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ABSTRACT
The area of Data Analytics on graphs deals with information
processing of data acquired on irregular but structured graph
domains. The focus of Part I of this monograph has been
on both the fundamental and higher-order graph properties,
graph topologies, and spectral representations of graphs.
Part I also establishes rigorous frameworks for vertex clus-
tering and graph segmentation, and illustrates the power of
graphs in various data association tasks. Part II embarks
on these concepts to address the algorithmic and practi-
cal issues related to data/signal processing on graphs, with
the focus on the analysis and estimation of both determin-
istic and random data on graphs. The fundamental ideas
related to graph signals are introduced through a simple and
intuitive, yet general enough case study of multisensor tem-
perature field estimation. The concept of systems on graph
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is defined using graph signal shift operators, which gener-
alize the corresponding principles from traditional learning
systems. At the core of the spectral domain representation
of graph signals and systems is the Graph Fourier Transform
(GFT), defined based on the eigendecomposition of both the
adjacency matrix and the graph Laplacian. Spectral domain
representations are then used as the basis to introduce graph
signal filtering concepts and address their design, including
Chebyshev series polynomial approximation. Ideas related to
the sampling of graph signals, and in particular the challeng-
ing topic of data dimensionality reduction through graph
subsampling, are presented and further linked with compres-
sive sensing. The principles of time-varying signals on graphs
and basic definitions related to random graph signals are
next reviewed. Localized graph signal analysis in the joint
vertex-spectral domain is referred to as the vertex-frequency
analysis, since it can be considered as an extension of clas-
sical time-frequency analysis to the graph serving as signal
domain. Important aspects of the local graph Fourier trans-
form (LGFT) are covered, together with its various forms
including the graph spectral and vertex domain windows
and the inversion conditions and relations. A link between
the LGFT with a varying spectral window and the spec-
tral graph wavelet transform (SGWT) is also established.
Realizations of the LGFT and SGWT using polynomial
(Chebyshev) approximations of the spectral functions are
further considered and supported by examples. Finally, en-
ergy versions of the vertex-frequency representations are
introduced, along with their relations with classical time-
frequency analysis, including a vertex-frequency distribution
that can satisfy the marginal properties. The material is
supported by illustrative examples.

Keywords: graph theory; random data on graphs; big data on graphs;
signal processing on graphs; machine learning on graphs; graph
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topology learning; systems on graphs; vertex-frequency estimation;
graph neural networks; graphs and tensors.



1
Introduction

Graphs are structures, often irregular, constructed in a way to represent
the observed data and to account, in a natural way, the specific interre-
lationships between the data sources. However, traditional approaches
have been established outside Machine Learning and Signal Processing,
with which largely focus on analyzing the underlying graphs rather than
dealing with signals on graphs. Moreover, given the rapidly increasing
availability of multisensor and multinode measurements, likely recorded
on irregular or ad-hoc grids, it would be extremely advantageous to
analyze such structured data as “signals on graphs” and thus benefit
from the ability of graphs to account for spatial sensing awareness, phys-
ical intuition and sensor importance, together with the inherent “local
versus global” sensor association. The aim of Part II of this monograph
is therefore to establish a common language between graph signals which
are observed on irregular signal domains, and some of the fundamental
paradigms in Learning Systems, Signal Processing and Data Analytics,
such as spectral analysis, system transfer function, digital filter design,
parameter estimation, and optimal denoising.

In classical Data Analytics and Signal Processing, the signal domain
is determined by equidistant time instants or by a set of spatial sensing

161



162 Introduction

points on a uniform grid. However, increasingly the actual data sensing
domain may not even be related to the physical dimensions of time
and/or space, and it typically does exhibit various forms of irregularity,
as, for example, in social or web-related networks, where the sensing
points and their connectivity pertain to specific objects/nodes and ad-
hoc topology of their links. It should be noted that even for the data
acquired on well defined time and space domains, the introduction of
new relations between the signal samples, through graphs, may yield
new insights into the analysis and provide enhanced data processing (for
example, based on local similarity, through neighborhoods). We therefore
set out to demonstrate that the advantage of graphs over classical data
domains is that graphs account naturally and comprehensively for
irregular data relations in the problem definition, together with the
corresponding data connectivity in the analysis (Chen et al., 2014;
Ekambaram, 2014; Gavili and Zhang, 2017; Hamon et al., 2016; Moura,
2018; Sandryhaila and Moura, 2013; Shuman et al., 2013; Vetterli et al.,
2014).

To build up the intuition behind the fundamental ideas of sig-
nals/data on graphs, a simple yet general example of multisensor tem-
perature estimation is first considered in Section 2. Basic concepts
regarding the signals and systems on graphs are presented in Section 3,
including basic definitions, operations and transforms, which generalize
the foundations of traditional signal processing. Systems on graphs
are interpreted starting from a comprehensive account of the existing
and the introduction of a novel, isometric, graph signal shift operator.
Further, graph Fourier transform is defined based on both the adjacency
matrix and the graph Laplacian and it serves as the basis to introduce
graph signal filtering concepts. Various ideas related to the sampling of
graph signals, and particularly, the challenging topic of their subsam-
pling, are reviewed in Section 4. Sections 6 and 7 present the concepts
of time-varying signals on graphs and introduce basic definitions re-
lated to random graph signals. Localized graph signal behavior can be
simultaneously characterized in the vertex-frequency domain, which is
discussed in Section 8. This section also covers the important topics of
local graph Fourier transform, various forms of its inversion, relations
with the frames and links with the graph wavelet transform. Energy
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versions of the vertex-frequency representations are also considered,
along with their relations with classical time-frequency analysis.



2
Problem Statement: An Illustrative Example

Consider a multi-sensor setup for measuring a temperature field in
a region of interest. The temperature sensing locations are chosen
according to the significance of a particular geographic area to local
users, with N = 16 sensing points in total, as shown in Figure 2.1(a).
The temperature field is denoted by {x(n)}, with n as the sensor index,
while a snapshot of its values is given in Figure 2.1(b). Each measured
sensor signal can then be mathematically expressed as

x(n) = s(n) + ε(n), n = 0, 1, . . . , 15, (2.1)

where s(n) is the true temperature that would have been obtained in
ideal measuring conditions and ε(n) comprises the adverse effects of the
local environment on sensor readings or faulty sensor activity, and is
referred to as “noise” in the sequel. For illustrative purposes, in our study
each ε(n) was modeled as a realization of white, zero-mean, Gaussian
process, with standard deviation σε = 2, that is, ε(n) ∼ N (0, 4). It was
added to the signal, s(n), to yield the signal-to-noise ratio in x(n) of
SNRin = 14.2 dB.
Remark 1: Classical data analytics requires a rearrangement of the
quintessentially irregular spatial temperature sensing arrangement in
Figure 2.1(a) into a linear structure shown in Figure 2.1(b). Obviously,
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Figure 2.1: Temperature sensing as a classic data analytics problem. (a) Sensing
locations in a geographic region along the Adriatic sea. (b) Temperatures measured
at N = 16 sensing locations. In standard data estimation, the spatial sensor index
is used for the horizontal axis and serves as the data domain. This domain can
be interpreted as a directed path graph structure, shown in the bottom panel (c).
Observe that the consecutive samples (vertices) on this path graph offer no physical
intuition or interpretation, as in this “brute force” arrangement, for example, vertex
6 is located on a high mountain, whereas its neighboring vertices 5 and 7 are located
along the sea; despite the consecutive index numbers these sensors are physically
distant, as indicated by their very different temperature measurements.
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such “lexicographic” ordering is not amenable to exploiting the in-
formation related to the actual sensor locations, which is inherently
dictated by the terrain. This renders classical analyses of this multi-
sensor temperature field inapplicable (or at best suboptimal), as the
performance critically depends on the chosen sensor ordering scheme.
This exemplifies that even a most routine multisensor measurement
setup requires a more complex estimation structure than the standard
linear one corresponding to the classical signal processing framework,
shown in Figure 2.1(b).

To introduce a “situation-aware” noise reduction scheme for the
temperature field in Figure 2.1, we proceed to explore a graph-theoretic
framework to this problem, starting from a local signal average operator.
In classical analysis, this may be achieved through a moving average
operator, e.g., by averaging across the neighboring data samples, or
equivalently neighboring sensors in the linear data setup in Figure 2.1(b),
and for each sensing point. Physically, such local neighborhood should
include close neighboring sensing points but only those which also exhibit
similar meteorological properties defined by the sensor distance, altitude
difference, and other terrain specific properties. In other words, since
the sensor network in Figure 2.1 measures a set of related temperatures
from irregularly spaced sensors, an effective estimation strategy should
include domain knowledge – not possible to achieve with standard
methods (linear path graph).

To illustrate the advantages of approaches based on local informa-
tion (neighborhood based), consider the neighborhoods for the sensing
points n = 3 (low land), n = 6 (mountains), and 8 (coast), shown in
Figure 2.2(a). The cumulative temperature for each sensing point is
then given by

y(n) =
∑

m at and around n

x(m),

so that the local average temperature for a sensing point n may be
obtained by dividing the cumulative temperature, y(n), with the number
of included sensing points (size of local neighborhood). For example,
for the sensing points n = 3 and n = 6, presented in Figure 2.2(a), the
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Figure 2.2: Temperature sensing setup as a graph signal estimation problem.
(a) Local neighborhood for the sensing points n = 3, 6, and 8. These neighborhoods
are chosen using “domain knowledge” dictated by the local terrain and by taking into
account the sensor distance and altitude. Neighboring sensors for each of these sensing
locations (vertices) are chosen in a physically meaningful way and their relation is
indicated by the connectivity lines, that is, graph edges. (b) Local neighborhoods
for all sensing vertices, presented in a graph form (thick lines indicate the edges
from (a)).
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“domain knowledge aware” local estimation takes the form

y(3) = x(3) + x(0) + x(14) + x(15) (2.2)
y(6) = x(6) + x(9) + x(10). (2.3)

For convenience, the full set of relations among the sensing points can
now be arranged into a matrix form, to give

y = x + Ax, (2.4)

where the adjacency matrix A, given in (2.5), indicates the connec-
tivity structure of the sensing locations; this local connectivity structure
should be involved in the calculation of each y(n).

This simple real-world example can be interpreted within the graph
signal processing framework as follows:

• Sensing points where the signal is measured are designated as the
graph vertices, as in Figure 2.1.

A =

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15



0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1
0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0
0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0
1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0



(2.5)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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• Vertex-to-vertex lines which indicate physically meaningful con-
nectivity among the sensing points become the graph edges, as
in Figure 2.2(a).

• The vertices and edges form a graph, as in Figure 2.2(b), a new
very structurally rich signal domain.

• The graph, rather than a standard vector of sensing points, is
then used for analyzing and processing data, as it exhibits both
spatial and physical domain awareness.

• The measured temperatures are now interpreted as signal sam-
ples on graph, as shown in Figure 2.3.

• Similar to traditional signal processing, this new graph signal
may have many realizations on the same graph and may comprise
noise.

• Through relation (2.4), we have therefore introduced a simple
system on a graph for physically and spatially aware signal
averaging (a linear first-order system on a graph).

To emphasize our trust in a particular sensor (i.e., to model sensor
relevance), a weighting scheme may be imposed, in the form

y(n) = x(n) +
∑
m6=n

Wnmx(m), (2.8)

where Wnm are the elements of the weighting matrix, W.
There are three classes of approaches to the definition of graph edges

and their corresponding weights, Wnm:

• already physically well defined edges and weights,

• definition of edges and weights based on the geometry of vertex
positions,

• data similarity based methods for learning the underlying graph
topology.
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SNRin = 14.2 dB

Figure 2.3: From a multi-sensor temperature measurement to a graph signal.
The temperature field is represented on a graph that combines the spatially un-
aware measurements in Figure 2.1(b) and the physically relevant graph topology in
Figure 2.2(b). The graph signal values are represented in two ways: (top) by vertical
lines for which the length is proportional to the signal values, and (bottom) by using
a “hot” colormap to designate the signal values at the vertices.
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All the three approaches to define the edge weights are covered in detail
in Part III of this monograph.

Since in our case of geographic temperature measurements, the
graph weights do not belong to the class of obvious and physically
well defined edges and weights, we will employ the “geometry of the
vertices” based approach for the definition of the edges and weights.
In this way, the weight elements, Wnm, for the neighboring vertices
are calculated based on the horizontal vertex distance, rmn, and the
altitude difference, hmn, as

Wmn = e−αrmn−βhmn , (2.9)

where α and β are suitable constants. The so obtained weight matrix,
W, is given in (2.6).

Based on (2.4), a weighted graph signal estimator of cumulative
temperature now becomes

y = x + Wx. (2.10)

In order to produce unbiased estimates, instead of the cumulative sums
in (2.4) and (2.8), the weighting coefficients within the estimate for each
y(n) should sum up to unity. This can be achieved through a normalized
form of (2.10), given by

y = 1
2(x + D−1Wx), (2.11)

where the elements of the diagonal normalization matrix, D, are equal
to the degree matrix elements, Dnn = ∑

mWnm, while D−1W is a
random walk (diffusion) shift operator (Stanković et al., 2018b,
2019).

Now that we have defined the graph vertices and edge weights
we may resort to the data-agnostic clustering approaches, given in
Part I – Section 4.3, to cluster the vertices of this graph based on the
graph topology. Figure 2.4 shows the clustering result based on the
three smoothest eigenvectors, u1, u2, and u3 (excluding the constant
eigenvector, u0), of the graph Laplacian matrix, L = D −W, given
in (2.7). Notice that even such a simple graph clustering scheme was
capable of identifying different physically meaningful geographic regions.



174 Problem Statement: An Illustrative Example

0
1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

Figure 2.4: Clustering of the graph from Figure 2.2(b) based on the graph Laplacian
eigenvectors, u1, u2, and u3. Observe the correct clustering of the graph into the
clusters that belong to the seaside area (blue), low mountains (red), low land (yellow),
and high mountains (green).

This also means that temperature estimation can roughly be performed
within each cluster, which may even be treated as an independent graph
(see graph segmentation and graph cuts in Part I, Section 4), rather
than over the whole sensor network.

The above-introduced graph data estimation framework is quite
general and admits application to many different scenarios where, after
identifying a suitable graph topology, we desire to perform estimation on
data acquired on such graphs, the subject of this part of the monograph.
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In classical data analytics, a signal is sampled at successive, equally
spaced, time instants. This then dictates the ordering of signal samples,
with x(n) being preceded by x(n− 1) and succeeded by x(n+ 1). The
“time distance” between data samples is therefore an inherent parameter
in standard data processing algorithms. The relation between sampling
instants can also be represented in a graph form, whereby the vertices
that correspond to the instants when the signal is sampled and the
corresponding edges define the linear sampling (vertex) ordering. The
equally spaced nature of sampling instants in classical scenarios can then
be represented with equal weights for all edges (for example, normalized
to 1), as shown in Figure 3.1.

Algorithms defined in discrete time (like, for example, those based
on the DFT or other similar data transforms), usually assume peri-
odicity of the analyzed signals, which means that sample x(N − 1) is
succeeded by sample x(0), in a perpetual sequence. Notice that this case
corresponds to the circular graph, shown in Figure 3.2, which allows us
to use this model in many standard data transforms, such as the DFT,
DCT, wavelets, and to define graph-counterparts of other processing
algorithms, based on these transforms.
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Figure 3.1: Directed path graph representation of a classical time-domain signal
defined on an equidistant discrete-time grid.

Figure 3.2: Graph representation of periodic data. (a) A directed circular graph.
(b) A periodic signal measured on a circular graph. Signal values, x(n), are designated
by vertical lines at the corresponding vertex, n.

A signal on a general (including also circular) undirected graph
is defined by associating real (or complex) data values, x(n), to each
vertex, as shown in Figures 3.3 and 3.4. Such signal values can be
arranged in a vector form

x = [x(0), x(1), . . . , x(N − 1)]T ,

so that a graph may be considered as a generalized signal domain.
This allows, in general, for any linear processing scheme for a graph

signal observed at a vertex, n, to be defined as a linear combination of
the signal value, x(n), at this vertex and the signal samples, x(m), at
the neighboring vertices, that is

y(n) = x(n)h(n, n) +
∑
m∈Vn

x(m)h(m,n), (3.1)
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Figure 3.3: Undirected circular graph (a) and signal on the graph (b). Signal values,
x(n), are presented as vertical lines at the corresponding vertex, n.

Figure 3.4: Arbitrary undirected graph (a) and signal on graph (b). Signal values,
x(n), are presented as vertical lines at the corresponding vertex, n.
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where Vn is the set of vertices in the neighborhood of vertex n, and
h(m,n) are the scaling coefficients.
Remark 2: The estimation form in (3.1) is highly vertex-dependent; it
is vertex-invariant only in a very specific case of regular graphs, where
Vn is a K-neighborhood of the vertex n, with h(n,m) = h(n−m).

We now proceed to define various forms of vertex-invariant filtering
functions, using shifts on a graph. These will then be used to intro-
duce efficient graph signal processing methods (Agaskar and Lu, 2013;
Sandryhaila and Moura, 2014a,b; Segarra and Ribeiro, 2016;
Venkitaraman et al., 2016; Wang et al., 2016; Yan et al., 2017).

3.1 Adjacency Matrix and Graph Signal Shift

Consider a graph signal, x, for which x(n) is the observed sample at
a vertex n. A signal shift on a graph can be defined as movement of
the signal sample, x(n), from its original vertex, n, along all walks of
length one, that is K = 1, that start at vertex n. If the signal shifted
in this way is denoted by x1, then its values can be defined using the
graph adjacency matrix, A, as

x1 = Ax. (3.2)

Example 1: As an illustration of a graph signal and its shifted version,
consider the signal on a circular graph from Figure 3.2(a). The original
signal, x, is shown in Figure 3.5(a), and its shifted version, x1, in
Figure 3.5(b). Another simple signal on the undirected graph from
Figure 3.4(a) is presented in Figure 3.6(a), with its shifted version,
x1 = Ax, shown in Figure 3.6(b).

A signal shifted by two graph shifts is obtained by further shifting
x1 = Ax by one shift. The resulting, twice shifted, graph signal is then
given by

x2 = Ax1 = A(A x) = A2 x.
Therefore, in general, an m times shifted signal on graph is

given by
xm = Axm−1 = Am x.
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Figure 3.5: Graph shift operator on a directed graph (classical circular shift).
(a) Elements of a signal, x, shown as red lines on a directed circular graph. (b) The
shifted version, Ax, of the graph signal from (a). The adjacency matrix for this
graph is given in (2.14) in Part I.

Remark 3: Like the standard shift operator, the second order shift
of a graph signal is obtained by shifting the already once shifted
signal. The role of the shift operator is assumed by the adjacency
matrix, A.

Remark 4: While this section considers unweighted graphs with the
adjacency matrix, A, used as a shift operator, all presented results can
be directly applied to the more general class of weighted graphs, where
the shift is implemented by the weight matrix, W. The graph Laplacian
as a shift operator will be considered in the next section. We will also
summarize the various possible shift operators, including those based
on the normalized Laplacian and random walk matrices.
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Figure 3.6: Graph signal shift on an undirected graph. (a) A simple signal, x, on
an undirected graph. (b) Shifted version, Ax, of the graph signal from (a).

3.2 Systems Based on Graph Shifted Signals

Very much like in standard linear shift-based systems, a system on a
graph can be implemented as a linear combination of a graph signal, x,
and its graph shifted versions, Am x, m = 1, 2, . . . ,M − 1. The output
signal from a system on a graph can then be written as

y = h0A0 x + h1A1 x + · · ·+ hM−1AM−1 x =
M−1∑
m=0

hmAm x (3.3)

where A0 = I, by definition, and h0, h1, . . . , hM−1 are the system
coefficients. For a circular (classical linear system) graph, this relation
reduces to the well known Finite Impulse Response (FIR) filter, given by,

y(n) = h0x(n) + h1x(n− 1) + · · ·+ hM−1x(n−M + 1). (3.4)

Keeping in mind that the matrix Am describes walks of the length
K = m in a graph (see Property M2 in Part I), the output graph
signal, y(n), is calculated as a linear combination of the input graph
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signal values and the signal values observed at vertices belonging to the
(M − 1)-neighborhood of the considered vertex n.
Remark 5: When the minimal and characteristic polynomials are
of the same degree, a physically meaningful system order (M − 1)
should be lower than the number of vertices N , that is, M ≤ N . The
corresponding condition in classical signal analysis would be that the
number, M , of the system impulse response coefficients, hm, in (3.4)
should be lower or equal to the total number of signal samples, N (for
the graph in Figure 3.5 it means that the meaningful graph signal shifts
are m = 0, 1, 2, . . . , N − 1, since the shift for m = N reduces to the shift
for m = 0, the shift for m = N + 1 is equivalent to the shift for m = 1,
and so on). Therefore, in general, the system order (M − 1) should be
lower than the degree Nm of the minimal polynomial of the adjacency
matrix A. For more detail see Part I, Section 3.1.

