or any other) vertex
is randomly selected, together with one of its edges. The process
is continued until no new edge can be added to this matching.
The “super-vertices” are formed for each of the selected edges.
After one coarsening level, the process can be repeated, until the
desired number of vertices in a coarsened graph is reached, or a
given number of levels is used.

• Heavy edge matching (HEM) algorithm is similar to the previous
one, with the only di�erence in that once a vertex is randomly
selected, then its edge with the maximum weight is used for the
matching and “super-vertex” forming. In this way, the edges with
the strongest weights are excluded, since they would probably not
participate in the minimum cut, so that both the original and the
coarsened graph share the same minimum cut.

132 Graph Sampling Strategies

0 1

2

3

4

56
7

0.26

0.23

0.2
4 0.35

0.1
4

0.15

0.24

0
.23

0.32

0.74

0.51

0.
32

1

02

36

45

7

0.24

0.32

1.48

1.02

0.64 0
.23

0.35 + 0.23

0.1
4 + 0.1

5

0.26 + 0.24

102

45

367

0.24 + 0.23

2.64

1.02

1.28

0.1
4 + 0.1

5

0.
26

+
0.

24

102367

45

4.92

1.02

0.76

Figure 5.3: Principle of maximal matching for graph coarsening. (a) The original

graph from Figure 2.2 with (b)–(d) its coarsened graphs obtained in three steps

using the maximal matching, until a two-vertex graph is obtained.

• Sorted Heavy edge matching uses the vertices with the highest
degree first, in defining the matching. Vertices with higher degrees
are also preferred in the subsequent steps.

• Edge weighted random matching chooses an edge with a probability,
Pmn, proportional to its weight, that is

Pmn = Wmn

1
2

q
N≠1
m=0

q
N≠1
n=0 Wmn

.

The edges with a higher weight are thus more likely to be selected
in each step of the maximal matching procedure.

5.4. Kron Reduction of Graphs 133

5.4 Kron Reduction of Graphs

A reduction of an electrical network via a Schur complement of the
associated conductance matrix is known as the Kron reduction, due
to the seminal work of Gabriel Kron. It is based on separating the
vertices into two groups: active vertices and inner vertices. The inner
vertices can be eliminated from the graph without changing the electric
network conditions; this is achieved via equivalent transformations, such
as the “star-mesh” transformations (Dorfler and Bullo, 2012). The Kron
reduction of graphs is also relevant in other physical domains, including
computing applications and the reduction of Markov chains. Since this
approach requires quite specific physical interpretation of the active and
inner vertices, it will be discussed in detail in Part III of this monograph.

6

Conclusion

Although within the graph data analytics paradigm, graphs have been
present in various forms for centuries, the advantages of the graph
framework for data analytics, as opposed to the optimization of the
graphs themselves, but for recently has received little attention. In
order to provide a comprehensive and Data Science friendly introduc-
tion to graph data analytics, an overview of graphs from this specific
practitioner-friendly signal processing point of view is a prerequisite.

In this part of our tutorial, we have introduced graphs as irregular
signal domains, together with their properties that are relevant for
data analytics applications which rest upon the estimation of signals
on graphs. This has been achieved in a systematic and example rich
way and by highlighting links with classic matrix analysis and linear
algebra. Spectral analysis of graphs has been elaborated upon in de-
tail, as this is the main underpinning methodology for e�cient data
analysis, the ultimate goal in Data Science. Both the adjacency matrix
and the Laplacian matrix have been used in this context, along with
their spectral decompositions. Finally, we have highlighted important
aspects of graph segmentation, Laplacian eigenmaps, graph cuts, graph
sparsification and coarsening, and have emphasized their role as the

134

135

foundation for advances in Data Analytics and unsupervised learning
on graphs.

Part II of this monograph will address theory and methods of
processing data on graphs, while Part III is devoted to unsupervised
graph topology learning, from the observed data, and Machine learning
on graphs.

Appendices

A

Power Method for Eigenanalysis

Computational complexity of the eigenvalue and eigenvector calculation
for a symmetric matrix is of the order of O(N3), which is computation-
ally prohibitive for very large graphs, especially when only a few the
smoothest eigenvectors are needed, like in spectral graph clustering. To
mitigate this computational bottleneck, an e�cient iterative approach,
called the Power Method, may be employed.

Consider the normalized weight matrix,

WN = D
≠1/2

WD
≠1/2,

and assume that the eigenvalues of WN are |⁄0|> |⁄1|> · · · > |⁄M≠1|,
with the corresponding eigenvectors, u1, u2, . . . , uM≠1. Consider also
an arbitrary linear combination of the eigenvectors, un, through the
coe�cients –n,

x = –1u1 + –2u2 + · · · + –M≠1uM≠1.