Remark 6: Any system of order M − 1 ≥ Nm can be reduced to a
system of order Nm − 1.

Remark 7: If the system order is greater than or equal to the degree
of the minimal polynomial, M − 1 ≥ Nm, then there exist more than
one system producing the same output signal for a given input signal.
All such systems on a graph are called equivalent.

The statements in the last three remarks will be addressed in more
detail in Section 3.5, with their proofs also provided.
Example 2: Consider a signal on the graph from Figure 3.4(a), given in
Figure 3.7(a), and a linear system which operates on this graph, defined
by the coefficients h0 = 1, h1 = 0.5. Observe that this system on a graph
corresponds to a simple classical first-order weighted moving average
system. The output graph signal then represents a weighted average
of the signal value at a vertex n and the signal values at its K = 1
neighborhood. The output graph signal is shown in Figure 3.7(b).
General system on graph. A system on a graph may be defined in
the vertex domain as

y = H(A)x, (3.5)
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Figure 3.7: Example of vertex domain signal filtering. (a) An arbitrary graph signal.
(b) The output signal obtained through a first-order (averaging) system on a graph,
defined as y = x + 0.5 Ax.

where H(A) is a vertex domain system (filter) function. A system on
a graph is then linear and shift invariant if it satisfies the following
properties of:

1. Linearity
H(A)(a1x1 + a2x2) = a1y1 + a2y2.

2. Shift invariance

H(A)[Ax] = A[H(A)x] = Ay.
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Remark 8: A system on a graph defined by

H(A) = h0A0 + h1A1 + · · ·+ hM−1AM−1 (3.6)

is linear and shift invariant since AAm = AmA.

3.3 Graph Fourier Transform (GFT), Adjacency Matrix
Based Definition

Classical exploratory data analysis often employs estimation of signals
in the spectral (Fourier) domain; this has led to a number of simple
and efficient algorithms. While standard spectral analysis employs an
equidistant grid in both time and frequency, following the ideas of a
system on a graph, we next show that spectral domain representations
of graph signals are naturally based on spectral decompositions of the
adjacency matrix or graph Laplacian.

The graph Fourier transform of a signal, x, is defined as

X = U−1x (3.7)

where X denotes a vector of the GFT coefficients, and U is a matrix
whose columns represent the eigenvectors of the adjacency matrix, A.
Denote the elements of the vector X by X(k), for k = 0, 1, . . . , N − 1,
and recall that for undirected graphs, the adjacency matrix is symmetric,
that is, AT = A, and that the eigenmatrices of a symmetric matrix
satisfy the property

U−1 = UT .

Remark 9: In the analysis of directed graphs, it is usually assumed
that the adjacency matrix, A, (for unweighted graphs) or the weight
matrix, W, (for weighted graphs) are diagonizable. However, these
matrices are not always diagonizable, and we have to resort to using
the standard Jordan normal form (Sandryhaila and Moura, 2014b).
A recently proposed pragmatic approach to address this issue is to first
employ the Jordan–Chevalley decomposition of a nondiagonizable matrix
(A or W) into its diagonalizable and nilpotent parts, and subsequently
use the diagonizable part (corresponding to the diagonal of the Jordan
normal form) to define shifts on a (modified) graph (Misiakos et al.,
2020).
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The element, X(k), of the graph Fourier transform vector, X, there-
fore represents a projection of the considered graph signal, x(n), onto
the k-th eigenvector of A (a basis function), given by

X(k) =
N−1∑
n=0

x(n)uk(n). (3.8)

In this way, the graph Fourier transform can be interpreted as a
set of projections (signal decomposition) onto the set of eigenvectors,
u0,u1, . . . ,uN−1, which serve as orthonormal basis functions.

The inverse graph Fourier transform is then straightforwardly ob-
tained from (3.7) as

x = U X, (3.9)
or element-wise

x(n) =
N−1∑
k=0

X(k)uk(n). (3.10)

Observe that, for example, for a circular graph from Figure 3.2, the
graph Fourier transform pair in (3.8) and (3.10) reduces to the standard
discrete Fourier transform (DFT) pair. For this reason, the transform
in (3.8) and its inverse in (3.10) are referred to as the graph Fourier
transform (GFT) and the inverse graph Fourier transform (IGFT).

3.4 System on a Graph in the GFT Domain

Consider a general system on a graph defined in (3.6),

y = H(A)x = (h0A0 + h1A1 + · · ·+ hM−1AM−1)x. (3.11)

Upon employing the spectral representation of the adjacency matrix,
A = UΛU−1, we have

y = (h0UΛ0U−1 + h1UΛ1U−1 + · · ·+ hM−1UΛM−1U−1)x
= U

(
h0Λ0 + h1Λ1 + · · ·+ hM−1ΛM−1)U−1 x

= UH(Λ)U−1 x, (3.12)

with the system on a graph transfer function

H(Λ) = h0Λ0 + h1Λ1 + · · ·+ hM−1ΛM−1, (3.13)

where Λ is the matrix of eigenvalues of A.
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A pre-multiplication of this relation with U−1, yields

U−1y = H(Λ)U−1 x. (3.14)

From (3.7), the terms U−1 y and U−1 x are respectively the GFTs of
the output graph signal, y, and the input graph signal, x, so that the
spectral domain system on a graph relation becomes

Y = H(Λ) X. (3.15)

The output graph signal in the vertex domain can then be calculated as

y = H(A)x = IGFT{H(Λ) X}. (3.16)
The element-wise form of the system on a graph in (3.15) is of the form

Y (k) = (h0 + h1λk + · · ·+ hM−1λ
M−1
k )X(k),

where λk denotes the kth eigenvalue of the adjacency matrix, A. From
(3.13) and the above equation, we can now define the transfer function
of a system on a graph in the form

H(λk) = Y (k)
X(k) = h0 + h1λk + · · ·+ hM−1λ

M−1
k . (3.17)

Remark 10: The classical linear system in (3.4) can be obtained directly
from its graph counterpart in (3.17) when the graph is directed and
circular. This is because the adjacency matrix of a directed circular
graph has eigenvalues λk = e−j2πk/N (see Part I, Section 3.2 for more
detail on directed circular graphs), which are identical to the samples
on the unit circle in classical DFT.

Similar to the z-transform in classical signal processing, for systems
on graphs we can also introduce the system transfer function in the
z-domain.
The z-domain transfer function of a system on a graph is defined as

H(z−1) = Z{hn} = h0 + h1z
−1 + · · ·+ hM−1z

−(M−1), (3.18)
for n = 0, 1, . . . ,M − 1. Obviously, from (3.17), we have

H(λk) = H(z−1)
∣∣
z−1=λk

.
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However, the definition of the z-transform for arbitrary graph signals,
x(n) and y(n), that would satisfy the relation Y (z−1) = H(z−1)X(z−1)
is not straightforward, which limits the application of the z-transform
on graphs. This will be discussed in more detail in Section 3.10.

3.5 Graph Signal Filtering in the Spectral Domain of the
Adjacency Matrix

The energy of a graph shifted signal is given by

‖x1‖22 = ‖Ax‖22 .

However, as shown in Figure 3.6, in general, the energy of a shifted
signal is not the same as the energy of the original signal, that is

‖Ax‖22 6= ‖x‖
2
2 .

On the other hand, in graph signal processing it is often desirable that
a graph shift does not increase signal energy. One such graph shift
operator is introduced below.
Remark 11: Using the matrix two-norm it is straightforward to show
that the ratio of energies of the graph shifted signal, Ax, and the
original graph signal, x, satisfies the relation

max
{
‖Ax‖22
‖x‖22

}
= max

{
xTATAx
‖x‖22

}
= λ2

max, (3.19)

where λmax = maxk |λk|, k = 0, 1, . . . , N − 1.

Normalization of the Adjacency Matrix

From (3.19), for the energy of a graph shifted signal, ‖Ax‖22, not to
exceed the energy of the original graph signal, ‖x‖22, we may employ
the normalized adjacency matrix, defined as

Anorm = 1
λmax

A (3.20)

as a graph shift operator within any system on a graph. While this kind
of normalization still does not make the shift on a graph isometric, the
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energy of the signal shifted in this way is guaranteed not to be bigger
than the energy of the original graph signal, since

‖Anormx‖22 ≤ ‖x‖
2
2 .

The equality holds only for a very specific signal which is proportional
to the eigenvector that corresponds to λmax.

The basic shift on a graph, system on a graph, and graph spectral
domain representations can be implemented with the normalized adja-
cency matrix in (3.20) in the same way as with the original adjacency
matrix. An important property which does not apply to standard adja-
cency matrices is that the normalization of adjacency matrix yields a
simpler eigenvector and eigenvalue ordering scheme, as shown next.

Spectral Ordering of Eigenvectors of the Adjacency Matrix

For physically meaningful low-pass and high-pass filtering on a graph,
we need to establish the notion of spectral order. This, in turn, requires
a criterion to classify the eigenvectors (corresponding to the GFT basis
functions) into the slow-varying and fast-varying ones.
Remark 12: In classical Fourier analysis, the basis functions are or-
dered according to their frequency, whereby, for example, low-pass (slow
varying) basis functions are harmonic functions characterized by low
frequencies. On the other hand, the notion of frequency of the eigen-
vectors of the graph adjacency matrix, which serve as a basis for signal
decomposition, is not defined and we have to find another criterion to
classify or rank the eigenvectors. Again, we draw the inspiration from
classical Fourier analysis which suggests that the energy of the “signal
change” can be used instead of frequency to indicate the rate of change
of an eigenvector along time.
Energy of signal change. The first graph difference can be defined
for graph signals as a difference of the original graph signal and its
graph shift, that is,

∆x = x− x1 = x−Anormx.

In analogy to classical analysis, the energy of signal change can then
be defined as the energy of the first difference of a graph signal x, and
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takes the form

E∆x = ‖x−Anormx‖22 =
∥∥∥∥x− 1

λmax
Ax

∥∥∥∥2

2
.

When the graph signal assumes a specific form of an eigenvector,
x = u, of the adjacency matrix, A, the energy of this eigenvector change
is equal to

E∆u =
∥∥∥∥u− 1

λmax
λu
∥∥∥∥2

2
=
∣∣∣∣1− λ

λmax

∣∣∣∣2 , (3.21)

whereby the normalized adjacency matrix, Anorm, is used to bound the
energy of the shifted graph signal. In the derivation we have also used
Au = λu and ‖u‖22 = 1.

Now, the lower values of E∆u indicate that u is slow-varying,
E∆u = 0 indicates that the signal is constant, while larger values
of E∆u are associated with fast changes of u in time. The form in
(3.21) is also referred to as the two-norm total variation of a basis
function/eigenvector. Therefore, if the change in a basis function, u,
has a large energy, then the eigenvector, u, can be considered to belong
to the higher spectral content of the graph signal.
Remark 13: From (3.21), the energy of the rate of change of a graph
signal is minimal for λ = λmax and it increases as λ decreases (see
Figure 3.1 in Part I).

Now that we have established a criterion for the ordering of eigen-
vectors, based on the corresponding eigenvalues, we shall proceed to
define an ideal low-pass filter on a graph. The intuition behind low-pass
filtering in the graph domain is that such a filter should pass unchanged
all signal components (eigenvectors of A) for which the rates of change
are slower than that defined by the cut-off eigenvalue, λc (cf. cut-off
frequency), while all signal components (eigenvectors) which exhibit
variations which are faster than that defined by the cut-off eigenvalue,
λc, should be suppressed. The ideal low-pass filter in the graph domain
is therefore defined as

f(λ) =

1, for λ > λc,

0, for other λ.
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(a) original signal, x = 3.2u7 + 2u6
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Figure 3.8: A low-pass graph signal filtering example. (a) Original signal, x =
3.2u7 + 2u6. (b) Noisy signal, xε = x + ε, at an SNR = 2.7 dB. (c) Filtered signal,
at an SNR = 18.8 dB. Ideal low-pass filtering based on the two highest eigenvalues
in the pass-band was applied. Note that if uk is an eigenvector then −uk is also an
eigenvector (eigenvectors sign ambiguity).

Example 3: Consider again the undirected graph from Figure 3.4(a)
on which we observe a graph signal shown in Figure 3.8(a), which is
constructed as a linear combination of two of the eigenvectors of the
adjacency matrix of this graph to give x = 3.2u7 + 2u6 (eigenvectors of
the adjacency matrix of the considered graph are presented in Part I,
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Figure 3.1). The signal is corrupted by additive white Gaussian noise,
ε, at the signal-to-noise (SNR) ratio of SNRin = 2.7 dB and the noisy
graph signal, xε = x + ε, is shown in Figure 3.8(b). This noisy signal is
next filtered using an ideal spectral domain graph filter with a cut-off
eigenvalue of λc = 1. The output signal, xf , is shown in Figure 3.8(c).
With SNRout = 18.8 dB, an increase in signal quality of 16.1 dB is
achieved with this type of filtering.

Remark 14: The energy of the rate of change of an eigenvector is con-
sistent with the classical DFT based filtering when λk = exp(−j2πk/N)
and λmax = 1.

Spectral Domain Filter Design

We shall denote by G(Λ) the desired graph transfer function of a system
defined on a graph. Then, a system with this transfer function can be
implemented either in the spectral domain or in the vertex domain.

In the spectral domain, the implementation is straightforward and
can be performed in the following three steps:

1. calculate the GFT of the input graph signal, X = U−1x,

2. multiply the GFT of the input graph signal by the graph transfer
function, G(Λ), to obtain the output spectral form, Y = G(Λ)X,
and

3. calculate the output graph signal as the inverse GFT of Y in Step
2, that is, y = UY.

This procedure may be computationally very demanding for large
graphs, where it may be more convenient to implement the desired filter
(or its close approximation) directly in the vertex domain.

For the implementation in the vertex domain, the task is to find the
coefficients (cf. standard impulse response) h0, h1, . . . , hM−1 in (3.3),
such that their spectral representation,H(Λ), is equal (or approximately
equal) to the desired G(Λ). This is performed in the following way. The
transfer function of the vertex domain system is given by (3.17) as
H(λk) = h0 + h1λ1

k + · · · + hM−1λ
M−1
k and should be equal to the
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desired transfer function, G(λk), for k = 0, 1, . . . , N − 1. This condition
leads to a system of linear equations

h0 + h1λ
1
0 + · · ·+ hM−1λ

M−1
0 = G(λ0)

h0 + h1λ
1
1 + · · ·+ hM−1λ

M−1
1 = G(λ1)

...
h0 + h1λ

1
N−1 + · · ·+ hM−1λ

M−1
N−1 = G(λN−1). (3.22)

The matrix form of this system is then

Vλ h = g, (3.23)

where Vλ is the Vandermonde matrix form of the eigenvalues λk, given by

Vλ =


1 λ1

0 · · · λM−1
0

1 λ1
1 · · · λM−1

1
...

... . . . ...
1 λ1

N−1 · · · λM−1
N−1

 (3.24)

and
h = [h0, h1, . . . , hM−1]T (3.25)

is the vector of system coefficients which need to be calculated to obtain
the desired

g = [G(λ0), G(λ1), . . . , G(λN−1)]T = diag(G(Λ)). (3.26)

Comments on the solution in (3.22):

1. Consider the case with N vertices and with all distinct eigenvalues
of the adjacency matrix (in other words, the minimal polynomial
is equal to the characteristic polynomial, Pmin(λ) = P (λ)).

(a) If the filter order, M , is such that M = N , then the solution
to (3.22) is unique, since the determinant of the Vandermonde
matrix is always nonzero.

(b) If the filter order, M , is such that M < N , then the system
in (3.22) is overdetermined. Therefore, the solution to (3.22)
can only be obtained in the least squares sense (as described
later in this section).
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2. If some of the eigenvalues are of a degree higher than one (minimal
polynomial order, Nm, is lower than the number of vertices, N)
the system in (3.22) reduces to a system of Nm linear equations
(by removing multiple equations which correspond to the repeated
eigenvalues λ).

(a) If the filter order, M , is such that Nm < M ≤ N , the
system in (3.22) is underdetermined. In that case (M −Nm)
filter coefficients are free variables and the system has an
infinite number of solutions, while all so obtained filters are
equivalent.

(b) If the filter order is such that M = Nm, the solution to the
system in (3.22) is unique.

(c) If the filter order is such that M < Nm, the system in (3.22)
is overdetermined and the solution is obtained in the least
squares sense.

3. Any filter of an order M > Nm has a unique equivalent filter of
order Nm. This equivalent filter can be obtained by setting the free
variables to zero, that is, hi = 0 for i = Nm, Nm + 1, . . . , N − 1.

Finding the system coefficients

Exact solution. For M = N = Nm, that is, when the filter order is
equal to the number of vertices and the order of minimal polynomial,
the solution to the system in (3.22) or (3.23) is unique and is obtained
from

h = V−1
λ g.

Least-squares solution. For the overdetermined case, whenM < Nm,
the mean-square approximation of h = [h0, h1, . . . , hM−1]T in Vλh = g
is obtained by minimizing the squared error

e = ‖Vλh− g‖22 .

From ∂e/∂hT = 0 we then have

ĥ = (VT
λ Vλ)−1VT

λ g = pinv(Vλ)g.
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Since M < Nm, the obtained solution, ĥ, is the least-squares approxi-
mation for Vλh = g. Given that this solution may not satisfy Vλh = g,
the designed coefficient vector, ĝ (its spectrum Ĝ(Λ)), obeys

Vλĥ = ĝ

which, in general, differs from the desired system coefficients, g (their
spectrum G(Λ)).
Example 4: Consider the unweighted graph from Figure 3.4(a) and the
task of the synthesis of a desired filter for which the frequency response
is described by

g = [0, 0, 0, 0, 0, 0.5, 1, 1]T .
This filter was designed for various filter orders M = 1, 2, 4, 6, using
(3.22) and the results are shown in Figure 3.9. For clarity, analytically,
the vertex domain realization of the filter with M = 4 is given by

y = 0.1734A0x + 0.3532A1x + 0.0800A2x− 0.0336A3x,

however, the exact frequency response ĝ = g is only obtained with
M = N = 8.

Polynomial (Chebyshev) Approximation of the System on a Graph Transfer
Function

Without loss of generality, it can be considered that the desired transfer
function, g = [G(λ0), G(λ1), . . . , G(λN−1)]T , consists of samples taken
from a continuous function of λ within the interval λmin ≤ λ ≤ λmax,
where λmin and λmax denote the minimum and maximum values of
{λ0, λ1, . . . , λN−1}, respectively. The variable λ of the desired transfer
function, G(λ), is continuous, and the system on graph uses only the
values at discrete points λ ∈ {λ0, λ1, . . . , λN−1}. Therefore, for a poly-
nomial approximation, P (λ), of the desired transfer function, G(λ), it
is important that the error at the points within the considered interval,
λmin ≤ λ ≤ λmax, is bounded and sufficiently small.

This problem is known in algebra as the min-max approximation, and
its goal is to find an approximating polynomial that has the smallest
maximum absolute error from the desired function value. The min-
max polynomials can be approximated by the truncated Chebyshev
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Figure 3.9: Design of a graph filter with a specified transfer function in the spectral
domain (cf. standard frequency response). The desired spectral response, G(λk), is
denoted by blue circles. Red asterisks designate the spectral response of the filter
designed in Example 4, denoted by Ĝ(λk), obtained with M filter coefficients, h0,
h1, . . . , hM−1, in the vertex domain.

polynomials, P (λ), which yield approximations of the desired function
having almost min-max behavior.

For this the reason, the approximation of the desired transfer func-
tion,G(λ), may be performed using the truncated Chebyshev polynomial

PM−1(z) = c0
2 +

M−1∑
m=1

cmTm(z), (3.27)

where Tm(z) are the Chebyshev polynomials defined as

T0(z) = 1,
T1(z) = z,

T2(z) = 2z2 − 1,
T3(z) = 4z3 − 3z,

...
Tm(z) = 2zTm−1(z)− Tm−2(z), (3.28)
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with the variable λ being centered and normalized as

z = 2λ− (λmax + λmin)
λmax − λmin

, (3.29)

such that −1 ≤ z ≤ 1 (required by the Chebyshev polynomial definition).
The inverse mapping, from z to λ, is given by

λ = 1
2(z(λmax − λmin) + λmax + λmin).

Since the Chebyshev polynomials are orthogonal, with measure
dz/
√

1− z2, the Chebyshev coefficients, cm, for an expansion of the
desired function, G(z), into the polynomial series, PM−1(z), are easily
obtained as

cm = 2
π

∫ 1

−1
G(z)Tm(z) dz√

1− z2

= 2
π

∫ π

0
cos(mθ)G(cos(θ))dθ.

Example 5: Consider the unweighted graph from Figure 3.4(a) with
the desired transfer function

G(λ) = 1 + sign(λ− λ5)
2 .