A further multiplication of the vector x by the normalized weight
matrix, WN , results in

WN x = –1WN u1 + –2WN u2 + · · · + –M≠1WN uM≠1

= –1⁄1u1 + –2⁄2u2 + · · · + –M≠1⁄M≠1uM≠1.

137

138 Power Method for Eigenanalysis

A repetition of this multiplication k times yields

W
k

N x = –1⁄k

1u1 + –2⁄k

2u2 + · · · + –M≠1⁄k

M≠1uM≠1

= –1⁄k

1

3
u1 + –2

⁄k
2

⁄k
1

u2 + · · · + –M≠1
⁄k

M≠1
⁄k

1
uM≠1

4

u –1⁄k

1u1.

In other words, we have just calculated the first eigenvector of WN ,
given by

u1 = W
k

N x/ÎW
k

N xÎ2

which are achieved through only matrix products of WN and x (Tammen
et al., 2018; Trevisan, 2013). The convergence of this procedure depends
on the eigenvalue ratio ⁄2/⁄1, and requires that –1 is not close to 0.
Note that WN is a highly sparse matrix, which significantly reduces
the calculation complexity.

After the eigenvector u1 is obtained, the corresponding eigenvalue
can be calculated as its smoothing index, ⁄1 = u

T
1 WN u1.

After calculating u1 and ⁄1, we can remove their contribution from
the normalized weight matrix, WN , through deflation, as WN Ω
WN ≠⁄1u1u

T
1 , and then continue to calculate the next largest eigenvalue

and its eigenvector, ⁄2 and u2. This procedure can be repeated iteratively
until the desired number of eigenvectors is found.

The relation of the normalized weight matrix, WN , with the nor-
malized graph Laplacian, LN , is given by

LN = I ≠ WN ,

while the relation between the eigenvalues and eigenvectors of L and
WN follows from WN = U

T
�U, to yield

LN = I ≠ U
T

�U = U
T (I ≠ �)U.

The eigenvalues of LN and WN are therefore related as ⁄(L)
n = 1 ≠ ⁄n,

and share the same corresponding eigenvectors, un, of the normalized
graph Laplacian and the normalized weight matrix. This means that
⁄1 = 1 corresponds to ⁄(L)

0 = 0 and that the second largest eigenvalue
of WN produces the Fiedler vector of the normalized Laplacian.

139

Note that the second largest eigenvalue of WN is not necessarily ⁄2
since the eigenvalues of WN can be negative.
Example 39: The weight matrix W from (2.4) is normalized by the
degree matrix from (2.6) to arrive at WN = D

≠1/2
WD

≠1/2. The power
algorithm is then used to calculate the four largest eigenvalues and
the corresponding eigenvectors of WN in 200 iterations, to give ⁄n œ
{1.0000, ≠0.7241, ≠0.6795, 0.6679}. These are very close to the four ex-
act largest eigenvalues of WN , ⁄n œ {1.0000, ≠0.7241, ≠0.6796, 0.6677}.
Note that the Fiedler vector of the normalized graph Laplacian is
associated with ⁄4 = 0.6679 as it corresponds to the second largest
eigenvalue of WN , when the eigenvalue signs are accounted for. Even
when calculated using the approximative power method, the Fiedler
vector is close to its exact value, as shown in Figure 4.8(d), with the
maximum relative error of its elements being 0.016.

Notice that it is possible to calculate the Fiedler vector of a graph
Laplacian even without using the weight matrix. Consider a graph
whose eigenvalues of the Laplacian are ⁄0 = 0 > ⁄1 > ⁄2 > · · · >
⁄N≠1, where ⁄1 corresponds to the largest value of the sequence ⁄0 =
0, 1/⁄1, 1/⁄2, . . . , 1/⁄N≠1. These are also the eigenvalues of the pseudo-
inverse of the graph Laplacian, L

+ = pinv(L). Now, since the pseudo-
inverse of the graph Laplacian, L

+, and the graph Laplacian, L, have
the same eigenvectors, we may apply the power method to the pseudo-
inverse of the graph Laplacian, L

+, and the eigenvector corresponding
to the largest eigenvalue is the Fiedler vector.

140 Power Method for Eigenanalysis

Algorithm 2. Power Method for eigenanalysis.

Input:

• Normalized weight matrix WN

• Number of iterations, It

• Number of the desired largest eigenvectors, M

1: for m = 1 to M do
2: um œ {≠1, 1}M , drawn randomly (uniformly)
3: for i = 1 to It do
4: um Ω WN um/||WN um||2
5: ⁄m Ω u

H
mWN um

6: end do
7: WN Ω WN ≠ ⁄mumu

H
m

8: end do
Output:

• Largest M eigenvalues |⁄0|> |⁄1|> · · · > |⁄M≠1| and the cor-
responding eigenvectors u1, . . . , uM≠1

• Fiedler vector of the normalized graph Laplacian is the eigen-
vector un1 of the second largest eigenvalue, ⁄n1 , ⁄0 = 1 >
⁄n1 > · · · > ⁄nM≠1 .

B

Algorithm for Graph Laplacian Eigenmaps

The algorithm for the Laplacian eigenmap and spectral clustering based
on the eigenvectors of the graph Laplacian, the generalized eigenvectors
of the graph Laplacian, and the eigenvectors of the normalized Laplacian,
is given in the pseudo-code form in Algorithm 3.

Comments on the Algorithm: For the normalized Laplacian,
Line 2 should be replaced by L Ω I ≠ D

≠1/2
WD

≠1/2, while for the
generalized eigenvectors Line 3 should be replaced by [U, �] Ω eig(L, D),
see also Table 4.1. The indicator values of vertex positions in the
output graph are: P = 0, for the original vertex space, and P = 1,
for the spectral vertex space. The indicator of mapping is: Map = 1,
for the commute time mapping (matrix �̄ is obtained from �, by
omitting the trivial element ⁄0 = 0), and Map = 2, for the di�usion
mapping (in this case the generalized eigenvectors must be used in
Line 3, [U, �] Ω eig(L, D) and the di�usion step t should be given as
an additional input parameter), otherwise Map = 0. The indicator of the
eigenvectors normalization is: S = 0, for the case without normalization,
S = 1, for two-norm normalization, S = 2, for the case of binary
normalization, S = 3, for binary normalization with the mean as a
reference, and S = 4, for marginal normalization. The indicator of

141

142 Algorithm for Graph Laplacian Eigenmaps

Algorithm 3. Graph Laplacian Based Eigenmaps.

Input:

• Vertex V = {0, 1, . . . , N ≠ 1} positions, rows of X

• Weight matrix W, with elements Wmn

• Laplacian eigenmap dimensionality, M

• Position, mapping, normalization, and coloring indicators
P, Map, S, C

1: D Ω diag(Dnn =
q

N≠1
m=0 Wmn, n = 0, 1, . . . , N ≠ 1)

2: L Ω D ≠ W

3: [U, �] Ω eig(L)
4: uk(n) Ω U(n, k), for k = 1, . . . , M , n = 0, 1, . . . , N ≠1.
5: M Ω maxn(U(n, 1:L)), m Ω minn(U(n, 1:L))
6: qn Ω [u1(n), u2(n), . . . , uL(n)], for all n
7: If Map=1, qn Ω qn�̄

≠1/2, end

8: If Map=2, qn Ω qn(I ≠ �̄)t, end

9: yn Ω

Y
______]

______[

qn, for S = 0,

qn/ÎqnÎ2, for S = 1,

sign(qn), for S = 2,

sign(qn ≠ (M + m)/2), for S = 3,

(qn ≠ m)./(M ≠ m), for S = 4
10: Y Ω yn, as the rows of Y

11: Z Ω
I

X, for P = 0,

Y, for P = 1

12: ColorMap Ω
I

Constant, for C = 0,

(Y + 1)/2, for C = 1
13: GraphPlot(W, Z, ColorMap)
14: Cluster the vertices according to Y and refine using the k-means

algorithm (Remark 30) or the ratio cut recalculation algorithm
(Remark 33).

Output:

• New graph
• Subsets of vertex clusters

vertex coloring is: C = 0, for the same color for all vertices is used, and
C = 1, when the spectral vector defines the vertex colors.

C

Other Graph Laplacian Forms

We here review some other forms of the graph Laplacian, including
the Laplacian for directed graphs, graph Laplacian for the graphs with
negative weights, and graph p-Laplacian.

C.1 Graph Laplacian for Directed Graphs

Directed graphs are typically analyzed based on the adjacency matrix
and its spectrum. It is important to notice that the di�erence between
a constant vector x and a vector Ax does not result in a zero-valued
vector; this is because, in general, the solution to the eigenvalue relation,
Au = ⁄u, is not a vector with constant elements. The value Ax and the
di�erence x ≠ Ax/⁄max will be used in Part II to define the shift on a
graph. In order to introduce an operator on a directed graph which will
restore the property of zero-valued total-variation for constant vectors,
the Laplacian for directed graphs was introduced in Singh et al. (2016)
and further analyzed in Sardellitti et al. (2017).

Since each edge in a directed graph connects one outgoing and one
incoming vertex, in order to avoid ambiguity, the edges will be assigned

143

144 Other Graph Laplacian Forms

to the incoming vertex. The in-degree is then calculated as

Din(m, m) =
N≠1ÿ

n=0
Wmn,

with the Laplacian of a directed graph defined by

L = D
in ≠ W.

In this way, the sum of each row in the Laplacian of a directed graph is
zero-valued, meaning that any constant vector is also an eigenvector,
with the corresponding ⁄ = 0. Spectral analysis is then performed using
the eigendecomposition of L, and since in this case L is not symmetric,
the eigenvalues may be complex-valued.