The samples of G(λ) at the discrete points

λk ∈ {−2,−1.74,−1.28,−0.68,−0.41, 1.11, 1.81, 3.19},

correspond to the values of G(λk) in Example 4, Figure 3.9. Since the
minimum and maximum eigenvalues are λmin = −2 and λmax = 3.19,
this yields the desired transfer function with a variable z within a
normalized interval, −1 ≤ z ≤ 1,

G(z) = 1 + sign(z − z5)
2 ,

where z5 is defined by (3.29) as

z5 = 2λ5 − (λ7 + λ0)
λ7 − λ0

= 0.2.
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Figure 3.10: Design of a graph filter with a specified transfer function in the spectral
domain using the Chebyshev polynomial approximation of order (M − 1) with M
terms, T0(z), T1(z), . . . , TM−1(z). The desired spectral response, G(λ), is denoted
by blue dashed line and blue dots. Red lines designate the spectral response of the
designed Chebyshev approximation.

The Chebyshev series for (M − 1) = 3 is given by

PM−1(z) = 0.43 + 0.62T1(z) + 0.12T2(z)− 0.18T3(z)
= 0.31 + 1.16z + 0.24z2 − 0.72z3.

Upon the change of variables, z → λ, we obtain the form

P̄M−1(λ) = 0.07 + 0.36λ+ 0.11λ2 − 0.04λ3.

The approximations of the spectral domain transfer function of the
graph filter, using the Chebyshev polynomial of order (M − 1), with M
terms, are shown in Figure 3.10, for M = 2, 4, 6, and 11.

Graph signal filtering can now be performed in the vertex domain
using

y = P̄M−1(A)x,
where

P̄M−1(A) = 0.07 + 0.36A + 0.11A2 − 0.04A3.
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Figure 3.11: Vertex-domain filtering result for the noisy signal from Figure 3.8,
using the Chebyshev approximation of the desired transfer function from Figure 3.10
with M = 4.

The result of the vertex domain filtering using P̄M−1(A) is shown
in Figure 3.11 for the noisy signal from Figure 3.8, with the SNR
improvement of 16.76 dB.
Calculation complexity. If the number of nonzero elements in the
adjacency matrix, A, is NA, then the number of arithmetic operations
(additions) to calculate Ax is of NA order. The same number of oper-
ations is required to calculate A2x = A(Ax) using the available Ax.
This means that the total number of arithmetic operations (additions)
to calculate all Ax, A2x, . . . ,AM−1x is of order MNA. Adding these
terms requires additional MNA arithmetic operations (additions), while
the calculation of all terms of the form cmAmx requires an order of
MNA multiplications by constants cm, m = 0, 1, . . . ,M − 1. Therefore,
to calculate the output graph signal, y = P̄M−1(A)x, an order of 2MNA
additions and MNA multiplications is needed. Notice that the eigen-
analysis of the adjacency matrix, A, requires an order of N3 arithmetic
operations. For large graphs, the advantage in calculation complexity
of the vertex domain realization with the polynomial transfer function
approximation, y = P̄M−1(A)x, is obvious.

As is common place in standard filter design theory, the transition
intervals of the approximated transfer function, G(λ), can be appropri-
ately smoothed, to improve the approximation.

In general, the mapping in (3.29) from λ to z can be written as z =
aλ+b, where a = 2/(λmax−λmin) and b = −(λmax+λmin)/(λmax−λmin).
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The Chebyshev polynomial series in λ is then of the form

P̄M−1(λ) = c0
2 +

M−1∑
m=1

cmT̄m(λ), (3.30)

with T̄0(λ) = 1, T̄1(λ) = aλ+ b, and

T̄m(λ) = 2(aλ+ b)T̄m−1(λ)− T̄m−2(λ),

for m ≥ 2.
The same relations hold for

P̄M−1(A) = c0
2 +

M−1∑
m=1

cmT̄m(A). (3.31)

This change of variables admits recursive calculation, as in (3.28).

3.5.1 Inverse System on a Graph

A system on a graph,H(Λ), which represents an inverse of the system on
a graph, given by G(Λ), can be obtained from their generic relationship

H(Λ)G(Λ)X = X.

According to (3.26), this in turn means that if all G(λk) 6= 0 and
P (λ) = Pmin(λ), then H(λk) = 1/G(λk) for each k.

3.6 Graph Fourier Transform Based on the Laplacian

Similar to the graph Fourier transform based on the adjacency matrix,
spectral representation of a graph signal can be alternatively based on
eigenvalue decomposition of the graph Laplacian, given by

L = UΛU−1

or LU = UΛ.
Although the analysis can be conducted in a unified way for spectral

decompositions based on both the adjacency matrix and the graph Lapla-
cian, due to their different behavior and scope of application, these will
be considered separately.

The graph Fourier transform of a signal, x, which employs the graph
Laplacian eigenvalue decomposition to define its basis functions, is
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given by
X = U−1x, (3.32)

where the matrix U comprises in its columns the eigenvectors of the
graph Laplacian. The inverse graph Fourier transform then follows
immediately in the form

x = U X. (3.33)
In the case of undirected circular unweighted graph, such as the

graph in Figure 3.3(a), this Laplacian based spectral analysis reduces
to the standard Fourier transform, but with real-valued basis functions
(eigenvectors), as shown in Part I, Section 3.3.2.

3.7 Ordering and Filtering in the Laplacian Spectral Domain

As shown in Section 3.5, the graph shift and the adjacency matrix are
related to the first finite difference of eigenvectors in the vertex domain,
while the rate of the eigenvector change is related to its corresponding
eigenvalue (cf. standard frequency). A similar approach can be used
for the Laplacian based eigendecomposition. We have seen that for
standard time domain signals, the Laplacian of a circle graph represents
the second order finite difference, y(n), of a signal u(n), that is

y(n) = −u(n− 1) + 2u(n)− u(n+ 1),

as shown in Section 3.3 in Part I. A compact expression for all elements
of the Laplacian can then be written in a matrix form as y = Lu. It
is now obvious that the eigenvectors, u, which exhibit small variations
should also have a small cumulative energy of the second order difference

Eu =
∑
n

[(u(n)− u(n− 1))2 + (u(n)− u(n+ 1))2]/2.

Recall that this expression corresponds to the quadratic form of the
eigenvector, u, defined by Eu = uTLu.

The above reasoning for the Laplacian quadratic form can also be
used for graph signals. As a default case for the Laplacian analysis we
will consider undirected weighted graphs, where by definition

Lu = λu, uTu = 1
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or
uTLu = λuTu = λ = Eu.

This means that the quadratic form of an eigenvector, uk, is equal to
its corresponding eigenvalue. This is elaborated in detail in Section 4.2
in Part I, where we have shown that

uTkLuk = λk = 1
2

N−1∑
n=0

N−1∑
m=0

Wnm(uk(n)− uk(m))2 ≥ 0. (3.34)

Obviously, a small uTkLuk = λk implies a small variation ofWnm(uk(n)−
uk(m))2 in the eigenvector uk, and for each vertex n. Consequently, the
eigenvectors corresponding to small λk correspond to the low-pass part
of a graph signal. In other words, the smaller the smoothness index
(curvature), uTkLuk = λk, the smoother the eigenvector, uk.

An ideal low-pass filter in the Laplacian spectrum domain, with a
cut-off eigenvalue λc, can be therefore defined as

f(λ) =

1, for λ < λc

0, for other λ.

Example 6: Consider a signal on the undirected graph from Figure 2.2
in Part I, shown in Figure 3.12(a). This graph signal is generated as a
linear combination of two Laplacian eigenvectors (which correspond to
the slow-varying signal part), to give x = 2u0 + 1.5u1. The Laplacian
eigenvectors of the considered graph are presented in Part I, Figure 3.4,
while the considered graph signal is shown in Figure 3.12(a). The
original signal, x, was then corrupted by white Gaussian noise at the
signal-to-noise ratio of SNRin = −1.76 dB, and shown in Figure 3.12(b).
Next, this noisy graph signal was filtered using an ideal spectral domain
graph filter, with a cut-off eigenvalue λc = 2, to obtain the filtered
signal, xf , shown in Figure 3.12(c). The so achieved output SNR was
SNRout = 21.29 dB, that is, despite its simplicity, the graph filter
achieved a gain in SNR of 23.05 dB, as compared to the noisy signal in
Figure 3.12(b).

To further illustrate the principle of graph filtering, the noisy signal
from Figure 2.3 was filtered using a filter with the spectral cut-off at
λc = 0.25 and the result is shown in Figure 3.13. The same signal was
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Figure 3.12: Graph signal filtering example. (a) Original signal. (b) Noisy sig-
nal. (c) Filtered signal. Low pass filtering was performed based on the two lowest
eigenvalues of the graph Laplacian.

also filtered using a polynomial approximation to the low-pass system,
as illustrated in Figure 3.14.
Laplacian versus adjacency-based GFT for regular graphs.
A direct relation between the adjacency-based and Laplacian-based
spectral decomposition can be established for J -regular unweighted
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Figure 3.13: Denoising results for the noisy signal from Figure 2.3, which was
filtered using a low-pass graph filter with λc = 0.25.

graphs (see Equation (2.13) in Part I), for which

L = J I−A

to yield
λ

(A)
k = J − λ(L)

k ,

where the eigenvalues of the adjacency matrix and the graph Laplacian
are respectively denoted by λ(A)

k and λ(L)
k , while they share the same

eigenvectors.
Remark 15: Rank-ordering of the eigenvectors, uk, from low-pass
to high-pass, which is based on the respective eigenvalues, λ(A)

k and
λ

(L)
k , yields exactly opposite ordering for these two graph spectral

decompositions. For example, the smoothest eigenvector is obtained for
mink λ(L)

k = λ
(L)
0 = 0 or for maxk λ(A)

k = λmax = J − λ(L)
0 = J .
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Figure 3.14: Graph filtering of a noisy signal from Figure 2.3, using a fourth-order
system given by y = h0L0 x + h1L1 x + h2L2 + h3L3 + h4L4.

3.8 Systems on a Graph Defined Using the Graph Laplacian

Following on the discussion in Section 3.2 and Equation (3.3), a system
on a graph, defined using the graph Laplacian, has the form

y = h0L0 x + h1L1 x + · · ·+ hM−1LM−1 x

=
M−1∑
m=0

hmLm x. (3.35)

For an unweighted graph, this definition of a system on a graph can
be related to the corresponding adjacency matrix form as L = D−A.

The spectral domain description of a system on a graph is
then obtained through the Laplacian eigenvalue decomposition, to yield

y = UY =
M−1∑
m=0

hmLm x = H(L)x

= UH(Λ)UTx = UH(Λ)X, (3.36)
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where we used the property of the eigendecomposition of matrix
polynomial,

H(L) =
M−1∑
m=0

hmLm =
M−1∑
m=0

hmUΛmUT = UH(Λ)UT (3.37)

described in Section 3.2.3 in Part I, and the notation

H(Λ) =
M−1∑
m=0

hmΛm (3.38)

to obtain
Y = H(Λ)X

or in an element-wise form

Y (k) = H(λk)X(k), k = 0, 1, . . . , N − 1.

In the vertex domain, the n-th element of the output signal, y =
UH(Λ)UTx, of a system on a graph is given by

y(n) =
N−1∑
k=0

N−1∑
i=0

x(i)uk(i)H(λk)uk(n) =
N−1∑
i=0

x(i)hn(i), (3.39)

for which the transfer function is defined by

H(λk) = h0 + h1λk + · · ·+ hM−1λ
M−1
k (3.40)

and the graph impulse response is

hn(i) =
N−1∑
k=0

H(λk)uk(n)uk(i) = Tn{h(i)}. (3.41)

Remark 16: The expression for y(n) in (3.39) can be interpreted as a
generalized convolution on graphs, which is performed using a generalized
graph shift of the impulse response, hn(i), in the vertex domain (see
also Part III).

We next proceed to describe the generalized convolution on graphs
through responses to the unit delta pulses. For illustration, consider the
delta function located at a graph vertex m, given by

δm(n) =

1, for m = n

0, for m 6= n
(3.42)
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with the corresponding GFT

∆(k) =
N−1∑
n=0

δm(n)uk(n) = uk(m), (3.43)

which is defined based on graph Laplacian eigenvectors.
Observe that, similar to the standard time domain, any graph signal

can be written as a sum of delta functions at the graph vertices, that is

x(n) =
N−1∑
i=0

x(i)δn(i)

or in a vector form

x =
N−1∑
i=0

x(i)δi,

where δi is a vector with elements δ(n − i), as in (3.42). Then, the
system output, y, takes the form

y =
M−1∑
m=0

hmLm x = UH(Λ)UTx

=
N−1∑
i=0

x(i)UH(Λ)UTδi

and its elements are obtained as

y(n) =
N−1∑
i=0

x(i)
N−1∑
k=0

uk(n)H(λk)uk(i) =
N−1∑
i=0

x(i)hn(i),

where hn(i) are related to H(λk) as in (3.41).
Remark 17: According to (3.36), the form of the graph convolution
operator for a vertex n, given in (3.39), is localized within the (M − 1)-
neighborhood of the vertex n. This localization property is even more
important for large graphs.

A generalized convolution for two arbitrary graph signals will be
addressed next.
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3.9 Convolution of Signals on a Graph

Consider two graph signals, x(n) and h(n). A generalized convolution
operator for these two signals on a graph is defined using their graph
Laplacian spectra (Shuman et al., 2016), based on the assumption that
the spectrum of a convolution on a graph

y(n) = x(n) ∗ h(n)

is equal to the product of the corresponding spectra of graph signals,
x(n) and h(n), that is

Y (k) = X(k)H(k), (3.44)

in the element-wise form. The output of the generalized graph convo-
lution operation, x(n) ∗ h(n), is then equal to the inverse GFT of the
spectral product Y (k) in (3.44), that is

y(n) = x(n) ∗ h(n)

=
N−1∑
k=0

Y (k)uk(n) =
N−1∑
k=0

X(k)H(k)uk(n),

where

H(k) =
N−1∑
n=0

h(n)uk(n). (3.45)

Notice the difference between the definition of H(k) in (3.45) and H(λk)
in (3.40). Both these forms will be discussed in more detail in the next
section.

Shift on a graph – an alternative definition. The above framework
of generalized graph convolution can also serve as a basis for a convenient
definition of a shift on a graph. Consider the graph signal, h(n), and
the delta function located at a vertex m. Here, we will use hm(n) to
denote the shifted version of the graph signal, h(n), “toward” a vertexm.
This kind of shifted signal will be defined following the reasoning in
classical signal processing where the shifted signal is obtained as a
convolution of the original signal and an appropriately shifted delta
function. Therefore, a graph shifted signal is here defined through a
generalized graph convolution, h(n) ∗ δm(n), whose GFT is equal to
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H(k)uk(m), according to (3.43) and (3.44). The graph shifted signal is
then the IGFT of H(k)uk(m), that is

hm(n) = h(n) ∗ δm(n) =
N−1∑
k=0

H(k)uk(m)uk(n). (3.46)

The same relation follows when calculating the inverse GFT of
X(k)H(k), to yield

y(n) =
N−1∑
k=0

X(k)H(k)uk(n)

=
N−1∑
k=0

N−1∑
m=0

x(m)uk(m)H(k)uk(n)

=
N−1∑
m=0

x(m)hm(n) = x(n) ∗ h(n), (3.47)

where

hm(n) =
N−1∑
k=0

H(k)uk(m)uk(n) = Tm{h(n)} (3.48)

is another version of graph shifted signal. Since the definition of H(k)
as a GFT of a signal h(n) differs from that in (3.40), these produce
different shift operations, which are respectively denoted by Tm{h(n)}
and Tm{h(n)}.
Remark 18: Note that neither of the two shift operations, (3.41) or
(3.48), satisfy the property that a shift by 0 is equal to the original
signal, h0(n) 6= h(n).

Example 7: Consider a signal on the graph from Figure 3.4(a), which
is defined by its graph Laplacian GFT, given by

H(k) = exp(−2λkτ),

with τ = 0.1573. All shifted signals, hm(n) = Tm{h(n)}, obtained using
the shift operator in (3.48), are shown in Figure 3.15.
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Figure 3.15: An example of graph shift operator. Top: The graph signal defined by
its Laplacian GFT, given by H(k) = exp(−2λkτ). Left and right column: The graph
signals hm(n) “shifted” for m = 0 to m = 7, calculated using hm(n) = Tm{h(n)} in
(3.48). The shifted signal is shown both on the vertex index line (left) and on the
graph itself (right).
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3.10 The z-Transform of a Signal on a Graph

The relation between the graph signal shift operators, Tm{h(n)} and
Tm{h(n)}, which are respectively used to define the generalized convolu-
tions in (3.40) and (3.47), can be established based on the definitions of
H(λk) and H(k). Consider H(λk), defined by (3.40), as a graph Fourier
transform of signal h(n). The samples of the graph signal h(n) are then
equal to the IGFT of H(λk), that is

h(n) =
N−1∑
k=0

H(λk)uk(n)

while the system coefficients hn, n = 0, 1, . . . ,M − 1, are related to
H(λk) by (3.40), that is

H(λk) = h0 + h1λk + · · ·+ hM−1λ
M−1
k .

For M = N , the vector forms of the last two relations are

[h(0), h(1), . . . , h(N − 1)]T = UH(Λ)
H(Λ) = Vλ[h0, h1, . . . , hN−1]T

so that the signal, h(n), and the coefficients, hn, can be related as

[h0, h1, . . . , hN−1]T = V−1
λ UT [h(0), h(1), . . . , h(N − 1)]T . (3.49)

Remark 19: In classical DFT (the case of a directed circular graph
and its adjacency matrix, when UH should be used instead of UT ), the
signal samples, h(n), which are obtained as the inverse DFT of H(λk)
and the system coefficients, hn, are the same, since the eigenvalues
are equal to the corresponding shift operators in the spectral domain,
λk = exp(−j2πk/N) and uk(n) = exp(j2πnk/N)/

√
N = λ−nk /

√
N ,

with hn = h(n)/
√
N and

H(k) = 1√
N

N−1∑
n=0

h(n)e−j2πnk/N .

Therefore, for classical DFT analysis, the following relation holds
√
NVλ = (UH)−1.
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This relation is obvious from (3.24) and u∗k(n) = λnk/
√
N , and will be

used to define the z-transform of a graph signal.
The z-transform of graph signals. For a given graph signal x =
[x(0), x(1), . . . , x(N − 1)]T , following the reasoning as in (3.49), the co-
efficients of a system [x0, x1, . . . , xN−1]T which corresponds to a system
transfer function that would have the same GFT as the graph signal
itself are

[x0, x1, . . . , xN−1]T = V−1
λ UT [x(0), x(1), . . . , x(N − 1)]T

or
[x0, x1, . . . , xN−1]T = V−1

λ [X(0), X(1), . . . , X(N − 1)]T .
The graph z-transform of a signal x is therefore equal to the classic
z-transform of coefficients [x0, x1, . . . , xN−1]T ,

X(z−1) = Z{xn} = x0 + x1z
−1 + · · ·+ xN−1z

−(N−1) (3.50)

so that the following holds

Y (z−1) = H(z−1)X(z−1).

The output signal, y(n), can now be obtained as

[y(0), y(1), . . . , y(N − 1)]T = UVλ[y0, y1, . . . , yN−1]T ,

where the output graph signal, y(n), results from the inverse z-transform
of the coefficients, yn, that is

Y (z−1) = Z{yn} = y0 + y1z
−1 + · · ·+ yN−1z

−(N−1).

The z-transform representation in the complex valued z-domain may
be of interest when the eigenvalues are complex-valued, which occurs
in the decomposition of adjacency matrices of directed graphs. For
example, for the graph from Figure 2.1(b) in Part I and its adjacency
matrix, the eigenvalues are shown in Figure 3.16.

Definition: The analytic graph signal, Xa(k), and the graph Hilbert
transform, Xh(k), are defined in the spectral domain as

Xa(k) = (1 + sign(=(λk)))X(k)
Xh(k) = j sign(=(λk))X(k)
X(k) = Xa(k) + jXh(k),
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Figure 3.16: Complex eigenvalues of the adjacency matrix of a directed graph in
Figure 2.1(b) in Part I.

where =(λk) denotes imaginary part of λk. If these relations are ap-
plied to the standard DFT with λk = e−j2πk/N we would obtain the
corresponding classical signal processing definitions.

3.11 Shift Operator in the Spectral Domain

A shift operation in the spectral domain can be defined in the same
way as the shift in the vertex domain. Consider a product of two graph
signals, x(n)y(n), defined on an undirected graph. The GFT of this
product then takes the form

GFT{x(n)y(n)} =
N−1∑
n=0

x(n)y(n)uk(n)

=
N−1∑
n=0

N−1∑
i=0

X(i)ui(n)y(n)uk(n) =
N−1∑
i=0

X(i)Yi(k),

where

Yi(k) =
N−1∑
n=0

y(n)ui(n)uk(n)

can be considered as a shift of Y (k) by i spectral indices.
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Remark 20: As desired, a shift by i = 0 in the spectral domain produces
the original value, Y0(k) = Y (k), up to a constant factor 1/

√
N . This

relation does not hold for the shift operators in the vertex domain.