The total variation of a vector, x, for a shift operator, S, is defined by

Îx ≠ SxÎ1,

using the L1 norm or
Îx ≠ SxÎ2,

using the L2 norm. If the operator S is defined as S = I ≠ L, where I is
the identity matrix, then

Îx ≠ SxÎ2
2= ÎLxÎ2

2= (Lx)T
Lx = x

T
L

T
Lx.

If the vector x is an eigenvector, x = uk, then

Îuk ≠ SukÎ2
2= u

T

k L
T

Luk = |⁄k|2,

which indicates that the smoothness of an eigenvector is proportional
to |⁄k|2. Therefore, in analogy to frequency in classical signal analysis
it can be used as an indicator of the variation of an eigenvector.
Example 40: For the directed graph from Figure 2.1, the adjacency
matrix is given by (2.2) and the in-degree matrix by

D
in =

S

WWWWWWWWWWWWWU

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2

T

XXXXXXXXXXXXXV

, (C.1)

C.2. Signed Graphs and Signed Graph Laplacian 145

with the corresponding graph Laplacian

L =

S

WWWWWWWWWWWWWU

1 ≠1 0 0 0 0 0 0
0 1 ≠1 0 0 0 0 0

≠1 0 4 ≠1 ≠1 0 0 ≠1
≠1 0 0 1 0 0 0 0

0 ≠1 ≠1 0 3 ≠1 0 0
0 0 0 0 0 1 0 ≠1
0 0 0 ≠1 0 0 2 ≠1
0 0 ≠1 0 0 0 ≠1 2

T

XXXXXXXXXXXXXV

. (C.2)

Remark 37: Graph Laplacian of an undirected graph is a special case
of the graph Laplacian of a directed graph, with each undirected edge
being a combination of an incoming and an outgoing edge of the same
weight.

C.2 Signed Graphs and Signed Graph Laplacian

Graphs for which edge weights may assume both positive and negative
values are called signed graphs, and were introduced in Harary (1953),
where the authors motivated graphs with weights {1, 0, ≠1} through
the modeling of social relations such as like, indi�erence, and dislike.

The vertex degree in a signed graph is defined as a sum of the
absolute values of its weights (Hou, 2005), that is

Da(m, m) =
N≠1ÿ

n=0
|Wmn|=

N≠1ÿ

n=0
Wmnsign(Wmn).

The corresponding signed graph Laplacian then becomes

La = Da ≠ W,

with the quadratic form of the Laplacian of a signed graph given by

x
T

Lax = 1
2

N≠1ÿ

m=0

N≠1ÿ

m=0
|Wmn|(x(m) ≠ sign(Wmn)x(n)).

Notice that the signed graph Laplacian is positive-semidefinite.

146 Other Graph Laplacian Forms

Cut of a signed graph. The cut of a signed graph represents a
sum of all absolute weights that correspond to the edges which connect
the vertices between the subsets, E and H, that is

Cut(E , H) =
ÿ

mœE

nœH

|Wmn|.

All tools for the analysis of standard graphs can also be applied to
signed graphs.

Notice that since the signed graph Laplacian may be positive definite,
it then follows that a constant vector (with a zero eigenvalue) may
not represent an eigenvector of the signed Laplacian. The concept of
balanced graphs is introduced to deal with this issue, whereby a graph
is said to be balanced if there exists a partition of its vertices into two
disjoint subsets, E and H, such that all positive edges reside within
either E or H, while all negative edges connect the vertices between E
or H. Then, the signed Laplacian, La, of a connected signed graph is
positive definite i� the graph is not balanced (Harary, 1953).

C.3 Graph p-Laplacian

A generalization of the graph Laplacian, called the p-Laplacian, and
denoted by Lp, is obtained from the generalization of the quadratic
Laplacian form as (Bühler and Hein, 2009)

x
T

Lpx = 1
2

N≠1ÿ

m=0

N≠1ÿ

n=0
Wmn|x(n) ≠ x(m)|p. (C.3)

Obviously, for p = 2, the quadratic form of standard graph Laplacian,
L, is obtained. The elements of Lpx, denoted by Lp

x(n), that satisfy
(C.3) are defined as

Lp

x(n) =
N≠1ÿ

m=0
Wmn|x(n) ≠ x(m)|p≠1sign(x(n) ≠ x(m))

and it can be straightforwardly verified that the inner product of x(n)
and Lp

x(n) produces (C.3).

C.3. Graph p-Laplacian 147

According to (4.12), the ratio graph cut, CutN(E , H), can be ob-
tained by solving the minimization problem

CutN(E , H) = min
EµV

I
x

T
Lx

xT x

J

(C.4)

with x = u1. Therefore, the eigenvector u1 can be considered as a
(non-constant) solution to the minimization problem in (C.4).

Similarly, the minimization problem for the p-Laplacian becomes

min
EµV

I
x

T
Lpx

mincÎx ≠ cÎp
p

J

. (C.5)

with the solution in the form of the first eigenvector, u
(p)
1 , comprising

the elements, v(p)
1 (n), of the p-Laplacian (Bühler and Hein, 2009)

Lp

v
(p)
1

(n) = ⁄(p)
1 |v(p)

1 (n)|p≠1sign(v(p)
1 (n)).

Notice that for x = v
(p)
1 the minimum value of (C.5) is equal to the

eigenvalue, ⁄(p)
1 .

The Cheeger ratio cut, „(V), with the p-Laplacian exhibits the
following general bounds

3 2
maxi di

4
p≠13

„(V)
p

4
p

Æ ⁄(p)
1 Æ 2p≠1„(V) (C.6)

„(V)
maxi di

Æ „ú(V)
maxi di

Æ p
3

„(V)
maxi di

41/p

, (C.7)

where di is the degree of vertex i and „ú(V) is the minimum Cheeger’s
ratio cut obtained by an optimal thresholding of the eigenvector u1
with a threshold t, that is, a vertex n belongs to the subset of vertices
E if u1(n) > t.

The above inequality implies that the bounds are tight for p æ 1,
which indicates that the 1-Laplacian based cut is equivalent to the
Cheeger ratio cut; this may be used to improve the cut performance
in practical applications. Still, the main problem remains in the com-
putational issues related to calculation of the p-Laplacian eigenvectors,
especially for p æ 1 (Bühler and Hein, 2009; Chang, 2016; Chang et al.,
2016).

Acknowledgments

We wish to express our sincere gratitude to Yao Lei Xu, Kriton Konstan-
tinidis, Shota Saito, and Giacomo Kahn whose thorough proofreading
and deep insight have been of great help at various stages of manuscript
preparation.

148

References

Afrati, F. and A. G. Constantinides (1978). “The use of graph theory in
binary block code construction”. In: Proceedings of the International
Conference on Digital Signal Processing. 228–233.

Alon, N. (1986). “Eigenvalues and expanders”. Combinatorica. 6(2):
83–96.

Bapat, R. (1996). “The Laplacian matrix of a graph”. Mathematics
Student-India. 65(1): 214–223.

Barik, S., R. B. Bapat, and S. Pati (2015). “On the Laplacian spectra
of product graphs”. Applicable Analysis and Discrete Mathematics.
9(1): 39–58.

Belkin, M. and P. Niyogi (2003). “Laplacian eigenmaps for dimensional-
ity reduction and data representation”. Neural Computation. 15(6):
1373–1396.

Brouwer, A. E. and W. H. Haemers (2012). Spectra of Graphs. New
York: Springer-Verlag.

Bühler, T. and M. Hein (2009). “Spectral clustering based on the graph
p-Laplacian”. In: Proceedings of the 26th ACM Annual International
Conference on Machine Learning. 81–88.

Bunse-Gerstner, A. and W. B. Gragg (1988). “Singular value decompo-
sitions of complex symmetric matrices”. Journal of Computational
and Applied Mathematics. 21(1): 41–54.

149

150 References

Chandra, A. K., P. Raghavan, W. L. Ruzzo, R. Smolensky, and P. Tiwari
(1996). “The electrical resistance of a graph captures its commute
and cover times”. Computational Complexity. 6(4): 312–340.

Chang, K. C. (2016). “Spectrum of the 1-Laplacian and Cheeger’s
constant on graphs”. J. Graph Theory. 81(2): 167–207.

Chang, K., S. Shao, and D. Zhang (2016). “The 1-Laplacian Cheeger
cut: Theory and algorithms”. arXiv preprint arXiv:1603.01687.

Chen, S., A. Sandryhaila, J. M. Moura, and J. Kova�eviÊ (2014). “Signal
denoising on graphs via graph filtering”. In: Proc. 2014 IEEE Global
Conference on Signal and Information Processing (GlobalSIP). 872–
876.

Christofides, N. (1975). Graph Theory: An Algorithmic Approach. Aca-
demic Press.

Chung, F. (1997). Spectral Graph Theory. Providence, RI: AMS.
Chung, F. (2005). “Laplacians and the Cheeger inequality for directed

graphs”. Annals of Combinatorics. 9(1): 1–19.
Chung, F. (2007). “Four proofs for the Cheeger inequality and graph

partition algorithms”. In: Proceedings of ICCM. Vol. 2. 378.
Chung, F. R. and R. P. Langlands (1996). “A combinatorial Laplacian

with vertex weights”. Journal of Combinatorial Theory, Series A.
75(2): 316–327.

Coifman, R. R. and S. Lafon (2006). “Di�usion maps”. Applied and
Computational Harmonic Analysis. 21(1): 5–30.