3.12 Parseval’s Theorem on a Graph

Consider two graph signals, x(n) and y(n), which are observed on an
undirected graph and their spectra, X(k) and Y (k). Then, Parseval’s
theorem has the form

N−1∑
n=0

x(n)y(n) =
N−1∑
k=0

X(k)Y (k) (3.51)

and it holds for any two graph signals.
To prove Parseval’s theorem on graphs, consider

N−1∑
n=0

x(n)y(n) =
N−1∑
n=0

[N−1∑
k=0

X(k)uk(n)
]
y(n)

=
N−1∑
k=0

X(k)
N−1∑
n=0

y(n)uk(n), (3.52)

to yield Parseval’s equivalence between the energies in the original
vertex and spectral domains. It has been assumed that the graphs are
undirected, so that U−1 = UT holds. This theorem is quite general and
applies to both the graph Laplacian and the adjacency matrix based
decompositions on undirected graphs.

3.13 Optimal Denoising

Consider a measurement, x, composed of a slow-varying graph signal, s,
and a fast changing disturbance, ε, to give

x = s + ε.
The aim is to design a filter for disturbance suppression (denoising),
the output of which is denoted by y.

The optimal denoising task may then be defined as a minimization
of the objective function

J = 1
2‖y− x‖22 + αyTLy. (3.53)
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Physically, the minimization of the first term 1
2‖y−x‖22 forces the output

signal y to be as close as possible to the available observations x, in
terms of the energy of their Euclidean distance (minimum error energy),
while the second term represent a measure of smoothness of y (see
Section 3.7). This is also physically meaningful, as the original input, s,
was low-pass and smoother than the disturbance, ε. The parameter α
provides a balance between the closeness of output, y, to x and the
output smoothness criterion.

To solve this minimization problem, we differentiate
∂J

∂yT = y− x + 2αLy = 0

which results in
y = (I + 2αL)−1x.

The spectral domain form of this relation follows from L = UTΛU,
Y = UTy, and X = UTx, to yield

Y = (I + 2αΛ)−1X.

The element-wise transfer function of the above spectral input/output
relation then takes the form

H(λk) = 1
1 + 2αλk

. (3.54)

Remark 21: For a small α, we have H(λk) ≈ 1, that is, an all-pass
behavior of (3.54), with no signal smoothing, which yields y ≈ x. On
the other hand, for a large α, H(λk) ≈ δ(k). The resulting y ≈ const.
is maximally smooth (a constant output, without any variation).

Example 8: The noisy signal from Figure 2.3 was filtered using the
optimal filter in (3.54) with α = 1, and the result is shown in Figure 3.17.
The achieved SNR was 19.16 dB.
Other cost functions. Among many possible alternatives, we will
introduce two more cost functions for graph signal denoising, which
exploit different constraints imposed on the solution.

Instead of enforcing the smoothness of the output signal, we may
instead desire that its deviation from a linear form (which would satisfy
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Figure 3.17: Graph signal denoising for a noisy signal from Figure 2.3, which is
filtered using an optimal filter in (3.54), with α = 1.

Ly = 0) is as small as possible. This can be achieved with the cost
function given by

J = 1
2‖y− x‖22 + α‖Ly‖22 = 1

2‖y− x‖22 + αyTL2y (3.55)

which yields a closed form denoising solution

y = (I + 2αL2)−1x

with the corresponding element-wise spectral domain relation H(λk) =
1/(1 + 2αλ2

k).
A combination of the two cost function forms in (3.53) and (3.55),

may provide additional flexibility in the design of the filter transfer
function, for example

J = 1
2‖y− x‖22 + αyTLy + βyTL2y

would yield the transfer function

H(λk) = 1
1 + 2αλk + 2βλ2

k

.
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This transfer function form can be further fine-tuned through the choice
of the parameters α and β. For example, if we desire the component
corresponding to λ1 6= 0 not to be attenuated, we would use α+βλ1 = 0.
Such a cost function can be straightforwardly extended to produce a
transfer function for M unattenuated components.

Sparsity promoting solutions. Some applications require to promote
the sparsity of the output graph signal, rather than its smoothness. Such
solutions then naturally rest upon compressive sensing theory which
requires the two-norm in the previous cost functions to be replaced with
the norms that promote sparsity. Two examples of such cost functions
are

J = 1
2‖y− x‖22 + α‖Ly‖pp (3.56)

and

J= 1
2

N−1∑
n=0

(y(n)−x(n))2+α
N−1∑
n=0

(
N−1∑
m=0

Wmn(y(n)− y(m))2
)p/2

(3.57)

with 0 ≤ p ≤ 1.
Remark 22: The zero-norm, `0, with p = 0, is the best in promoting
sparsity, since for p = 0 the second term in the cost function in (3.56)
counts (and minimizes) the number of nonzero elements in Ly. Mini-
mization of the sparsity of Ly promotes constant (or linear) solutions
for y, with the smallest number of discontinuities (nonzero elements
of vector Ly). In the second cost function in (3.57), the zero-norm
promotes the smallest possible number of nonzero elements of the term∑N−1
m=0 Wmn(y(n) − y(m))2; this is also known as the total variation

(TV) approach. However, the minimization of such objective functions
cannot be achieved in an analytic way, like in the standard MSE case
of p = 2.

On the other hand, the choice of p = 1 with one-norm, `1, makes
the above cost functions convex, allowing for gradient descend methods
be used to arrive at the solution, while producing the same solution
as with p = 0, under some mild conditions. The `1-norm serves as an
analytic proxy to the `0-norm (Kim et al., 2009).
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3.14 Summary of Shift Operators for Systems on a Graph

The most common choices for the graph shift operator are: (i) adjacency
matrix, S = A, and (ii) graph Laplacian, S = L.

Various other operators can and have been used as shift operators in
systems on a graph, like: (a) normalized versions of the adjacency matrix,
(b) normalized graph Laplacian, S = D−1/2LD−1/2, (c) random walk
(diffusion) matrix, S = D−1W (Heimowitz and Eldar, 2017; Stanković
et al., 2019a), signed Laplacian, and Laplacian for directed graphs.

Various shift operators produce corresponding eigenvector (signal
decomposition) bases, such as those analyzed in Part I and given in
Table 3.1.

A generalized form of the output from a system on a graph can then
be written as

y = h0S0 x + h1S1 x + · · ·+ hM−1SM−1 x =
M−1∑
m=0

hmSm x, (3.58)

where, by definition S0 = I, while h0, h1, . . . , hM−1 are the system
coefficients.

In the next sections we will consider in detail the adjacency matrix
of unweighted (directed and undirected graphs) and graph Laplacian of
directed graphs.

Table 3.1: Summary of graph spectral basis vectors

Operator Eigenanalysis
Graph Laplacian Luk = λkuk
Generalized eigenvectors Luk = λkDuk

of graph Laplacian
Normalized graph Laplacian D− 1

2 LD− 1
2 uk = λkuk

Adjacency matrix Auk = λkuk
Normalized adjacency matrix

(
1

λmax
A
)
uk = λkuk

Laplacian for directed graphs Suk = λkuk
L = Din −W S = I− L

Sign Laplacian Lauk = λkuk
La = Da −W Da(m,m) =

∑N−1
n=0 |Wmn|



4
Subsampling, Compressed Sensing, and

Reconstruction

Graphs may comprise of a very large number of vertices, of the order of
millions or even higher. The associated computational and storage issues
bring to the fore the consideration of potential advantages of signal
subsampling and compressive sensing defined on graphs. We here present
several basic approaches to subsampling, along with their relations to
classical signal processing (Anis et al., 2016; Behjat et al., 2016; Chen
et al., 2015a,b,c, 2016; Leskovec and Faloutsos, 2006; Marques et al.,
2016; Narang and Ortega, 2011, 2012; Nguyen and Do, 2015; Puy et al.,
2018; Sakiyama and Tanaka, 2014; Segarra et al., 2015; Stanković, 2015;
Stanković et al., 2018c; Tanaka and Eldar, 2020; Tanaka and Sakiyama,
2014; Tremblay and Borgnat, 2016; Tsitsvero et al., 2016; Wang et al.,
2015).

4.1 Subsampling of Bandlimited Graph Signals

For convenience, we shall start from the simplest case where the con-
sidered graph signal is of a bandlimited nature. Such a signal can be
expressed as a linear combination of K < N eigenvectors of the graph

217
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Laplacian which exhibit the lowest smoothness indices,

x(n) =
K−1∑
k=0

X(k)uk(n), n = 0, 1, . . . , N − 1. (4.1)

The GFT domain coefficients of this (K-sparse) signal in the GFT
domain are of the following form

X = [X(0), X(1), . . . , X(K − 1), 0, 0, . . . , 0]T . (4.2)

Recall that a graph signal is sparse in the GFT domain if K � N .
The smallest number of graph signal samples, M , needed to recover the
sparse signal is therefore M = K < N . For stability of reconstruction,
it is common to employ K ≤M < N graph signal samples. The vector
of available graph signal samples will be referred to as the measurement
vector, and will be denoted by y, while the set of vertices (a random
subset of V = {0, 1, 2, . . . , N − 1}) over which the samples of graph
signal are available is denoted by

M = {n1, n2, . . . , nM}.

The measurement matrix can now be defined using the IGFT, x = U X,
of which an element-wise form is given by (4.1). The equations in
(4.1) corresponding to the available graph signal samples at vertices
n ∈M = {n1, n2, . . . , nM} then define the system

x(n1)
x(n2)

...
x(nM )

=


u0(n1) u1(n1) . . . uN−1(n1)
u0(n2) u1(n2) . . . uN−1(n2)

...
... . . . ...

u0(nM ) u1(nM ) . . . uN−1(nM )




X(0)
X(1)
...

X(N − 1)

 ,
for which the matrix form is given by

y = AMNX, (4.3)

where AMN is the measurement matrix and the measurements vector

y = [x(n1) x(n2) . . . x(nM )]T

consists of the available graph signal samples. In general, since M < N

this system is underdetermined, and cannot be solved uniquely for X
without additional constraints.
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The assumption that the spectral representation of a signal contains
a linear combination of only K ≤M slowest varying eigenvectors allows
us to exclude the GFT coefficients X(K), X(K + 1), . . . , X(N − 1) in
(4.2) since these are zero-valued and do not contribute to the formation
of graph signal samples. With this in mind, the M × N system of
equations in (4.3) is reduced to the following M ×K system

x(n1)
x(n2)

...
x(nM )

=


u0(n1) u1(n1) . . . uK−1(n1)
u0(n2) u1(n2) . . . uK−1(n2)

...
... . . . ...

u0(nM ) u1(nM ) . . . uK−1(nM )




X(0)
X(1)
...

X(K − 1)

 ,
or, in the matrix form

y = AMKXK , (4.4)

where the definitions of the reduced measurement matrix AMK and
the reduced GFT vector XK are obvious. For M = K independent
measurements, this system can be solved uniquely, while for M > K

the system is typically overdetermined and the solution is found in the
least squares (LS) sense, as Stanković et al. (2018c)

XK = (AT
MKAMK)−1AT

MKy = pinv(AMK)y, (4.5)

where pinv(AMK) = (AT
MKAMK)−1AT

MK is the matrix pseudo-inverse
of AMK .

After XK is calculated, all GFT values follow directly as X =
[X(0), X(1), . . . , X(K − 1), 0, 0, . . . , 0]T , where the assumed zero values
are added for X(K), X(K + 1), . . . , X(N − 1). The graph signal is
then recovered at all vertices using x = U X.

Recovery condition. The signal reconstruction in (4.5) is possible if
the inverse (AT

MKAMK)−1 exists, which means that

rank(AT
MKAMK) = K. (4.6)

In terms of the matrix condition number, this requirement is equiva-
lent to

cond(AT
MKAMK) <∞,

that is, a nonsingular AT
MKAMK .
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Remark 23: For noisy measurements of graph signals, the noise in the
reconstructed GFT coefficients is directly related to the input noise
and the matrix condition number. If we are able to choose the available
signal sample positions (vertices), then the sampling strategy would be
to find the set of measurements so that these produce the condition
number which is as close to unity as possible (for stability and reduced
influence of noise).

Example 9: To demonstrate the principle of reconstruction from a
reduced set of graph signal samples, consider the values of a graph
signal at M = 3 vertices, given by

y = [x(0), x(2), x(6)]T = [1.140, 0.996, 0.563]T ,

as shown in Figure 4.1 (upper panel). Assume that the graph signal
is of a bandlimited type, with K = 2 lowest nonzero GFT coefficients
X(0) and X(1). The GFT coefficients of this graph signal can then be
reconstructed from

y = A32X2, (4.7)

that follows from the definition in (4.1) for the assumed available signal
samples, x(n), at the three vertices n = 0, n = 2, and n = 6, for two
nonzero coefficients, X(0) and X(1),x(0)

x(2)
x(6)

 =

u0(0) u1(0)
u0(2) u1(2)
u0(6) u1(6)

[X(0)
X(1)

]
.

The rank of the matrix A32 is 2. The corresponding matrix condition
number is cond(AT

32A32) = 4.33, while the reconstructed nonzero values
of the GFT are X(0) = 2 and X(1) = 1, to yield the reconstructed graph
signal x = U X, with X = [2, 1, 0, 0, 0, 0, 0, 0]T , as shown in Figure 4.1
(lower panel).

Remark 24: For a directed circular graph, with the eigenvectors
uk(n) = exp(j2πnk/N)/

√
N , the above downsampling and interpo-

lation relations are identical to those in classical signal processing
(Stanković, 2015).
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Figure 4.1: Illustration of the subsampling of a lowpass graph signal. Top: A graph
signal with missing samples at vertices 1, 3, 4, 5, and 7. Bottom: The reconstructed
graph signal.

4.2 Subsampling of Sparse Graph Signals

The subsampling of graph signals which are sparse in the GFT domain
will be next considered for the cases of both known and unknown
positions of the nonzero GFT coefficients. This is a generalization of the
previous case with bandlimited signals when the positions of nonzero
GFT coefficients are assumed to be known and located at the spectral
indices from 0 to K − 1.

Known Coefficient Positions in GFT

The previous analysis in Section 4.1 holds not only for a bandlimited
type of the graph signal, x, and its corresponding GFT, X, but also
for case of GFT, X, with K nonzero values at arbitrary, but known
spectral positions, that is,

X(k) = 0 for k /∈ K = {k1, k2, . . . , kK}.
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Similar to (4.3), the corresponding system of equations
x(n1)
x(n2)

...
x(nM )

=


uk1(n1) uk2(n1) . . . ukK (n1)
uk1(n2) uk2(n2) . . . ukK (n2)

...
... . . . ...

uk1(nM ) uk2(nM ) . . . ukK(nM )



X(k1)
X(k2)

...
X(kK)

 , (4.8)

of which the matrix form is y = AMKXK , is solved for the nonzero
spectral values X(k), k ∈ K, in the same way as in the case of a
bandlimited signal presented in Section 4.1.

Support Matrices, Subsampling and Upsampling

In graph signal processing literature, the subsampling problem is often
defined using the so called support matrices (Chen et al., 2015c; Lorenzo
et al., 2018; Tsitsvero et al., 2016). Assume that a graph signal, x,
is subsampled in such way that it is available on a subset of vertices
n ∈ M = {n1, n2, . . . , nM}, rather than on the full set of vertices. For
this subsampled signal, we can define its upsampled version, xs, by
adding zeros at the vertices where the signal is not available. Using a
mathematical formalism, the subsampled and upsampled version, xs, of
the original signal, x, is then

xs = Bx, (4.9)

where the support matrix B is an N × N diagonal matrix with ones
at the diagonal positions which correspond to M = {n1, n2, . . . , nM}
and zeros elsewhere. The subsampled and upsampled version, xs, of the
signal x is obtained is such a way that the signal x is subsampled on
a reduced set of vertices, and then upsampled by adding zeros at the
original signal positions where the subsampled signal is not defined.

Recall that in general a signal, x, with N independent values can-
not be reconstructed from its M < N nonzero values in xs, without
additional constraints. However, for graph signals which are also sparse
in the GFT domain, the additional constraint is that the signal, x, has
only K ≤ M nonzero coefficients in the GFT domain, X = UTx, at
k ∈ K = {k1, k2, . . . , kK}, so that the relation

X = CX
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holds, where the support matrix C is an N ×N diagonal matrix with
ones at the diagonal positions which correspond to K = {k1, k2, . . . , kK}
and zeros elsewhere. Note that the presence of the GFT, X, is on both
sides of this equation, contrary to xs = Bx in (4.9). The reconstruction
formula then follows from

xs = Bx = BUX = BUCX

as X = pinv
(
BUC

)
xs. The inversion

X = CX = pinv
(
BUC

)
xs

is possible for K nonzero coefficients of CX if the rank of BUC is K
(if there are K linearly independent equations), that is

rank(C) = K = rank
(
BUC

)
.

This condition is equivalent to (4.6) since the nonzero part of matrix
BUC is equal to AMK in (4.8).

Unknown Coefficient Positions

The reconstruction problem is more complex if the positions of nonzero
spectral coefficients K = {k1, k2, . . . , kK} are not known. This case has
been addressed within standard compressive sensing theory and can be
formulated as

min ‖X‖0 subject to y = AMNX, (4.10)

where ‖X‖0 denotes the number of nonzero elements in X (`0 pseudo-
norm).

While the ways to solve this minimization problem are manifold, we
here adopt a simple, two-step approach:

1. Estimate the positions K = {k1, k2, . . . , kK} of the nonzero coeffi-
cients using M > K signal samples.

2. Reconstruct the nonzero coefficients of X at the estimated posi-
tions K, along with the signal x at all vertices, using the methods
for the reconstruction with the known nonzero coefficient posi-
tions, described in Sections 4.1 and 4.2. The nonzero coefficients
at positions K are calculated as XK = pinv(AMK)y.
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The nonzero positions of the GFT in Step 1 can be estimated
through the projection of measurements (available signal samples), y,
on the measurement matrix

AMN =


u0(n1) u1(n1) . . . uN−1(n1)
u0(n2) u1(n2) . . . uN−1(n2)

...
... . . . ...

u0(nM ) u1(nM ) . . . uN−1(nM )


to give

X0 = AT
MNy, (4.11)

where the positions of K largest values in absolute values of X0 are
used as an estimate of the nonzero positions, K.

This procedure can also be implemented in an iterative way
(Stanković et al., 2018c), where:

(i) In the first iteration we assume K = 1 and proceed to estimate
the largest spectral component (absolute value) in the graph
signal. Upon determining its position as k1 = argmax|AT

MNy|,
the initially empty set of the nonzero positions becomes K = {k1}.
The reconstructed vector y1 = A1X1, where X1 = pinv(AM1)y,
is then removed from the measurements, y. In this case, the matrix
AM1 is a column of the matrix AMN defined by the index k1. The
difference e = y − y1 is used as the measurement vector in the
next step.

(ii) The position of the second largest spectral component in the graph
signal is estimated by solving k2 = argmax|AT

MNe|. The set of
nonzero positions now becomes K = {k1, k2}. The first and the
second component of the graph signal are now (re)estimated as
X2 = pinv(AM2)y, where the matrix AM2 is a submatrix of the
measurement matrix, AMN , which consists of the columns defined
by the indices k1 and k2. The reconstructed vector y2 = A2X2,
is removed from the measurements, y, with the error, e = y− y2,
now acting as the new measurement vector.

(iii) The procedure is iteratively repeated K times or until the re-
maining measurement error values in e are negligible. In the cases
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Figure 4.2: Compressive sensing on graphs. (a) Available samples (measurements),
y = [x(2), x(3), x(4), x(5), x(7)]T , with missing samples at n = 0, 1, 6. (b) Recon-
structed signal, x, over the whole set of vertices. (c) Initial estimate of the GFT,
X0(k), (left), and the reconstructed sparse GFT, X(k), (right).

when the sparsity, K, is unknown, the procedure is iterated until
‖e‖2 < ε, where ε is a predefined precision.

Example 10: Consider a sparse graph signal, of the sparsity degree
K = 2, measured at vertices n = 2, 3, 4, 5, and 7, which takes the values

y = [0.707, 1.307, 0.407, 1.307, 0.407]T ,

as shown in Figure 4.2(a). Our task is to reconstruct the full signal,
that is, to find the missing samples x(0), x(1), and x(6).

To estimate positions of the nonzero elements in the GFT, X, the
initial estimate, X0, is calculated for given measurements, y, according
to (4.11). The positions of K = 2 largest values in |X0| are estimated
as positions of the nonzero elements in X. In the considered case,
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K = {k1, k2} = {0, 3}, as shown in Figure 4.2(c). The GFT coef-
ficients are then reconstructed for the sparsity degree K = 2, as
X2 = pinv(A52)y, resulting in X(0) = 2, X(3) = 1.2, as illustrated
in Figure 4.2(c–right). Finally, the reconstructed graph signal at all
vertices, x = UX, is shown in Figure 4.2(b).