CvetkoviÊ, D. M. and M. Doob (1985). “Developments in the theory of
graph spectra”. Linear and Multilinear Algebra. 18(2): 153–181.

CvetkoviÊ, D. M. and I. Gutman (2011). Selected Topics on Applications
of Graph Spectra. Matemati�ki Institut SANU (Serbian Academy of
Scences and Arts).

CvetkoviÊ, D. M., M. Doob, and H. Sachs (1980). Spectra of Graphs:
Theory and Application. Vol. 87. Academic Press.

Dhillon, I. S., Y. Guan, and B. Kulis (2004). “Kernel k-means: Spectral
clustering and normalized cuts”. In: Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining. 551–556.

References 151

Dong, X., P. Frossard, P. Vandergheynst, and N. Nefedov (2012). “Clus-
tering with multi-layer graphs: A spectral perspective”. IEEE Trans-
actions on Signal Processing. 60(11): 5820–5831.

Dorfler, F. and F. Bullo (2012). “Kron reduction of graphs with appli-
cations to electrical networks”. IEEE Transactions on Circuits and
Systems I: Regular Papers. 60(1): 150–163.

Duncan, A. (2004). “Powers of the adjacency matrix and the walk
matrix”. The Collection: 1–11.

Ekambaram, V. N. (2014). Graph-Structured Data Viewed Through a
Fourier Lens. Berkeley: University of California.

Fiedler, M. (1973). “Algebraic connectivity of graphs”. Czechoslovak
Mathematical Journal. 23(2): 298–305.

Fujiwara, K. (1995). “Eigenvalues of Laplacians on a closed Riemannian
manifold and its nets”. Proceedings of the American Mathematical
Society. 123(8): 2585–2594.

Gavili, A. and X.-P. Zhang (2017). “On the shift operator, graph fre-
quency, and optimal filtering in graph signal processing”. IEEE
Transactions on Signal Processing. 65(23): 6303–6318.

Grady, L. J. and J. R. Polimeni (2010). Discrete Calculus: Applied
Analysis on Graphs for Computational Science. Springer Science &
Business Media.

Grebenkov, D. S. and B.-T. Nguyen (2013). “Geometrical structure of
Laplacian eigenfunctions”. SIAM Review. 55(4): 601–667.

Hagen, L. and A. B. Kahng (1992). “New spectral methods for ratio cut
partitioning and clustering”. IEEE Trans. Computer-Aided Design
of Int. Circuits and Systems. 11(9): 1074–1085.

Hamon, R., P. Borgnat, P. Flandrin, and C. Robardet (2016a). “Extrac-
tion of temporal network structures from graph-based signals”. IEEE
Transactions on Signal and Information Processing over Networks.
2(2): 215–226.

Hamon, R., P. Borgnat, P. Flandrin, and C. Robardet (2016b). “Rela-
belling vertices according to the network structure by minimizing
the cyclic bandwidth sum”. Journal of Complex Networks. 4(4):
534–560.

Harary, F. (1953). “On the notion of balance of a signed graph.” The
Michigan Mathematical Journal. 2(2): 143–146.

152 References

Horaud, R. (2009). “A short tutorial on graph Laplacians, Lapla-
cian embedding, and spectral clustering”. [Online], Available: url:
http :// csustan . csustan . edu / ~tom / Lecture-Notes / Clustering /
GraphLaplacian-tutorial.pdf.

Hou, Y. P. (2005). “Bounds for the least Laplacian eigenvalue of a
signed graph”. Acta Mathematica Sinica. 21(4): 955–960.

Imre, M., J. Tao, Y. Wang, Z. Zhao, Z. Feng, and C. Wang (2020).
“Spectrum-preserving sparsification for visualization of big graphs”.
Computers & Graphics. 87: 89–102.

Jain, A. K. (2010). “Data clustering: 50 years beyond K-means”. Pattern
Recognition Letters. 31(8): 651–666.

Jin, Y., A. Loukas, and J. JaJa (2020). “Graph coarsening with preserved
spectral properties”. In: Proc. International Conference on Artificial
Intelligence and Statistics. 4452–4462.

Jones, O. (2013). Spectra of Simple Graphs. Whitman College. [Online].
Available: url: https://www.whitman.edu/Documents/Academics/
Mathematics/Jones.pdf.

Jordan, M. I. (1998). Learning in Graphical Models. Vol. 89. Springer
Science & Business Media.

Jordan, M. I. (2004). “Graphical models”. Statistical Science. 19(1):
140–155.

JovanoviÊ, I. and Z. StaniÊ (2012). “Spectral distances of graphs”. Linear
Algebra and Its Applications. 436(5): 1425–1435.

Khuller, S. (1998). “Approximation algorithms for finding highly con-
nected subgraphs”. Tech. Rep.

Kleinberg, J. and E. Tardos (2006). Algorithm Design. Pearson Educa-
tion India.

Krim, H. and A. B. Hamza (2015). Geometric Methods in Signal and
Image Analysis. Cambridge University Press.

Kron, G. (1963). Diakoptics: The Piecewise Solution of Large-Scale
Systems. Vol. 2. MacDonald.

Leskovec, J. and C. Faloutsos (2006). “Sampling from large graphs”. In:
Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 631–636.

Loukas, A. and P. Vandergheynst (2018). “Spectrally approximating
large graphs with smaller graphs”. arXiv preprint arXiv:1802.07510.

References 153

Lu, H., Z. Fu, and X. Shu (2014). “Non-negative and sparse spectral
clustering”. Pattern Recognition. 47(1): 418–426.

Maheswari, S. U. and B. Maheswari (2016). “Some properties of Carte-
sian product graphs of Cayley graphs with arithmetic graphs”.
International Journal of Computer Applications. 138(3): 26–29.

Malik, J., S. Belongie, T. Leung, and J. Shi (2001). “Contour and
texture analysis for image segmentation”. International Journal of
Computer Vision. 43(1): 7–27.

Marques, A., A. Ribeiro, and S. Segarra (2017). “Graph signal processing:
Fundamentals and applications to di�usion processes”. In: IEEE
Int. Conf. on Accoustic, Speech and Signal Processing (ICASSP),
Tutorial.

Masoumi, M. and A. B. Hamza (2017). “Spectral shape classification:
A deep learning approach”. Journal of Visual Communication and
Image Representation. 43: 198–211.

Masoumi, M., C. Li, and A. B. Hamza (2016). “A spectral graph wavelet
approach for nonrigid 3D shape retrieval”. Pattern Recognition
Letters. 83: 339–348.

McInnes, L., J. Healy, N. Saul, and L. Großberger (2018). “UMAP:
Uniform manifold approximation and projection”. Journal of Open
Source Software. 3(29): 861. doi: 10.21105/joss.00861.

Mejia, D., O. Ruiz-Salguero, and C. A. Cadavid (2017). “Spectral-based
mesh segmentation”. International Journal on Interactive Design
and Manufacturing (IJIDeM). 11(3): 503–514.

Mijalkov, M., E. Kakaei, J. B. Pereira, E. Westman, and G. Volpe
(2017). “BRAPH: A graph theory software for the analysis of brain
connectivity”. PLOS ONE. 12(8): e0178798.

Mohar, B. (1989). “Isoperimetric numbers of graphs”. Journal of Com-
binatorial Theory, Series B. 47(3): 274–291.

Mordeson, J. N. and P. S. Nair (2012). Fuzzy Graphs and Fuzzy Hyper-
graphs. Vol. 46. Physica.

Morris, O., M. J. de Lee, and A. Constantinides (1986). “Graph theory
for image analysis: An approach based on the shortest spanning tree”.
IEE Proceedings F (Communications, Radar and Signal Processing).
133(2): 146–152.

154 References

Moura, J. M. (2018). “Graph signal processing”. In: Cooperative and
Graph Signal Processing. Ed. by P. Djuric and C. Richard. Elsevier.
239–259.

Ng, A. Y., M. I. Jordan, and Y. Weiss (2002). “On spectral clustering:
Analysis and an algorithm”. In: Proc. Advances in Neural Informa-
tion Processing Systems. 849–856.

O’Rourke, S., V. Vu, and K. Wang (2016). “Eigenvectors of random
matrices: A survey”. Journal of Combinatorial Theory, Series A.
144: 361–442.

Perona, P. and W. Freeman (1998). “A factorization approach to group-
ing”. In: Proc. European Conference on Computer Vision. Springer.
655–670.

Qiu, H. and E. R. Hancock (2007). “Clustering and embedding us-
ing commute times”. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 29(11): 1873–1890.

Ray, S. S. (2012). Graph Theory with Algorithms and Its Applications:
In Applied Science and Technology. Springer Science & Business
Media.

Rubinov, M. and O. Sporns (2010). “Complex network measures of
brain connectivity: Uses and interpretations”. NeuroImage. 52(3):
1059–1069. Computational Models of the Brain.

Sadhanala, V., Y.-X. Wang, and R. Tibshirani (2016). “Graph sparsifica-
tion approaches for Laplacian smoothing”. In: Artificial Intelligence
and Statistics. 1250–1259.

Saito, S., D. P. Mandic, and H. Suzuki (2018). “Hypergraph p-Laplacian:
A di�erential geometry view”. In: Proc. of the Thirty-Second AAAI
Conference on Artificial Intelligence. 3984–3991.

Sandryhaila, A. and J. M. Moura (2013). “Discrete signal processing on
graphs”. IEEE Transactions on Signal Processing. 61(7): 1644–1656.

Sandryhaila, A. and J. M. Moura (2014a). “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure”. IEEE Signal Processing Magazine.
31(5): 80–90.