Unique Reconstruction Conditions

When the positions of the nonzero coefficients are not known (stan-
dard compressive sensing setup), the uniqueness of the solution can be
compromised. To this end, it is crucial to establish that, for a given
reduced set of the graph signal samples at vertices M, the set of nonzero
positions, K, of the sparse vector, X, is unique. In order to define other
unique reconstruction conditions, we shall consider again the solution to
y = AMNX which assumes a minimum number of nonzero coefficients
in X. Assume that the sparsity degree K is known, then a set of K
measurements would yield a possible solution, XK , for any combination
of K nonzero coefficients in X. For another set of K measurements, we
would obtain another set of possible solutions, XK . Then, a common
solution between these two sets of solutions would be the solution to
our problem. For a unique solution, there are no two different K-sparse
solutions X(1)

K and X(2)
K if all possible matrices, AT

M2KAM2K , are non-
singular. Namely, both of these two different solutions would satisfy
measurement equations,

AM2K

X(1)
K

0K

 = y and AM2K

 0K
X(2)
K

 = y,

where AM2K = [A(1)
MK A(2)

MK ]. Obviously, if we subtract these two
matrix equations we get a zero-vector on the right-side and a nonzero
solution for the resulting vector,

X2K =
[

X(1)
K

−X(2)
K

]
,

requires the zero-valued determinant of AM2K . The nonzero determinant
of AM2K guarantees that two such, nonzero solutions, X(1)

K and X(2)
K ,
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cannot exist. If all possible submatrices AM2K of the measurement
matrix AMK are nonsingular, then two solutions of sparsity K cannot
exist, and the solution is unique. The requirement that all reduced
measurement matrices corresponding to a 2K-sparse X are nonsingular
can be written in several forms, listed below

det{AT
M2KAM2K} = d1d2 . . . d2K 6= 0

cond{AT
M2KAM2K} = dmax

dmin
≤ 1 + δ2K

1− δ2K
<∞.

These conditions are satisfied if dmin > 0.
Remark 25: In classical compressive sensing, it is commonly assumed
that the measurement matrix is normalized in such a way that the
energy of each column is equal to one. Therefore, to be able to directly
use and/or compare the results from classical compressive sensing to
those for graph data, it is convenient to normalize the matrix AMK so
that its columns have unit energy. This is equivalent to the condition
that all diagonal elements of AT

MKAMK are equal to one.
Upon normalization, the measurement relation (4.8), becomes

y = AMKXK = AMKN−1
K NKXK ,

where NK is a diagonalK×K matrix, of which the elements are equal to
the square root of the energy of the corresponding columns in AMK , that
is, NK(k) =

√∑
m∈M |uk(m)|2. Upon introducing ĀMK = AMKN−1

K

and X̄K = NKXK , with the elements ūk(n) = uk(n)/NK(k) and
X̄(k) = X(k)NK(k), we obtain

y = ĀMKX̄K . (4.12)

With that, we may directly use the standard compressive sensing results
derived for the normalized measurement matrices. After the normalized
vector of sparse elements, X̄K = NKXK , is found, the reconstruction
of nonzero elements is given by XK = N−1

K X̄K , and the vertex domain
signal now becomes x = UX.

The reconstruction of a K-sparse signal is unique if the restricted
isometry property (RIP) is satisfied for a 2K-sparse signal, that is

1− δ2K ≤ dmin ≤
‖ĀM2KX̄2K‖22
‖X̄2K‖22

≤ dmax ≤ 1 + δ2K
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where di are the eigenvalues of ĀT
M2KĀM2K , dmin is the minimum

eigenvalue, dmax is the maximum eigenvalue, and δ2K is the restricted
isometry constant. All these conditions are satisfied if dmin > 0 or
0 ≤ δ2K < 1.

Noisy data require robust estimators, and thus more strict bounds
on dmin and δ2K . For example, it has been shown that the condition
0 ≤ δ2K < 0.41 will guarantee stable inversion of AT

M2KAM2K and
consequently a robust reconstruction for noisy signals; in addition, this
bound will allow for convex relaxation of the reconstruction problem
(Candes, 2008). Namely, the previous problem, (4.10), can be solved us-
ing the convex relaxation from the norm-zero to a norm-one formulation
given by

min ‖X‖1 subject to y = AMNX. (4.13)

The solutions to these two problem formulations are the same if the
measurement matrix satisfies the previous conditions, with 0 ≤ δ2K <

0.41.
Once the reconstruction of graph signals is formulated within the

compressive sensing framework in (4.10) and (4.13), it can be solved
using various well-established optimization techniques in this field, such
as gradient-based approaches, Bayesian-based reconstruction, and linear
programming methods (Candes, 2008; Stanković et al., 2018c).

As is the case with the standard compressive sensing problem, the
initial GFT estimate, X0, will produce correct positions of the nonzero
elements, X(k), and the reconstruction will be unique, if

K <
1
2

(
1 + 1

µ

)
,

where µ is equal to the maximum value of the inner product among any
two columns of the measurement matrix, ĀMN (µ is referred to as the
coherence index) (Stanković et al., 2020).

For illustration of the uniqueness of reconstruction, recall that a
K-sparse signal can be written as

x(n) =
K∑
i=1

X(ki)uki(n) =
K∑
i=1

X̄(ki)ūki(n),



4.3. Measurements as Linear Combinations of Samples 229

of which the initial estimate in (4.11) is equal to X̄0 = ĀT
MNy =

ĀT
MNĀMNX̄, or element-wise

X̄0(k) =
K∑
i=1

X̄(ki)
∑
n∈M

ūk(n)ūki(n) =
K∑
i=1

X̄(ki)µ(k, ki),

where M = {n1, n2, . . . , nM} and

µ(k, ki) =
∑
n∈M

ūk(n)ūki(n).

If the maximum possible absolute value of µ(k, ki) is denoted by µ =
max |µ(k, ki)| (coherence index of AMN ) then, in the worst case scenario,
the amplitude of the largest component, X(ki), (assumed with the
normalized amplitude 1), will be reduced for the maximum possible
influence of other equally strong (unity) components 1− (K − 1)µ, and
should be greater than the maximum possible disturbance at k 6= ki,
which is Kµ. From 1 − (K − 1)µ > Kµ, the unique reconstruction
condition follows; see also Stanković et al. (2018c) and Stanković et al.
(2020).

4.3 Measurements as Linear Combinations of Samples

It should be mentioned that if some spectrum coefficients of a graph
signal are strongly related to only a few of the signal samples, then
these signal samples may not be good candidates for the measurements.
Example 11: Consider a graph with one of its eigenvectors of the
form close to ui(n) = δ(n − m). This case is possible on graphs, in
contrast to the classic DFT analysis where the basis functions are
spread over all sensing instants (vertices). A similar scenario is also
possible in wavelet analysis or short time Fourier transforms, which also
allow for some of the transform coefficients to be related to only a few
of the signal samples. In the assumed simplified case, if a considered
sparse signal contains a nonzero coefficient, X(i), corresponding to
ui(n) = δ(n−m), then all information about X(i) is contained in the
graph signal sample x(m) only. This is prohibitive to the principle of
reduced number of samples, since an arbitrary set of available samples
may not contain x(m).
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In classical and graph data analysis this class of problems is solved
by defining a more complex form of the measurements, y(n), through
linear combinations of all signal samples rather than the original sam-
ples themselves. In this way, each measurement, y(n), will contain
information about all signal samples, x(n), n = 0, 1, . . . , N − 1.

Such measurements are linear combinations of all signal samples,
and are given by

y(1)
y(2)
...

y(M)

=


b11 b12 . . . b1N
b21 b12 . . . b2N
...

... . . . ...
bM1 bM2 . . . bMN




x(0)
x(1)
...

x(N − 1)

 ,
or in a matrix form

y = BMNx.
The weighting coefficients for the measurements, bmn, in the matrix,
BMN , may be, for example, drawn from a Gaussian random distribution.

For reconstruction, the sparsity of a graph signal, x, should be again
assumed in the GFT domain. The relation of the measurement vector, y,
with this sparsity domain vector of coefficients, X, is then given by

y = BMNx = BMNUX = AMNX.

The reconstruction is now obtained as a solution to

min ‖X‖0 subject to y = (BMNU)X

or as a solution of the corresponding convex minimization problem,

min ‖X‖1 subject to y = (BMNU)X,

as described in Section 4.2.

4.4 Aggregate Sampling

A specific form of a linear combination of graph signals is referred to as
aggregate sampling.

For clarity, we shall first establish an interpretation of sampling in
classical signal processing through its graph counterpart – sampling on
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a directed circular graph (Figure 3.2). Consider a graph signal, x, at a
vertex/instant n. If the signal is observed at this vertex/instant only,
then its value is y0(n) = x(n). Upon applying the graph shift operator,
we have y1 = Ax, then for the same vertex, n, we have y1(n) = x(n−1).
If we continue this “shift and observe” operation on the directed circular
graph N times at the same vertex/instant, n, we will eventually have all
signal values x(n), x(n− 1), . . . , x(n−N + 1) observed at the vertex n.

To proceed with signal reconstruction, observe that if the shifts
are stopped after M < N steps, the available signal samples will
be x(n), x(n − 1), . . . , x(n − M + 1). From this reduced set of mea-
surements/samples we can still recover the full graph signal, x, using
compressive sensing based reconstruction methods, if the appropriate
reconstruction conditions are met.

Principle of aggregate sampling on an arbitrary graph. The
same procedure can be applied to a signal observed in the same way on
an arbitrary graph. Assume that we observe the graph signal at only
one vertex, n, and obtain one graph signal sample

y0(n) = x(n),

which will be considered as the measurement y(0) = y0(n).
This graph signal may now be “graph shifted” to produce y1 = Ax.

Recall that in a one-step signal shift on a graph, all signal samples
will move by one step along the graph edges, as described in detail in
Section 3.1 and illustrated in Figure 4.3. The sample of a graph signal
at vertex n will now be a sum of all signal samples that have shifted to
this vertex. Its value is obtained as an inner product of the mth row of
the adjacency matrix, A, and the original signal vector, x. The value
of graph shifted signal at the vertex n, is therefore given by

y1(n) =
∑
m

Anmx(m),

and represents a linear combination of some of the signal samples, which
is now considered as the measurement y(1) = y1(n).

One more signal shift on the graph yields

y2(n) =
∑
m

A(2)
nmx(m),
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Figure 4.3: Principle of aggregate sampling. (a) A graph signal x. (b) Its graph
shifted version Ax. For example, for a graph signal value observed at the vertex
n = 7 in the graph in (a) the measurement is y(0) = x(7), and the aggregate
measurement at the same vertex, n = 7, after the graph signal is shifted, is equal to
y(1) = x(4) + x(5) + x(6) in (b). These two observations, y(0) and y(1), would be
sufficient to reconstruct a signal whose sparsity degree is K = 2 with nonzero values
at the known spectral index positions, k1 and k2, if the reconstruction condition (4.6)
is satisfied for the matrix AMN = BMNU at the specified spectral index positions.

where A(2)
nm are the elements of matrix A2 = AA (see Property M2 in

Part I, Section 2.3). Such an observed value, after two one-step shifts,
y2(n) at a vertex n, represents a new linear combination of some signal
samples and will be considered as the measurement y(2) = y2(n).

If we proceed with shifts M = N times, a system of N linear
equations, y = BMNx, is obtained from which all signal values, x(n),
can be calculated. If we stop atM < N , the signal can still be recovered
using compressive sensing based reconstruction methods if the signal is
sparse and the reconstruction conditions are met.
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Instead ofM signal samples (instants) at one vertex, we may use, for
example, P samples at vertex n and (M − P ) samples from a vertex m.
Other combinations of vertices and samples may be also used to obtain
M measurements and to fully reconstruct a signal.

4.5 Random Sampling with Optimal Strategy

Consider a realistic case of bandlimited signals on a graph. For conve-
nience, assume that they admit a representation through linear combi-
nations of K eigenvectors with the smallest eigenvalues, that is

x(n) =
K−1∑
k=0

X(k)uk(n).

Recall that, in graphs, the basis functions may be highly concentrated
at specific vertices; this means that for adequate graph sampling some
vertices are more important and are almost “must keep”, while some
vertices can be omitted (with a higher probability). For example, if
one of the eigenvectors, for k = 0, 1, . . . ,K − 1, is fully concentrated
at a certain vertex, then this vertex must be included in the sampling
scheme.

To this end, a sampling scheme with an adaptive strategy, proposed
by Puy et al. (2018), introduces the probability, pn, of a vertex n being
selected in the reduced set of signal samples (measurements) and finds
its optimal value using the graph weighted coherence.

To clarify this method, consider a signal which is equal to the delta
pulse at a vertex n = m, that is x(n) = δ(n−m). In the time domain,
the energy of this signal is completely concentrated at the vertex n = m,
with the GFT of this signal

∆m(k) =
N−1∑
n=0

x(n)uk(n) = uk(m).

The local graph weighted coherence then represents the energy of GFT
within the first K eigenvectors, and is given by

‖∆m‖22 =
K−1∑
k=0
|uk(m)|2 = ‖UT

Kx‖22 ≤ 1.
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The value of energy equal to 1 indicates that there exist a bandlimited
signal whose energy is completely concentrated at the vertex n = m,
and this vertex must be used in any successful sampling scheme. The
lower this value, the larger the spread of signal energy over vertices, so
that we can randomly pick any of these vertices.

With the probability of picking a vertex, pm, the graph weighted
coherence can now be defined as

νK = max
m
{p−1/2
m ‖∆m‖22}.

The optimal sampling distribution, p∗m, that minimizes the graph
weighted coherence is then equal to

p∗m = 1
K
‖∆m‖2.

This can be seen by recognizing that the energy of K normalized
eigenvectors equals to K, that is

K =
N−1∑
m=0

K−1∑
k=0
|uk(m)|2

since ∑N−1
m=0 |uk(m)|2 = 1, by definition. The above expression for p∗m

follows from

K =
N−1∑
m=0

K−1∑
k=0
|uk(m)|2 =

N−1∑
m=0

K−1∑
k=0

pm
|uk(m)|2
pm

≤ max
m

{
N−1∑
m=0

K−1∑
k=0

|uk(m)|2
pm

}
N−1∑
m=1

pm = ν2
K .

The sampling distribution, p∗n, is optimal in the sense that the
number of measurements needed to embed the set of K-bandlimited
signals is effectively reduced to its minimum value (Puy et al., 2018).
Example 12: Consider a very simple case of a graph with three dis-
connected components (sub-graphs). The number of vertices in these
graph components is N1 = 1 vertex, N2 = 2 vertices, and N3 = 4
vertices, denoted by n = 0, 1, 2, 3, 4, 5, 6, respectively. Assume that the
signal is constant over the three graph components, and only the three
(K = 3) lowest eigenvalues with λ0 = λ1 = λ2 = 0 are considered.
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The corresponding nonzero eigenvector elements are u0(n) = 1, for
n = 0, u1(n) = 1/

√
2, for n = 1, 2, and u2(n) = 1/

√
4, for n = 3, 4, 5, 6.

Intuitively, in order to recover this graph signal we must have at
least M = 3 samples; also each graph component should contain a
sample.

We will now compare the two strategies: (1) Fully random selection
of samples; and (2) Selection of samples with probabilities defined as

p∗m = 1
K
‖∆m‖22 = 1

K

K−1∑
k=0
|uk(m)|2 = 1

3

2∑
k=0
|uk(m)|2,

which results in p∗m = (1/3, 1/6, 1/6, 1/12, 1/12, 1/12, 1/12) for m =
(0, 1, 2, 3, 4, 5, 6). Obviously, when using the optimal sampling strat-
egy the probability of selecting M = 3 samples from different sets
is much higher than when the samples are chosen randomly with
pm = (1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7).

This kind of variable sampling density is also used in classical
compressive sensing to improve the density of samples where this is
needed due to signal variations. Two variants of this approach are
used: (1) with vertex replacement, when every selected vertex can be
chosen again; and (2) without vertex replacement, when a vertex can be
selected only once. Within the compressive sensing framework, taking
some samples several times means that these vertices are considered
with higher importance. Since the selection process accounts for the
importance of the vertices, we will assume the latter approach.

For large graphs, it is also very important to try to avoid the
eigenvector calculation and even to estimate the factor ‖∆m‖22 without
the eigendecomposition. One such method was introduced by Puy et al.
(2018) using random vectors and the property that an average of the
power of several random vectors, filtered by bandlimited filters to the
K lowest eigenvectors, can estimate the value of ‖∆m‖22. These filters
can be implemented using the described graph shifts.

Having in mind that the set of vertices,M, needs to be selected only
once to sample all K-bandlimited signals on a graph G, the problem
of the uniqueness of solution does not exist in this sampling setup, in
contrast to classical compressive sensing (meaning that in this case there
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is no need for sophisticated tools like the restricted isometry property,
since there is no possibility that two different sets of K nonzero elements,
with different indices k, satisfy the same measurements). Namely, here
we assume that the signal is bandlimited and with known indices of
nonzero spectral elements, X(k), that is, X(k) may assume nonzero
values only for k = 0, 1, 2, . . . ,K − 1. Once optimal sampling vertices
are selected, the problem reduces to the solution of

y = AMKXK , (4.14)

where the reduced measurement matrix, AMK , is well defined, without
any random combination of indices, while the reduced GFT vector,
XK , is already explained, with y containing the signal values at the
selected vertices. Since M ≥ K, the stability of this system solution is
well studied within linear algebra, with the condition number being the
best parameter for its description.

The reconstruction is performed using

XK = pinv(AMK)y

and
x = UKXK .

If the measurements, y, are noisy, then

y + ε = AMK(XK + XN ),

where ε denotes additive noise, and XK + XN is the reconstructed
vector which contains the true elements, XK , and the noise in the
reconstruction, XN . Then, the output signal-to-noise ratio is defined
by the condition number (ratio of the maximum and the minimum
eigenvalue, dmax and dmin, of the matrix AT

MKAMK), to yield

−10 log
(
dmax
dmin

)
≤ SNRi − SNR ≤ 10 log

(
dmax
dmin

)
,

where the input and output signal-to-noise ratios are defined as

SNRi = 10 log(‖y‖22 / ‖ε‖
2
2)

and
SNR = 10 log(‖XK‖22 / ‖XN‖22).
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Here, we have assumed that the columns of the measurement matrix
are energy normalized, for notation simplicity.

Other strategies for random sampling can be found, for example, in
Chen et al. (2015b, 2016) and Tanaka and Eldar (2020).



5
Filter Bank on a Graph

Subsampling and upsampling are the two standard operators used to
alter the scale at which the signal is processed. Subsampling of a signal
by a factor of 2, followed by the corresponding upsampling, can be
described in classical signal processing by

f(n) = 1
2(x(n) + (−1)nx(n)) = 1

2((1 + (−1)n)x(n)),

as illustrated in Figure 5.1.
This is the basic operation used in multiresolution approaches based

on filter banks and can be extended to signals on graphs in the following
way. Consider a graph with the set of vertices V. Any set of vertices
can be considered as a union of two disjoint subsets E and H, such that
V = E ∪H and E ∩H = ∅. The subsampling-upsampling procedure can
then be performed in the following two steps:

1. Subsample the signal on a graph by keeping only signal values on
the vertices n ∈ E , while not altering the original graph topology.

2. Upsample the graph signal by setting the signal values for the
vertices n /∈ E to zero.

238
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2

2 2

Figure 5.1: Principle of a signal, x(n), downsampling and upsampling in the classical
time domain.

This combined subsampling-upsampling operation produces a graph
signal

f(n) = 1
2(1 + (−1)βE(n))x(n),

where

βE(n) =

0, if n ∈ E
1, if n ∈ H.

The values of the resulting graph signal, f(n), are therefore f(n) = x(n)
if n ∈ E and f(n) = 0 elsewhere.

The vector form of the subsampled-upsampled graph signal, f(n),
which comprises all n ∈ V, is given by

f = 1
2(x + JEx) = 1

2(I + JE)x, (5.1)

where JE = diag((−1)βE(n)), n ∈ V.
The focus of our analysis will be on the two-channel wavelet filter

bank on a graph, shown in Figure 5.2. As in the classical wavelet
analysis framework for the time domain signals, such a filter bank
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+

Figure 5.2: Principle of a filter bank for a graph signal.

provides decomposition of a graph signal into the corresponding low-
pass (smooth) and high-pass (fast-varying) constituents. The analysis
side (left part of the system in Figure 5.2) consists of two channels with
filters characterized by the vertex domain operators HL(L) and HH(L),
with the corresponding spectral domain operators HL(Λ) and HH(Λ).
The operator HL(L) acts as a low-pass filter, transferring the low-pass
components of the graph signal, while the operator HH(L) does the
opposite, acting as a high-pass filter. The low-pass filter, HL(H), is
followed by a downsampling operator which keeps only the graph signal
values, x, at the vertices n ∈ E . Similarly, the high-pass filtering with
the operator HH(L), is subsequently followed by a downsampling to
the vertices n ∈ H. These operations are crucial to alter the scale at
which the graph signal is processed.

The synthesis side (right part in Figure 5.2), comprises the com-
plementary upsampling and filtering operations, aiming to perform
the graph signal reconstruction based on the upsampled versions,
1
2(I + JE)HL(L)x and 1

2(I + JH)HH(L)x, of signals obtained on the
filter bank analysis side. Therefore, upon performing the upsampling
of these signals onto the original set of vertices, V, by adding zeros to
the complementary sets of vertices, filtering is performed by adequate
low-pass, GL(L), and high-pass, GH(L), filters, to replace the zeros
with meaningful values, as required for a successful reconstruction of
the original signal. As in the classical wavelet analysis, to achieve the
perfect (distortion-free) reconstruction it is necessary to conveniently
design the analysis filters, HL(L) and HH(L), and the synthesis filters,
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GL(L) and GH(L), as well as to determine adequate downsampling and
upsampling operators.

It will be shown that the spectral folding phenomenon, described by
Equations (3.9)–(3.10) in Part I, characterized by the specific spectral
symmetry in the case of bipartite graphs, can be used to form the basis
for the two-channel filter bank framework discussed in this section.

Consider a graph signal, x, and the filter-bank as in Figure 5.2. If the
graph signal, x, passes through a low-pass analysis filter, HL(L), the out-
put signal is HL(L)x. According to (5.1), the downsampled–upsampled
form of the output signal, HL(L)x, is given by 1

2(I + JE)HL(L)x. After
the syntheses filter, GL(L), the graph signal output becomes

fL = 1
2GL(L)(I + JE)HL(L)x. (5.2)

The same holds for the high-pass part

fH = 1
2GH(L)(I + JH)HH(L)x, (5.3)

where JH = −JE = diag((−1)1−βE(n)) and

JH + JE = 0. (5.4)

The overall output is a sum of these two signals, as illustrated in
Figure 5.2, which after rearranging of terms gives

y = fL + fH = 1
2(GL(L)HL(L) +GH(L)HH(L))x

+ 1
2(GL(L)JEHL(L) +GH(L)JHHH(L))x. (5.5)

The perfect reconstruction condition, y = x, is then achieved if

GL(L)HL(L) +GH(L)HH(L) = 2I, (5.6)
GL(L)JEHL(L)−GH(L)JEHH(L) = 0. (5.7)

Spectral solution. For the spectral representation of the filter-bank
signals in the domain of Laplacian basis functions, we will use the
decomposition of the graph Laplacian in the form

F = UT f = 1
2(UTx + UTJEx) = 1

2(X + X(alias)), (5.8)

where X(alias) = UTJEx is the aliasing spectral component.
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In the case of bipartite graphs, the matrix operator UTJE produces
the transformation matrix UT with reversed (left–right flipped) order
of eigenvectors. This is obvious from (3.10) in Part I, since

UTJE = [u0 u1 . . . uN−1]TJE

=
[

u0E u1E uN−1E
−u0H −u1H · · · −uN−1H

]T
= [uN−1 uN−2 . . . u0]T = UT

LR

where

uk =
[
ukE
ukH

]
, uN−1−k =

[
ukE
−ukH

]
, k = 0, 1, . . . N − 1,

and
ULR = [uN−1 uN−2 . . . u0]

is a left–right flipped version of the eigenvector matrix

U = [u0 u1 . . . uN−1].

The element-wise form of Equation (5.8) is given by

F (k) = 1
2(X(k) +X(N − 1− k)).

For bipartite graphs and the normalized graph Laplacian, we can write

F (λk) = 1
2(X(λk) +X(2− λk)).

The second term in F (λk) represents an aliasing component of the GFT
of the original signal.

The spectral representation of (5.6) is obtained with a left-multipli-
cation by UT and a right-multiplication by U,

UTGL(L)UUTHL(L)U + UTGH(L)UUTHH(L)U = 2I,

having in mind that we can add UTU = UUT = I between GL(L) and
HL(L), and between GH(L) and HH(L). Using the spectral domain
definition of the transfer functions, UTHL(L)U = HL(Λ), we obtain
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the spectral domain form of the reconstruction condition (5.6) as

GL(Λ)HL(Λ) +GH(Λ)HH(Λ) = 2I. (5.9)

For the aliasing part in Equation (5.7), the left-multiplication is per-
formed by UT , while the right-multiplication is done by UT

LR. The first
term in (5.7) is then of the form

UTGL(L)UUTJEHL(L)ULR = UTGL(L)UUT
LRHL(L)ULR

= GL(Λ)H(R)
L (Λ), (5.10)

since UTJE = UT
LR and UT

LRULR = I. The term

H
(R)
L (Λ) = UT

LRHL(L)ULR = HL(2I−Λ)

is just a reversed order version of the diagonal matrix HL(Λ), with
diagonal elements HL(λN−1−k) = HL(2− λk) instead of HL(λk).

The same holds for the second term in (5.7) which is equal to
GH(L)JHHH(L), yielding the final spectral form of the aliasing condi-
tion in (5.7) as

GL(Λ)HL(2I−Λ)−GH(Λ)HH(2I−Λ) = 0. (5.11)

An element-wise solution to the system in (5.6)–(5.7), for bipartite
graphs and the normalized graph Laplacian, according to (5.9) and
(5.11), reduces to

GL(λk)HL(λk) +GH(λk)HH(λk) = 2, (5.12)
GL(λk)HL(2− λk)−GH(λk)HH(2− λk) = 0. (5.13)

Remark 26: A quadratic mirror filter solution would be such that for
the designed transfer function of the low-pass analysis filter, HL(λ), the
other filters are

GL(λ) = HL(λ),
HH(λ) = HL(2− λ),

GH(λ) = HH(λ) = HL(2− λ). (5.14)

For this solution, the design equation is given by

H2
L(λ) +H2

L(2− λ) = 2, (5.15)

while the aliasing cancellation condition, (5.13), is always satisfied.
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An example of such a system would be an ideal low-pass filter,
defined by HL(λ) =

√
2 for λ < 1 and HL(λ) = 0 elsewhere. Since

HH(λ) = HL(2− λ) holds for systems on bipartite graphs, this satisfies
the reconstruction condition. For the vertex domain realization, an
approximation of the ideal filter with a finite neighborhood filtering
relation would be required.
Example 13: Consider a simple form of the low-pass system

H2
L(λ) = 2− λ,

which satisfies the design equation, H2
L(λ) + H2

L(2 − λ) = 2. It also
satisfies the condition that its form is of low-pass type for the normalized
Laplacian of bipartite graphs, H2

L(λ0) = 2− λ0 = 2, since λ0 = 0, and
H2
L(λmax) = 2 − λmax = 0, as λmax = 2. The vertex domain system

operators which satisfy all four quadratic mirror analysis and synthesis
filters in (5.14), are

HL(Λ) =
√

2I−Λ, GL(Λ) = HL(Λ) =
√

2I−Λ,
HH(Λ) = HL(2I−Λ) =

√
Λ, GH(Λ) = HH(Λ) =

√
Λ.

The spectral domain filtering form for the low-pass part of graph signal
is then obtained from (5.2), as

FL = UT fL = 1
2UTGL(L)(I + JE)HL(L)x

= 1
2UTGL(L)UUT (I + JE)HL(L)ULRUT

LRUX

= 1
2GL(Λ)HL(Λ)X + 1

2GL(Λ)HL(2I−Λ)XUD

since UTU = I, UT
LRULR = I, UTJE = UT

LR, UT
LRU = ILR, and

ILRX = XUD, where ILR is an anti-diagonal (backward) identity matrix,
and XUD is the GFT vector, X, with elements flipped upside-down.

The same holds for the high-pass part in (5.3), to yield

FH = 1
2UTGH(L)(I + JH)HH(L)x

= 1
2GH(Λ)HH(Λ)X− 1

2GH(Λ)HH(2I−Λ)XUD
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L =

0
2
4
6
8
10
12
14
1
3
5
7
9
11
13
15



1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1
−1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1



(5.16)

and
FL + FH = X.

Therefore, after the one-step filter-bank based decomposition on a
bipartite graph, we have a new low-pass signal, fL, for which the nonzero
values are at the vertices in E , and a high-pass signal, fH , with nonzero
values only on H. Note that the high-pass operator on the graph signal
is the graph Laplacian, L, while the low-pass operator is 2I− L, which
easily reduces to |L|, for the normalized graph Laplacian used here.

Another simple transfer function that satisfies the design equation
(5.15) is HL(λ) =

√
2 cos(πλ/4). A similar analysis can also be done for

this transfer function and other functions defined by (5.14).
The considered transfer functions HL(λ) =

√
2− λ and HL(λ) =√

2 cos(πλ/4) have several disadvantages, the most important being
that they are not sufficiently smooth in the spectral domain at the
boundary interval points (Stanković, 2015). In addition, although the
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graph Laplacian, L, is commonly sparse (with a small number of nonzero
elements in large graphs), the transfer function form HL(L) =

√
2I− L

is not sparse. This is the reason to use other forms which are sufficiently
smooth toward the boundary points, along with their polynomial approx-
imations, HL(Λ) = c0Λ + c1Λ2 + · · ·+ cM−1ΛM−1, with the coefficients
c0, c1, . . . , cM−1, that approximate HL(λ) and HH(λ) = HL(2− λ) for
each λ = λk, k = 0, 1, . . . , N − 1. This topic will be addressed in detail
on a general form of graphs in Section 8.

The classic time-domain Haar wavelet (and scale) functions are
easily obtained for a bipartite graph, such that E = 0, 2, 4, . . . , N − 2
andH = 1, 3, 5, . . . , N − 1, with the adjacency/weighting matrix defined
by the elements Amn = 1, for (m,n) ∈ {(0, 1), (2, 3), . . . , (N−2, N−1)},
as shown in Figure 5.3(a). This adjacency matrix has the block form as
in Equation (2.19), Part I. The corresponding graph Laplacian is given
in (5.16). Its eigenvectors are equal to the wavelet transform functions.
The bipartite graph for the four-vertex resolution level in the Haar
wavelet transform is shown in Figure 5.3(b).

Synthesis operators, comprised of more general interpolation meth-
ods, may be found in Li et al. (2019).

(a) (b)

Figure 5.3: Bipartite graph for the Haar wavelet transform with N = 16 vertices.
(a) Vertices in yellow are used for the low-pass part of the signal and correspond to
the set E , while the vertices in gray belong to the set H. This is the highest two-vertex
resolution level for the Haar wavelet. (b) Graph for a four-vertex resolution level in
the Haar wavelet.



6
Time-Varying Signals on Graphs

We shall denote a time-varying signal by xp(n), where n designates the
vertex index and p the discrete-time index. For uniform sampling in
time, the index p corresponds to the time instant p∆t, where ∆t is the
sampling interval. In general, this type of data can be considered within
the graph Cartesian product framework (given in Property M15, Sec-
tion 2.3, Part I). The resulting graph G = (V,B) follows as a Cartesian
product of the given graph G1 = (V1,B1) and a simple path (or circular)
graph G2 = (V2,B2) that corresponds to the classical uniformly sampled
time-domain axis.
Example 14: A graph topology for a time varying signal on a graph is
shown in Part I, Figure 2.9, where the graph vertices are designated by
1, 2, 3, 4, 5 and time instants are denoted as the a, b, c vertices on the
path graph. The resulting Cartesian product graph, for the analysis of
this kind of signals, is shown in Part I, Figure 2.9.

The adjacency matrix of a Cartesian product of two graphs is then
given by

A = A1 ⊗ IN2 + IN1 ⊗A2 = A1 ⊕A2,

where A1 is the adjacency matrix of the graph of interest G1, and A2 is
the adjacency matrix for the path or circular graph, G2, which designates
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the sampling grid, while N1 and N2 denote, respectively, the number of
vertices in G1 and G2.

We will next consider a simple and important example of a time-
varying signal defined on graph in an iterative way, which designates
the diffusion process on a graph in time.

6.1 Diffusion on Graph and Low Pass Filtering

Consider the diffusion equation

∂x/∂t = −αLx.

Its discrete-time form, at a time instant p, may be obtained by using the
backward difference approximation of the partial derivative (∂x/∂t ∼
xp+1 − xp), and has the form

xp+1 − xp = −αLxp+1

or xp+1(I + αL) = xp to produce

xp+1 = (I + αL)−1xp.

On the other hand, the forward difference approximation (∂x/∂t ∼
xp − xp−1) to the diffusion equation yields

xp+1 − xp = −αLxp

or
xp+1 = (I− αL)xp.

It is interesting to note that these iterative forms lead to the min-
imization of the quadratic form of a graph signal, Ex = xLxT , (see
Section 4.2, Part I). The minimum of this quadratic form can be found
based on the steepest descent method, whereby the signal value at
a time instant p is moving in the direction opposite to the gradient,
toward the energy minimum position, with a step α. The gradient of
the quadratic form, Ex = xLxT , is ∂Ex/∂xT = 2xL, which results in
an iterative procedure

xp+1 = xp − αLxp = (I− αL)xp. (6.1)
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This relation can be used for simple and efficient filtering of graph signals
(with the aim to minimize Ex as a measure of signal smoothness). The
spectral domain relation follows immediately, and has the form

Xp+1 = (I− αΛ)Xp

or for every individual component

Xp+1(k) = (1− αλk)Xp(k).

Recall that the eigenvalues, λk, represent the index of smoothness for
a spectral vector (eigenvector), uk, with a small λk indicating smooth
slow-varying elements of the eigenvectors; therefore, for low-pass filtering
we should retain the slow-varying eigenvectors in a spectral represen-
tation of the graph signal. Obviously, these slow-varying components
will pass through this system since (1 − αλk) is close to 1 for small
λk, while the fast-varying components with a larger λk, are attenuated.
This iterative procedure will converge if |1− αλmax| < 1.

In a stationary state of a diffusion process, the trivial minimal energy
solution is obtained when

lim
p→∞

Xp+1(k) = (1− αλk)p+1X0(k),

that is, all components Xp+1(k) tend to 0, except for the constant
component, Xp+1(0), for which λ0 = 0. This component therefore
defines the stationary state (maximally smooth solution). In order to
avoid this effect in the processing of data on graphs, and to retain
several low-pass components (eigenvectors) in the signal, the iteration
process in (6.1) can be used in alternation with

xp+2 = (I + βL)xp+1. (6.2)

This is the basis for Taubin’s α− β algorithm, presented next.

6.2 Taubin’s α− β Algorithm

When the two iterative processes in (6.1) and (6.2) are used in a
successive order, the resulting system on a graph is referred to as
Taubin’s α− β algorithm. This algorithm is widely used for low-pass
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filtering of data on graphs, since it is very simple, and admits efficient
implementation in the vertex domain.
Definition: Taubin’s α− β algorithm is a two-step iterative algorithm
for efficient low-pass data filtering on graphs. Its two steps are defined
in a unified way as

xp+2 = (I + βL)(I− αL)xp. (6.3)

The corresponding element-wise transfer function in the spectral domain
of the two iteration steps in (6.3) is given by

H(λk) = (1 + βλk)(1− αλk).

After K iterations of this algorithm, the spectral domain transfer func-
tion can be written as

HK(λk) = ((1 + βλk)(1− αλk))K . (6.4)

For some values of α < β, this system can be a good and computationally
very simple approximation of a graph low-pass filter.
Example 15: Consider the graph from Figure 3.4(a) and its graph
Laplacian, L. For the choice of parameters α = 0.1798 and β = 0.2193,
the spectral transfer function in (6.4) is shown in Figure 6.1 for the
considered graph filter, and for the numbers of iterations in Taubin’s
algorithm K = 1, 5, 30, and 150. Observe how the transfer function,
H(λk), approaches the ideal low-pass form as the number of iterations,
K, increases.

The task is next to low-pass filter the noisy signal from Figure 3.12(b).
The initial noisy signal is denoted by x0. Then x1 = (I− 0.1545L)x0
is calculated using the corresponding graph Laplacian, followed by
obtaining x2 = (I + 0.1875L)x1. In the third and fourth iteration,
the signal values x3 = (I− 0.1545L)x2 and x4 = (I + 0.1875L)x3 are
calculated. This two-step iteration cycle is repeated K = 20 times. The
resulting signal is the same as the output of an ideal low-pass filter
shown in Figure 3.12(c).

Finally, the noisy signal from Figure 2.3 was filtered using Taubin’s
α− β algorithm, with α = 0.15 and β = 0.15, over K = 100 iterations,
and the result is shown in Figure 6.2. Observe the reduced level of
additive noise in the output.
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Figure 6.1: Filter approximation in the spectral domain for a varying number of
iterations, K, using Taubin’s algorithm and the graph Laplacian matrix of the graph
in Figure 3.4.
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Figure 6.2: The noisy signal from Figure 2.3 was filtered using K = 100 iterations
of the Taubin two-step algorithm with α = 0.15 and β = 0.15.
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Processing of time-varying signals on graphs has been a topic of
intensive research; for a deeper insight we refer the reader to Isufi et al.
(2017), Grassi et al. (2017), and Gama et al. (2019).



7
Random Graph Signal Processing

This section extends the concepts of data analytics for deterministic
signals on graphs addressed so far, to introduce notions of random
signals on graphs, their properties, and statistical graph-specific methods
for their analysis. The main focus is on wide-sense stationary (WSS)
data observed on graphs. In general, the stationarity of a signal is
inherently related to the signal shift operator and its properties. We have
already presented two approaches to define a shift on a graph (through
the adjacency matrix and the graph Laplacian, and their spectral
decompositions). These will be used, along with other general properties
of WSS signals, to define the conditions for wide sense stationarity
of random signals on graphs (Chepuri and Leus, 2016; Loukas and
Perraudin, 2016; Marques et al., 2017; Perraudin and Vandergheynst,
2017; Puy et al., 2018; Zhang et al., 2015). However the main obstacle
toward extending the classical statistical data analytics to graphs is that
the shift on a graph typically does not preserve signal energy (isometry
property), that is, ‖Ax‖22 6= ‖x‖22.

For completeness, we first provide a short review of WSS definitions
in classical signal processing, together with their properties.
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7.1 Review of WSS and Related Properties for Random Signals in
Standard Time Domain

Definition: A real-valued random signal, x(n), is WSS in the standard
time domain if its mean value is time-invariant, µx(n) = E{x(n)} = µx,
and its autocorrelation function is shift-invariant, that is, rx(n, n−m) =
E{x(n)x(n−m)} = rx(m).
Remark 27: A random WSS time-domain signal, x(n), can be con-
sidered as an output of a linear shift invariant system with impulse
response, h(n), which is driven by a white noise input, ε(n), with
rε(n,m) = δ(n−m).

Remark 28: In classical time domain, the eigenvectors, uk, of the shift
operator y(n) = x(n − 1), or in a matrix form y = Ax, are the DFT
basis functions, with A = UΛUH . This property is discussed in detail
and proven in Part I, Section 3.2, Equations (3.4)–(3.5).

Remark 29: For a random signal, its DFT X = UHx is also a random
signal with the power spectrum matrix Px = E{XXH}, where UH

is the DFT transformation matrix. For WSS signals, the matrix Px

is diagonal and has the power spectral density (PSD) as its diagonal
values

px(k) = DFT{rx(n)} = E{|X(k)|2}.

Remark 30: For WSS random signals, their correlation matrix, Rx =
E{xxT }, is diagonalizable with the same transform matrix, U, which
defines the DFT, Xdef= UHx, with xdef= UX. The proof follows from

Rx = E{xxT } = E{UX(UX)H}
= UE{XXH}UH = UPxUH , (7.1)

and the fact that Px is a diagonal matrix for WSS signals.
The properties of the WSS signals in classical analyses, presented in

this subsection, will be used next to define the corresponding properties
of random signals on undirected graphs.
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7.2 Adjacency Matrix Based Definition of GWSS

Consider a real-valued white noise signal on a graph, ε = {ε(n)}.
Following Remark 27, a signal x on the graph is graph wide-sense
stationary (GWSS) if it can be considered as an output of a linear shift
invariant system on a graph, H(A) = ∑M−1

m=0 hmAm, which is driven by
a white noise input, ε, that is

x = H(A)ε.

Remark 31: The autocorrelation matrix, Rx = E{xxT }, of a GWSS
signal is diagonalizable with the eigenmatrix of the adjacency matrix,
A, since (cf. Remark 30)

A = UΛU−1 = UΛUT

E{xxT } = UPxUT , (7.2)

where Px is a diagonal matrix. The values on the diagonal of matrix
Px can be comprised into the vector px, which represents the PSD of a
graph signal, x, px(k) = E{|X(k)|2}.

To prove this property for a signal x = H(A)ε, consider

Rx = E{xxT } = E{H(A)ε(H(A)ε)T } = H(A)HT (A),

since E{εεT } = I. Using H(A) = UTH(Λ)U, we obtain

Rx = UT |H(Λ)|2U,

which concludes the proof that the matrix Px is diagonal

Px = |H(Λ)|2,

with the diagonal elements equal to the PSD of signal x,

px(k) = |H(λk)|2.