Sandryhaila, A. and J. M. Moura (2014b). “Discrete signal process-
ing on graphs: Frequency analysis”. IEEE Transactions on Signal
Processing. 62(12): 3042–3054.

References 155

Sardellitti, S., S. Barbarossa, and P. Di Lorenzo (2017). “On the graph
Fourier transform for directed graphs”. IEEE Journal of Selected
Topics in Signal Processing. 11(6): 796–811.

Schae�er, S. E. (2007). “Graph clustering”. Computer Science Review.
1(1): 27–64.

Scott, G. L. and H. C. Longuet-Higgins (1990). “Feature grouping by
relocalisation of eigenvectors of the proximity matrix.” In: Proc. of
the British Machine Vision Conference (BMVC). 1–6.

Shi, J. and J. Malik (2000). “Normalized cuts and image segmentation”.
Departmental Papers (CIS): 107.

Shuman, D. I., S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst (2013). “The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks and
other irregular domains”. IEEE Signal Processing Magazine. 30(3):
83–98.

Singh, R., A. Chakraborty, and B. Manoj (2016). “Graph Fourier
transform based on directed Laplacian”. In: Proc. of the IEEE 2016
International Conference on Signal Processing and Communications
(SPCOM). 1–5.

Spielman, D. A. and N. Srivastava (2011). “Graph sparsification by
e�ective resistances”. SIAM Journal on Computing. 40(6): 1913–
1926.

Spielman, D. A. and S.-H. Teng (2007). “Spectral partitioning works:
Planar graphs and finite element meshes”. Linear Algebra and Its
Applications. 421(2–3): 284–305.

StankoviÊ, L., D. Mandic, M. Dakovic, I. Kisil, E. Sejdic, and A. G.
Constantinides (2019). “Understanding the basis of graph signal
processing via an intuitive example-driven approach”. IEEE Signal
Processing Magazine. 36(6): 135–145.

StankoviÊ, L., M. DakoviÊ, and E. SejdiÊ (2017a). “Vertex-frequency
analysis: A way to localize graph spectral components [Lecture
Notes]”. IEEE Signal Processing Magazine. 34(4): 176–182.

StankoviÊ, L., M. DakoviÊ, and E. SejdiÊ (2019). “Vertex-frequency en-
ergy distributions”. In: Vertex-Frequency Analysis of Graph Signals.
Ed. by L. StankoviÊ and E. SejdiÊ. Springer. 377–415.

156 References

StankoviÊ, L., E. SejdiÊ, and M. DakoviÊ (2017b). “Vertex-frequency
energy distributions”. IEEE Signal Processing Letters. 25(3): 358–
362.

StankoviÊ, L., E. SejdiÊ, and M. DakoviÊ (2018). “Reduced interference
vertex-frequency distributions”. IEEE Signal Processing Letters.
25(9): 1393–1397.

Stoer, M. and F. Wagner (1997). “A simple min-cut algorithm”. Journal
of the ACM (JACM). 44(4): 585–591.

Tammen, M., I. Kodrasi, and S. Doclo (2018). “Complexity reduction
of eigenvalue decomposition-based di�use power spectral density
estimators using the power method”. In: Proc. of the IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). 451–455.

Tremblay, N. and A. Loukas (2020). “Approximating spectral clustering
via sampling: A review”. In: Sampling Techniques for Supervised or
Unsupervised Tasks. Springer. 129–183.

Trevisan, L. (2013). “Lecture notes on expansion, sparsest cut, and
spectral graph theory”. [Online], Available: url: https://people.eecs.
berkeley.edu/~luca/books/expanders.pdf.

Van Dam, E. R. and W. H. Haemers (2003). “Which graphs are deter-
mined by their spectrum?” Linear Algebra and Its Applications. 373:
241–272.

van der Maaten, L. and G. Hinton (2008). “Visualizing data using
t-SNE”. Journal of Machine Learning Research. 9(Nov): 2579–2605.

Vetterli, M., J. Kova�eviÊ, and V. Goyal (2014). Foundations of Signal
Processing. Cambridge University Press.

Von Luxburg, U. (2007). “A tutorial on spectral clustering”. Statistics
and Computing. 17(4): 395–416.

Wainwright, M. J. and M. I. Jordan (2008). “Graphical models, exponen-
tial families, and variational inference”. Foundations and Trends R•

in Machine Learning. 1(1–2): 1–305.
Wang, Z., E. P. Simoncelli, and A. C. Bovik (2003). “Multiscale struc-

tural similarity for image quality assessment”. In: Proc. of the Thirty-
Seventh Asilomar Conference on Signals, Systems & Computers.
Vol. 2. 1398–1402.

References 157

Weiss, Y. (1999). “Segmentation using eigenvectors: A unifying view”.
In: Proceedings of the Seventh IEEE International Conference on
Computer Vision. 975–982.