The periodogram of a graph signal can be estimated using K realiza-
tions of the random signal, denoted by xi, and is equal to the diagonal
elements of the matrix

P̂x = 1
K

K∑
i=1

XiXT
i = UT 1

K

K∑
i=1

(xixTi )U.
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Consider a system on a graph, with a spectral domain transfer
function H(Λ). Assume that the input signal to this system is GWSS,
with PSD px(k). The PSD of the output graph signal, y(n), is then
given by

py(k) = |H(λk)|2px(k).
This expression is conformal with the output power of a standard linear
system.

7.3 Wiener Filter on a Graph

Consider a real-valued graph signal, s, which serves as an input to a
linear shift-invariant system on an undirected graph, to yield a noisy
output

x =
M−1∑
m=0

hmAms + ε.

In the spectral domain, this system is described by

X = H(Λ)S + E,

where E is the GFT of the noise, ε.
Assume that the signal and noise are statistically independent, and

that the noise is a zero-mean GWSS random signal. The aim is to find
the system function of the optimal filter, G(Λ), such that its output
Y = G(Λ)X, estimates the GFT of the input, S, in the least squares
sense. This condition can be expressed as

e2 = E{‖S−Y‖22} = E{‖S−G(Λ)X‖22}.

Upon setting the derivative of e2 with respect to the elements of G(Λ)
to zero, we arrive at

2E{(S−G(Λ)X)XT } = 0,

which results in the system function of the graph Wiener filter in the
form (using matrix division in a symbolic way)

G(Λ) = E{SXT }
E{XXT }

= E{S(H(Λ)S + E)T }
E{(H(Λ)S + E)(H(Λ)S + E)T }

= H(Λ)Ps

H2(Λ)Ps + Pε
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or element-wise

G(λk) = H(λk)ps(k)
H2(λk)ps(k) + E(k) .

When the noise is not present, the elements of the vector E are zero-
valued, E(k) = 0 for all k, and the graph inverse filter (introduced in
Section 3.5.1) directly follows.
Remark 32: The above expressions for the graph Wiener filter are
conformal with the standard frequency domain Wiener filter, given by

G(ω) = Ps(ω)
Ps(ω) + Pε(ω) ,

which again demonstrates the generic nature of Graph Data Analytics.

7.4 Spectral Domain Shift Based Definition of GWSS

Consider an m-step shift on a graph defined using the graph filter
response

Tm{h(n)} = hm(n) =
N−1∑
k=0

H(λk)uk(m)uk(n). (7.3)

The matrix form of this relation is given by

Th = H(L) =
M−1∑
m=0

hmLm = UH(Λ)UT , (7.4)

where Tm{h(n)} are the elements of Th.
Note that the graph filter response function is well localized on a

graph. Namely, if we use, for example, the (M − 1)-neighborhood of a
vertex n, within a filtering function of order M defined by H(Λ), then
only the vertices within this neighborhood are used in the calculation of
graph filter response. From (7.4), we see that the localization operator
acts in the spectral domain and associates the corresponding shift to
the vertex domain.
Definition: A random graph signal, x(n), is GWSS if its autocorrelation
function is invariant with respect to the shift, Tm{rx(n)}.
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Similar to (7.2), the autocorrelation matrix, Rx, of a GWSS signal
is diagonalizable based on the matrix of eigenvectors of the graph
Laplacian L, whereby

L = UΛUT . (7.5)

For the basic autocorrelation we use

Rx = UPx(Λ)UT

so that

Tm{rx(n)} =
N−1∑
k=0

px(λk)uk(m)uk(n)

where
Px(Λ) = URxUT

is a diagonal matrix.

7.5 Isometric Shift Operator

Another possible approach may be based on the shift operator defined
as Th = exp(jπ

√
L/ρ), where ρ is the upper bound on the eigenvalues,

ρ = maxk{λk} (Girault, 2015; Girault et al., 2015). Physically, this
operator casts the eigenvalues of the Laplacian, L, onto a unit circle,
thus preserving in this way the isometry property, since

Th = exp(jπ
√

L/ρ) = U exp(jπ
√

Λ/ρ)UT . (7.6)

The property f(L) = Uf(Λ)UH was used above. Observe that for
real-valued eigenvalues, λk, all eigenvalues of the matrix exp(jπ

√
Λ/ρ)

reside on the unit circle, with the frequency 0 ≤ ωk = π
√
λk/ρ ≤ π

being associated to the eigenvector uk.
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Vertex-Frequency Representations

Oftentimes in practical applications concerned with large graphs, we
may not be interested in the analysis of the entire graph signal, but
rather in its local behavior. Indeed, the Big Data paradigm has revealed
the possibility of using smaller and localized subsets of the available
information to enable reliable mathematical analysis and local charac-
terization of subsets of data of interest (Sandryhaila and Moura, 2014a).
Our aim in this section is to characterize the localized graph signal
behavior simultaneously in the vertex-frequency domain, in a natural
analogy with classical time-frequency analysis (Boashash, 2015; Cohen,
1995; Stanković et al., 2014). Indeed, the concept of vertex-frequency
analysis was introduced in Shuman et al. (2012), by extending the prin-
ciple of signal localization by applying localization window functions
to signals defined on graphs. This concept was further developed in
Shuman et al. (2016), with the extensions of this approach including the
multi-window form Zheng et al. (2016), a short-graph Fourier transform
combined with page-rank vectors (Tepper and Sapiro, 2016), or vertex
domain localization windows (Stanković et al., 2017). Window forms
have also been adapted to define the frequency-varying localized graph
Fourier transform (Cioacă et al., 2019) and spectral domain wavelet
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transform-based vertex-frequency kernels, including the signal adap-
tive kernels with polynomial approximations and recursive realizations
(Behjat and Van De Ville, 2019; Hammond et al., 2011, 2019).

It is important to note that, while the concept of window functions
for signal localization has been extended to signals defined on graphs
(Shuman et al., 2012, 2016; Stanković et al., 2017; Tepper and Sapiro,
2016; Zheng et al., 2016), such extensions are not straightforward, since,
owing to inherent properties of graphs as irregular but interconnected
domains, even an operation which is very simple in classical time-domain
analysis, like the time shift, cannot be straightforwardly generalized
to graph signal domain. This has resulted in several approaches to the
definition of the graph shift operator, and much ongoing research in
this domain (Shuman et al., 2012, 2016; Stanković et al., 2017; Tepper
and Sapiro, 2016; Zheng et al., 2016).

A common approach to signal windowing in the graph domain is
to utilize the eigenspectrum of a graph to obtain window function for
each graph vertex (Shuman et al., 2013). Another possibility is to define
the window support as a local neighborhood for each vertex (Stanković
et al., 2017). In either case, the localization window is defined based
on a set of vertices that contain the current vertex, n, and all vertices
that are close in some sense to the vertex n, that is, a neighborhood of
vertex n. In this monograph, special attention is devoted to the class of
local graph Fourier transform approaches which can be implemented in
the vertex domain, since this domain often offers a basis for numerically
efficient analysis in the case of very large graphs.

Notice that, as in classical signal analysis, a localization window
should be narrow enough so as to provide good localization of signal
properties, but at the same time wide enough to produce high resolution
in the spectral domain.

With vertex-frequency analysis serving as a key to graph signal
estimation, filtering, and efficient representation, two forms of the local
graph Fourier transform inversion are considered here, while the inver-
sion condition is defined within the framework of frames, that is, based
on the analysis of energy of the graph spectrogram. A relation between
the graph wavelet transform and the local graph Fourier transform
implementation and its inversion is also established.
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Remark 33: The energy versions of the vertex-frequency representa-
tions are also considered, as these representations can be implemented
without a localization window, and they can serve as estimators of the
local smoothness index.

The reduced interference vertex-frequency distributions, which sat-
isfy the marginal property and localize graph signal energy in the
vertex-frequency domain are also defined, and are subsequently related
to classical time-frequency analysis, as a special case.

Consider a graph with N vertices, n ∈ V = {0, 1, . . . , N − 1}, which
are connected with edges whose weights are Wmn. Spectral analysis of
graphs is most commonly based on the eigendecomposition of the graph
Laplacian, L, or the adjacency matrix, A. By default, we shall assume
the decomposition of the graph Laplacian, L, if not stated otherwise.

8.1 Localized Graph Fourier Transform (LGFT)

The localized graph Fourier transform (LGFT), denoted by S(m, k),
can be considered as an extension of the standard time-localized (short-
time) Fourier transform (STFT), and can be calculated as the GFT of
a signal, x(n), multiplied by an appropriate vertex localization window
function, hm(n), to yield

S(m, k) =
N−1∑
n=0

x(n)hm(n) uk(n). (8.1)

In general, it is desired that a graph window function, hm(n), should
be such that it localizes the signal content around the vertex m. To this
end, its values should be close to 1 at vertex m and vertices in its close
neighborhood, while it should approach to 0 for vertices that are far
from vertex m. For an illustration of the concept of localization window
on a graph see Figure 8.2, panels (a) and (c).

The localized GFT in (8.1) admits a matrix notation, S, and contains
all elements, S(m, k), m = 0, 1, . . . , N − 1, k = 0, 1, . . . , N − 1. The
columns of S which correspond to a vertex m are given by

sm = GFT{x(n)hm(n)} = UTxm,
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where xm is the vector of which the elements, x(n)hm(n), are equal
to the graph signal samples, x(n), multiplied by the window function,
hm(n), centered at the vertex m, while matrix U is composed of the
eigenvectors uk, with elements uk(n), k = 0, 1, . . . , N − 1, of the graph
Laplacian as its columns.
Special cases:

• For hm(n) = 1, the localized vertex spectrum is equal to the
standard spectrum, S(m, k) = X(k), in (8.1) for each m; this
means that no vertex localization is performed.

• If hm(m) = 1 and hm(n) = 0 for n 6= m, the localized vertex
spectrum is equal to the graph signal, S(m, 0) = x(m)/

√
N , for

k = 0.

In the following, we outline ways to create vertex domain windows
with desirable localization characteristics, and address two methods for
defining graph localization window functions, hm(n):

• Spectral domain definition of windows, hm(n), which are defined
using their spectral basic function. The spectral domain definition
of the window is shown to be related to the wavelet transform.

• Vertex domain window definitions, with one method bearing a
direct relation to the spectral analysis of the graph window, while
the other method represents a purely vertex domain formulation.

Windows Defined in the GFT Domain

The basic function of a window, h(n), can be conveniently defined in
the spectral domain, for example, in the form

H(k) = C exp(−λkτ), (8.2)

where C denotes the “window amplitude” and τ > 0 is a constant
which determines the window width in the spectral domain. Notice
that the graph shifted and “modulated” versions of this window are
straightforwardly obtained using the generalized convolution of graph
signals, defined in Section 3.9. The graph-shifted window in the vertex
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domain is then defined by the IGFT of H(k)uk(m), to give the window
localized at the vertex m, denoted by hm(n), as in (3.46), in the form

hm(n) = h(n) ∗ δm(n) =
N−1∑
k=0

H(k)uk(m)uk(n). (8.3)

An example of two windows obtained in this way is given in
Figures 8.2(a), (b).

Observe that the exponential function in (8.2) corresponds to a
Gaussian window in classical analysis (thus offering the best time-
frequency concentration (Boashash, 2015; Cohen, 1995; Stanković et al.,
2014)), since graph signal processing on a path graph reduces to classical
signal analysis. In this case, the eigenvalues of the graph Laplacian, λ,
may be related to the frequency, ω, in classical signal analysis as λ ∼ ω2.
Properties of graph window functions. The graph window which
is localized at the vertex m, and defined by (8.3), satisfies the following
properties:

W1: Symmetry, hm(n) = hn(m), which follows from the definition
in (8.3).

W2: A sum of all coefficients of a localized window, hm(n), is equal to
H(0), since

N−1∑
n=0

hm(n) =
N−1∑
k=0

H(k)uk(m)
N−1∑
n=0

uk(n)

=
N−1∑
k=0

H(k)uk(m)δ(k)
√
N = H(0),

with ∑N−1
n=0 uk(n) = δ(k)

√
N , following from the definition of the

eigenvectors, uk(n).

W3: The Parseval theorem for hm(n) has the form
N−1∑
n=0
|hm(n)|2 =

N−1∑
k=0
|H(k)uk(m)|2. (8.4)

These properties will be used in the sequel in the inversion analysis of
the LGFT.
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Based on the above properties, the LGFT can now be written as

S(m, k) =
N−1∑
n=0

x(n)hm(n) uk(n) (8.5)

=
N−1∑
n=0

N−1∑
p=0

x(n)H(p)up(m)up(n) uk(n). (8.6)

The modulated (frequency shifted) version of the window centered
at a vertex m and for a spectral index k will be referred to as the
vertex-frequency kernel, Hm,k(n), which is defined as

Hm,k(n) = hm(n)uk(n) =
(N−1∑
p=0

H(p)up(m)up(n)
)
uk(n). (8.7)

Using the kernel notation, it becomes obvious that the LGFT in (8.6),
for a given vertex m and a spectral index k, physically represents a
projection of a graph signal, x(n), onto the graph kernel, Hm,k(n),
that is,

S(m, k) = 〈Hm,k(n), x(n)〉 =
N−1∑
n=0
Hm,k(n)x(n). (8.8)

Remark 34: The classical STFT, a basic tool in time-frequency analysis,
can be obtained as a special case of the GFT when the graph is directed
and circular. For this type of graph, the eigendecomposition of the
adjacency matrix produces complex-valued eigenvectors of the form
uk(n)

√
N = exp(j2πnk/N). Then, having in mind the complex nature

of these eigenvectors,

S(m, k) =
N−1∑
n=0

N−1∑
p=0

x(n)H(p)u∗p(m)up(n)u∗k(n), (8.9)

the value of S(m, k) in (8.5) becomes the standard STFT, that is

S(m, k) = 1
N3/2

N−1∑
n=0

N−1∑
p=0

x(n)H(p)e−j
2π
N
mpej

2π
N
npe−j

2π
N
nk,

= 1
N

N−1∑
n=0

x(n)h(n−m)e−j2πnk/N , (8.10)

where h(n) is the inverse DFT of H(k).
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Example 16: To illustrate the principle of local vertex-frequency repre-
sentations, consider the graph and the graph signal from Figure 8.1. A
graph with N = 100 vertices, randomly placed on the so called Swiss roll
surface, is shown in Figure 8.1(a). The vertices are connected with edges
whose weights are defined as Wmn = exp(−r2

mn/α), where rmn is the
distance between the vertices m and n, measured along the Swiss roll
manifold, and α is a constant. Small weight values were hard-thresholded
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Figure 8.1: Continued.
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Figure 8.1: Concept of a signal on a graph. (a) Vertices on a three-dimensional
manifold Swiss roll surface. (b) A graph representation on the Swiss roll manifold.
(c) Two-dimensional presentation of the three-dimensional graph from (b), with vertex
colors defined by the three smoothest graph Laplacian eigenvectors u1(n), u2(n),
and u3(n). (d) A signal observed on the graph in (c), which is composed of three
Laplacian eigenvectors (signal components). The supports of these three components
are designated by different vertex colors. The vertex-frequency representations are
then assessed based on their ability to accurately resolve and localize these three
graph signal components.
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to zero, in order to reduce the number of edges associated with each
vertex to only a few strongest ones. The so produced graph is shown
in Figure 8.1(b), and its two-dimensional presentation in Figure 8.1(c).
Vertices are ordered so that the values of the Fiedler eigenvector, u1(n),
are nondecreasing. More detail about the Swiss role graph are given in
Part III.

A signal on this graph was created so as to be composed of parts
of three Laplacian eigenvectors. For the subset, V1, of all vertices, V,
which comprises the vertices with indices from m = 0 to m = 29, the
eigenvector with the spectral index k = 8 was used. For the subset, V2,
with the vertex indices from m = 30 to m = 59, the signal was equal
to the eigenvector u66(n), that is, with k = 66. The remaining vertices
form the vertex subset V3, and the signal on this subset was equal to
the eigenvector with the spectral index k = 27. The amplitudes of these
eigenvectors were scaled too.

Consider now the vertex-frequency localization kernels,

Hm,k(n) = hm(n)uk(n),

shown in Figure 8.2. The constant eigenvector, u0(n) = 1/
√
N , was

used in the panel shown in Figure 8.2(a) at m = 34. In this case, the
localization window, h34(n), is shown since H34,0(n) = h34(n)/

√
N .

The illustration is repeated in the panel in Figure 8.2(c) for the vertex
m = 78. The frequency shifted version of these two vertex-domain
kernels, shown in Figures 8.2(a) and (c), are given respectively in
Figures 8.2(b) and (d), where Hm,20(n) = hm(n)u20(n) is shown for
m = 34 and m = 78, respectively.

Next, the vertex-frequency representation, S(n, k), using the LGFT
and the localization window defined in the spectral domain is shown
in Figure 8.3. From this representation, we can clearly identify the
three constituent signal components, within their intervals of support.
The marginal properties, such as the projections of S(n, k) onto the
vertex index axis and the spectral index axis, are also clearly distinguish-
able. From the marginal properties, we can conclude that the considered
graph signal in hand is spread over all vertex indices, while its spectral
localization is dominated by the three spectral indices which correspond
to the three components of the original graph signal. In an ideal case of
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Figure 8.2: Illustration of localization kernels, Hm,k(n) = hm(n)uk(n), for vertex-
frequency analysis based on spectral domain defined windows within the local graph
Fourier transform, S(m, k) =

∑N−1
n=0 x(n)Hm,k(n). (a) Localization kernelH34,0(n) =

h34(n)u0(n) ∼ h34(n), for a constant eigenvector, u0(n) = 1/
√
N , centered at the

vertex m = 34. (b) The same localization kernel as in (a) but centered at the vertex
m = 78. (c) Localization kernel, H34,20(n) = h34(n)u20(n), centered at the vertex
m = 34 and frequency shifted by u20(n). Notice that the variations in kernel
amplitude indicate the effects of modulation of the localization window, hm(n).
(d) The same localization kernel as in (c), but centered at the vertex m = 78.
(e) Three-dimensional representation of the kernel H34,0(n) = h34(n)u0(n). (f) Three-
dimensional representation of the kernel H78,0(n) = h78(n)u0(n).
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Figure 8.3: Local vertex-frequency spectrum calculated using the LGFT and the
vertex-frequency localized kernels defined in the spectral domain, as in (8.7). From
this representation, observe that the graph signal consists of three distinct components
located at spectral indices k = 8, k = 66, and k = 27, with the corresponding vertex
index subsets V1, V2, and V3, where V1 ∪ V2 ∪ V3 = V. The marginal (vertex and
spectrum-wise) properties are shown in the panels to the right and below the vertex-
frequency representation. Observe that, while the graph signal is spread across all
vertices, its spectral content is localized at the three spectral indices which correspond
to the constituent signal components. In an ideal case of vertex-frequency analysis,
these marginals should be respectively equal to |x(n)|2 and |X(k)|2.

vertex-frequency analysis, these marginals should respectively be equal
to |x(n)|2 and |X(k)|2, which is not the case here.

The calculation of (8.8) is computationally demanding, as in addition
to the double summation (where it can be reduced having in mind
the low-pass nature of the function H(p) and its possible truncation),
the bulk of computational load comes from the eigendecomposition of the
graph Laplacian. Although this decomposition is performed only once
for a given graph and is signal independent, the full eigendecomposition
of a graph with N vertices requires an oder of N3 numerical operations.
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For a large graph, this can limit the application of this approach. The
issue of computational complexity was a motivation to introduce vertex-
frequency analysis without the need for eigendecomposition, which will
be presented later.

Spectral Domain Localization of the LGFT

Recall that the classical STFT admits frequency localization in the
spectral domain; this is achieved based on the DFT of the original signal
and a spectral domain window. For graph signals, we may also adapt
this approach to perform signal localization in the spectral domain,
whereby the LGFT is obtained as an inverse GFT of X(p) that is
localized by a spectral domain window, H(k − p), which is centered
around spectral index k, that is

S(m, k) =
N−1∑
p=0

X(p)H(k − p) up(m). (8.11)

Note that this form of the LGFT can be entirely implemented in the
graph spectral domain, without a graph shift operator in the vertex
domain.
Remark 35: Recall that the classical time-frequency analysis counter-
part of (8.11) is Stanković et al. (2014)

S(m, k) = 1√
N

N−1∑
p=0

X(p)H(k − p)ej
2π
N
mp.

The spectral domain LGFT form in (8.11) can be implemented using
band-pass transfer functions, Hk(λp) = H(k − p), as

S(m, k) =
N−1∑
p=0

X(p)Hk(λp) up(m). (8.12)

The elements S(m, k), m = 0, 1, . . . , N − 1 of the LGFT matrix S can
also be written in a matrix form, where the k-th column is defined as

sk = IGFTp{X(p)Hk(λp)} = U Hk(Λ)X, (8.13)
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where Hk(Λ) is a diagonal matrix with elements Hk(λp), p = 0, 1, . . . ,
N − 1.
Remark 36: The kernel in (8.7) is defined based on a low-pass transfer
function H(k), which is appropriately shifted in the spectral domain
using the modulation term, uk(n). The transfer function in (8.12),
Hk(λp), is centered (shifted) at a spectral index, k, by definition. Hence,
in this case, the modulation term, uk(n), is not needed and the kernel
is now of the form

Hm,k(n) =
N−1∑
p=0

Hk(λp)up(m)up(n). (8.14)

LGFT Realization with Band-Pass Functions

Assume that the GFT of the localization window, hm(n), corresponds
to the transfer function of a band-pass system on a graph, centered at
an eigenvalue, λk, and around it, and that it is defined in the form of a
polynomial given by

Hk(λp) = h0,k + h1,kλp + · · ·+ hM−1,kλ
M−1
p , (8.15)

with (M − 1) as the polynomial order and k = 0, 1, . . . ,K, where K is
the number of spectral bands.

The vertex shifted version of the window, hm(n), has the GFT of the
form, GFT{h(n) ∗ δm(n)} = H(p)up(m). Therefore, the inverse GFT
of Hk(λp)up(m) represents a vertex domain kernel, where Hk(λp) is
centered at the spectral index k by definition, while up(m) corresponds
to the shift in the vertex domain which centers the window at the
vertex m. In other words, this kernel, centered around the spectral
index k and vertex m, is defined as

Hm,k(n) =
N−1∑
p=0

Hk(λp)up(m)up(n). (8.16)

Remark 37: It is important to emphasize crucial difference between
the vertex-frequency kernels in (8.7) and (8.16). The kernel in (8.7) is
defined based on the low-pass transfer function H(k), such as in (8.2),
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appropriately shifted in the vertex domain and the spectral domain, to
be centered at a vertex m and at a spectral index k. This is achieved
involving adequate modulation terms uk(n) and up(m). The transfer
function in the kernel given by (8.16), Hk(λp), is centered at k by
definition (8.15). Hence, it is needed to perform the spectral modulation
only, by up(m), in order to center the kernel, Hm,k(n), at a vertex m.
Therefore, the main difference between the kernels in (8.7) and (8.16)
is that the spectral shift in (8.7) is achieved by a modulation in the
vertex domain using uk(n), while in (8.16) the kernel is directly shifted
(defined as a pass-band function) in the spectral domain.

Classical time-frequency domain kernel. To additionally clarify
the previous two forms of kernels, we will observe their special cases
for a circular directed graph and write the kernels in the classical
time-frequency domain.

The kernel defined by (8.7) uses low-pass function H(k) and assumes
the following form

Hm,k(n) = 1
N3/2

N−1∑
p=0

H(p)e−j
2π
N
mpej

2π
N
npe−j

2π
N
kn

= 1
N
h(n−m)e−j

2π
N
kn = 1√

N
hk(n−m),

which is shifted for m in time, and modulated by the kth eigenvector
elements u∗k(n) = e−j

2π
N
kn/
√
N , to achieve centering around the spectral

index k.
The classical time-frequency domain form of the kernel in (8.16) is

given by

Hm,k(n) = 1
N

N−1∑
p=0

Hk(λp)e−j
2π
N
mpej

2π
N
np

= 1
N

N−1∑
p=0

H(p− k)e−j
2π
N
mpej

2π
N
np = 1√

N
hk(n−m),

where hk(n − m) is the temporary shifted version of hk(n) =
IGFT{Hk(λp)} = IDFT{H(k − p)}, which corresponds to the already
frequency shifted (band-pass) transfer function Hk(λp) = H(p− k).



8.1. Localized Graph Fourier Transform (LGFT) 273

In the case of kernel (8.16), the local vertex-frequency transform for
a vertex, m, and a spectral index, k, becomes

S(m, k) =
N−1∑
n=0
Hm,k(n)x(n)

=
N−1∑
n=0

N−1∑
p=0

x(n)Hk(λp)up(m)up(n) =
N−1∑
p=0

X(p)Hk(λp)up(m).

(8.17)

The relation (8.17) can be written in a vector form as

sk = UHk(Λ)UTx = Hk(L)x =
M−1∑
p=0

hp,kLp x, (8.18)

where sk is the column vector with elements S(m, k), m = 0, 1, . . . ,
N−1, and the property of the eigendecomposition of a matrix polynomial
is used in derivation. The number of bands (shifted transfer functions,
Hk(λp), k = 0, 1, . . . ,K) is equal to K+ 1 and is not related to the total
number of indices, N .
Example 17: Consider the simplest decomposition into a low-pass
and high-pass part of a graph signal, with K = 1. In this case, the
two values, k = 0 and k = 1, represent respectively the low-pass part
and high-pass part of the graph signal. Such a decomposition can be
achieved using the graph Laplacian with h0,0 = 1, h0,1 = −1/λmax,
and h1,0 = 0, h1,1 = 1/λmax, where the coefficients are chosen so as to
form a simple linearly decreasing function of λp for the low-pass, and a
linearly increasing function of λp for the high-pass, in the corresponding
transfer functions. These low-pass and high-pass transfer functions are
respectively given by

H0(λp) =
(

1− λp
λmax

)
, H1(λp) = λp

λmax
,

which leads to the vertex domain implementation of the LGFT in the
form

s0 =
(

I− 1
λmax

L
)

x, s1 = 1
λmax

L x.
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To improve the spectral resolution, we can employ the same transfer
function, but divide the low-pass part into its low-pass and high-pass
part. The same can be performed for the high-pass part, to obtain

s00 =
(

I− L
λmax

)2
x, s01 = 2

(
I− L

λmax

) L
λmax

x, s11 = L2

λ2
max

x.

The factor 2 appears in the new middle pass-band, s01, since the low-
high-pass and the high-low-pass components are the same.

A division into (K + 1) bands would correspond to the terms of a
binomial form

((I− L/λmax) + L/λmax)Kx,
with the corresponding transfer functions in the vertex domain given by

Hk(L) =
(
K

k

)(
I− 1

λmax
L
)K−k( 1

λmax
L
)k
.

Example 18: Consider the transfer functions Hk(λp), p = 0, 1, . . . ,
N − 1, k = 0, 1, . . . ,K in the spectral domain, corresponding to the
binomial form terms for K = 25, which are shown in Figure 8.4(a).
These functions are used for the LGFT calculation at vertex indicesm =
0, 1, . . . , N−1 in the k = 0, 1, . . . ,K bands for the graph and signal from
Figure 8.1. Since the bands are quite spread out, the resulting LGFT
is also spread along the frequency axis. The frequency concentration
can be improved by reassigning the values of S(m, k) to the position of
their maximum value along the frequency band index, k, for each vertex
index, m. The so reassigned LGFT values are given in Figure 8.5.

Of course, any band-pass function, Hk(Λ), can be used in (8.12) or
(8.17) to produce the LGFT in the form

sk = UHk(Λ)UTx = Hk(L)x. (8.19)

Commonly used examples of such band-pass functions are the spline or
raised cosine (Hann window) functions. We will next use the general
form of the shifted raised cosine functions as the transfer functions,
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Figure 8.4: Exemplar of transfer functions in the spectral domain. (a) The spectral
domain transfer functions Hk(λp), p = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K which corre-
spond to the binomial form terms for K = 25. (b) The transfer functions Hk(λp),
p = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K which correspond to the raised cosine (Hann)
window form for K = 25. (c) The spectral index-varying (wavelet-like) transfer
functions Hk(λp), p = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K which correspond to the raised
cosine (Hann) window form for K = 10. The transfer function H9(λ) is designated
by the thick black line for each considered domain, while its discrete values at λp,
H9(λp), are shown in gray, in panels (b) and (c).
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Figure 8.5: Vertex-frequency representation of a three-component signal in
Figure 8.1(d). (a) The LGFT of the signal from Figure 8.1(d), calculated using
the transfer functions for frequency selection given in Figure 8.4(a). The LGFT
values, S(m, k), were reassigned to the position of its maximum value along the
frequency band index, k, for each vertex index, m. (b) The LGFT of the signal from
Figure 8.1(d), calculated using the transfer functions for frequency selection given
in Figure 8.4(b). The LGFT values, S(m, k), were reassigned to the positions of
their maximum values along the frequency band index, k, for each vertex index, m.
(c) The LGFT of the signal from Figure 8.1(d), calculated using the wavelet-like
transfer functions for frequency selection given in Figure 8.4(c).



8.1. Localized Graph Fourier Transform (LGFT) 277

defined by

Hk(λ) =



sin2
(
π

2
ak

bk − ak

(
λ

ak
− 1

))
, for ak < λ ≤ bk

cos2
(
π

2
bk

ck − bk

(
λ

bk
− 1

))
, for bk < λ ≤ ck

0, elsewhere,

(8.20)

where (ak, bk] and (bk, ck], k = 1, 2, . . . ,K, define the spectral bands for
Hk(Λ). For uniform bands within 0 ≤ λ ≤ λmax, the intervals can be
defined by

ak = ak−1 + λmax
K

bk = ak + λmax
K

(8.21)

ck = ak + 2λmax
K

with a1 = 0. The initial transfer function, H0(λ), is defined using only
0 = b0 ≤ λ ≤ c0 = λmax/K, while the last transfer function, HK(λ), is
defined using the interval aK < λ ≤ bK = λmax in (8.20).

The raised cosine transfer function satisfy the following condition
K∑
k=0

Hk(λp) = 1. (8.22)

The conditions for graph signal reconstruction from the LGFT will be
discussed in Section 8.2.
Example 19: The shifted raised cosine functions, defined by (8.20)
and (8.21), are shown in Figure 8.4(b) for the graph from Figure 8.1,
for K = 25. These functions are used for the LGFT calculation of the
graph signal from Figure 8.1 at the vertex indices m = 0, 1, . . . , N − 1,
and in (K + 1) spectral bands, k = 0, 1, . . . ,K. The absolute LGFT
values are given in Figure 8.5(b). Spectral resolution depends on the
number of bands K, with a larger number of spectral bands resulting
in a higher spectral resolution.

Example 20: The experiment from Examples 18 and 19 is repeated
with varying bounds of the spectral intervals in the raised cosine transfer
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functions Hk(λp), p = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K. The spectral
index-varying (wavelet-transform like) form of the raised cosine transfer
functions Hk(λp), p = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K, is defined by the
interval bounds λmax((1.5 + p)/11.5)5, for p = 0, 1, 2, . . . , 10,

ak ∈ {0, 0.004, 0.02, 0.07, 0.19, 0.44, 0.9, 1.7, 2.9},
bk ∈ {0.004, 0.02, 0.07, 0.19, 0.44, 0.9, 1.7, 2.9, 4.8},
ck ∈ {0.02, 0.07, 0.19, 0.44, 0.9, 1.7, 2.9, 4.8, 7.63},

k = 1, 2, . . . , 9,

and depicted in Figure 8.4(c). The LGFT values, S(m, k), calculated
with the so-obtained transfer functions, Hk(λp), are shown in
Figure 8.5(c). In order to illustrate the change of resolution in this case,
the LGFT was reassigned to each eigenvalue λp, p = 0, 1, . . . , N − 1,
and shown in Figure 8.6. As in classical wavelet transform, the spectral
resolution is lower for the higher spectral indices.

20 40 60 80 100

20

40

60

80

100

Figure 8.6: Vertex-frequency representation from Figure 8.5(c) with the axis of
the eigenvalue index, p, instead of the frequency band index, k. The same value of
LGFT, S(m, k), is assigned to each spectral index, p, when λp ∈ (ak+bk

2 , bk+ck
2 ], and

without any scaling.
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Signal Adaptive LGFT

The spectral graph wavelet-like transform is just an example of varying
spectral transfer functions in the LGFT, where the spectral resolution
is the highest (spectral wavelet functions narrowest) for small values of
the smoothness index, λp (Behjat and Van De Ville, 2019). The spectral
resolution decreases as the spectral wavelet functions become wider for
large smoothness index values, Figure 8.4(c). In general, the change
of resolution may be arbitrary and signal adaptive, for example, the
resolution may be higher for the spectral intervals of λ which are rich
in signal components and lower within the intervals where there are no
signal components.

Before introducing an example with a signal adaptive LGFT, we will
modify the transfer functions, Hk(λp), in (8.20) to satisfy the condition

K∑
k=0

H2
k(λp) = 1, (8.23)

as this will be important for the frame-based LGFT inversion.
Notice that a simple transformation of the transfer functions,

Hk(λp) → H2
k(λp), would allow for the condition ∑K

k=0H
2
k(λp) = 1

to hold instead of ∑K
k=0Hk(λp) = 1. This means that a simple removal

of squares in the sine and cosine functions in (8.20) would produce a
form to satisfy the condition∑K

k=0H
2
k(λp) = 1. Both of these conditions

will be used in Section 8.2 in various approaches to the graph signal
reconstruction from the LGFT.

By removing the squares in the sine and cosine functions in (8.20),
their first derivative loses continuity in λ at the end interval points. In
order to preserve continuous derivatives, the arguments in the sine and
cosine functions can be mapped by a polynomial,

vx(x) = x4(35− 84x+ 70x2 − 20x3), for 0 ≤ x ≤ 1,

with vx(0) = 0 and vx(1) = 1. In this way, we arrive at the Meyer
wavelet-like transfer functions (Meyer, 1992) for the LGFT calculation,
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given by

Hk(λ) =



sin
(
π

2 vx
(

ak
bk − ak

(
λ

ak
− 1

)))
, for ak < λ ≤ bk

cos
(
π

2 vx
(

bk
ck − bk

(
λ

bk
− 1

)))
, for bk < λ ≤ ck

0, elsewhere.

(8.24)

The initial transfer function, k = 0, and the last transfer function,
k = K, are calculated using only the half of the interval, as explained
after the spectral band definition in relation (8.21).
Example 21: The transfer functions of the form defined in (8.24) are
used with signal adaptive intervals. These intervals are defined in such
a way that they are small (fine) around λ, where a significant signal
spectral content is detected, and are big (rough) around λ where the
signal spectral content is low, as in Figures 8.7(a) and (b). The intervals
are narrow (with a high resolution) around the three signal components
at λ = 0.38, λ = 1.87, and λ = 4.62. Vertex-frequency representation
with these transfer functions is shown in Figures 8.7(c) and (d) with the
spectral band index, k, and the assigned eigenvalue (spectral) index, p,
as a spectral axis. Fine intervals around the spectral signal components
allowed for high spectral resolution representation, as in Figure 8.7(c),
with a smaller number of transfer functions K+1 = 17. A wider interval
width for the third component resulted in a lower spectral resolution
than in the case of the other two components.

Polynomial LGFT Approximation

Bandpass LGFT functions, Hk(λ), k = 0, 1, . . . ,K, of the form (8.20)
or (8.24) can be implemented using the Chebyshev finite (M − 1)-order
polynomial approximation, P̄k,M−1(λ), k = 0, 1, . . . ,K, of the form

P̄k,M−1(λ) = ck,0
2 +

M−1∑
m=1

ck,mT̄m(λ). (8.25)

This leads to the vertex domain implementation of the spectral LGFT
form, given by

sk = P̄k,M−1(L)x,
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Figure 8.7: A graph signal and transfer functions in the spectral domain for a signal
adaptive LGFT. (a) Graph signal in the spectral domain, X(p), as a function of the
eigenvalues, λp. (b) The spectral domain transfer functionsHk(λp), p = 0, 1, . . . , N−1,
k = 0, 1, . . . ,K which satisfy the condition

∑K

k=0 H
2
k(λp) = 1, with K = 16. (c) The

LGFT of the signal from Figure 8.1(d), calculated using the transfer functions
for frequency selection given in (b). (d) Vertex-frequency representation from (c)
with the eigenvalue (spectral) index, p, axis instead of the frequency band index, k.
The same value of LGFT, S(m, k), is assigned to each spectral index, p, when
λp ∈ (ak+bk

2 , bk+ck
2 ], without any scaling.
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Table 8.1: Coefficients, hi,k, i = 0, 1, . . . ,M − 1, k = 0, 1, . . . ,K, for the polynomial
calculation of the LGFT, sk, of a signal, x, in various spectral bands, k, shown in
Figure 8.8(b). The obtained LGFT of the three-component signal from Figure 8.1(d)
is given in Figure 8.9(a)

sk = (h0,kI + h1,kL + h2,kL2 + h3,kL3 + h4,kL4 + h5,kL5)x
k h0,k h1,k h2,k h3,k h4,k h5,k

0 1.062 −1.925 1.168 −0.3115 0.03776 −0.001702
1 −0.002 1.773 −1.655 0.5357 −0.07250 0.003508
2 −0.154 1.016 −0.601 0.1295 −0.01155 0.000349
3 0.005 −0.301 0.621 −0.2674 0.04200 −0.002225
4 0.089 −0.748 0.869 −0.3042 0.04217 −0.002040
5 0.060 −0.381 0.319 −0.0704 0.00461 0.000000
6 −0.024 0.277 −0.430 0.2055 −0.03570 0.002040
7 −0.076 0.598 −0.714 0.2814 −0.04292 0.002225
8 −0.027 0.159 −0.122 0.0198 0.00177 −0.000349
9 0.087 −0.699 0.868 −0.3662 0.06140 −0.003508
10 −0.026 0.220 −0.293 0.1333 −0.02435 0.001536

for k = 0, 1, 2, . . . ,K, with

P̄k,M−1(L) = ck,0
2 +

M−1∑
m=1

ck,mT̄m(L),

= h0,kI + h1,kL + h2,kL2 + · · ·+ h(M−1),kLM−1 (8.26)

as discussed in Section 3.5 and shown in Table 8.1. The polynomial form
in (8.26) uses only the (M−1)-neighborhood in calculation of the LGFT
for each considered vertex, without the need for eigendecomposition
analysis, thus significantly reducing the computational cost.
Example 22: Consider the shifted transfer functions, Hk(λ), k =
0, 1, . . . ,K, defined by (8.20) and (8.21), shown in Figure 8.8(a), for
K = 10. Functions Hk(λ) satisfy ∑K

k=0Hk(λ) = 1, which is numerically
confirmed and designated by the horizontal dotted line in 8.8(a). Each
individual transfer function, Hk(λ), is approximated using the Cheby-
shev polynomial, P̄k,M−1, k = 0, 1, . . . ,K, as detailed in Section 3.5,
with three polynomial orders defined by M = 6, M = 20 and M = 80.
These polynomial approximations are shown in Figures 8.8(b)–(d). In
each considered case, summations∑K

k=0 P̄k,M−1(λ) are calculated. It can
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Figure 8.8: Chebyshev approximation of LGFT transfer functions, which corre-
spond to the raised cosine window in the spectral domain. (a) Original transfer
functions Hk(λ), k = 0, 1, . . . ,K, for K = 10. The dotted horizontal line designates∑K

k=0 Hk(λ). (b) Polynomial Chebyshev approximations, P̄k,M−1(λ), k = 0, 1, . . . ,K,
with M = 6. (c) Polynomial Chebyshev approximations, P̄k,M−1(λ), k = 0, 1, . . . ,K,
withM = 20. (d) Polynomial Chebyshev approximations, P̄k,M−1(λ), k = 0, 1, . . . ,K,
with M = 80. The dotted horizontal line designates

∑K

k=0 P̄k,M−1(λ), which is close
to 1 in all considered approximations, thus guaranteeing stable transform invertibility.
Transfer function H6(λ) and approximations, P̄6,M−1(λ), are designated by the thick
black line.
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be observed that for different values of M , the summations in all con-
sidered cases are very close to 1, thus guaranteeing numerically stable
invertibility of the LGFT, as discussed later.

The so obtained approximations of transfer functions, Hk(λ), are
used for the LGFT based vertex-frequency analysis. Absolute LGFT val-
ues, calculated for the three-component graph signal from Figure 8.1(d),
are shown in Figures 8.9(a)–(c), for M = 6, M = 20 and M = 80.
Low resolution in Figure 8.9(a) is directly related to the imprecise and
very wide (with a low spectral resolution) approximation of the spectral
transfer functions for M = 6, in Figure 8.8(b). Notice that high values
of the polynomial order, (M − 1), increase calculation complexity and
require wide vertex neighborhood in the calculation of the LGFT.

Based on the analysis of calculation complexity in Section 3.5 we may
conclude that an order of KMNL of arithmetic operations is needed to
calculate the LGFT in the vertex domain, with (K + 1) spectral bands,
using a polynomial whose order is (M − 1). The number of nonzero
elements in the graph Laplacian is denoted by NL.

The Spectral Graph Wavelet Transform

Several attempts have been made to extend the classical wavelet analysis
to general graph signals, some of which were performed on specific tree
graphs (Lee et al., 2008; Murtagh, 2007). The most significant attempts
to define the wavelet transform on general graphs have been: (i) a lifting-
based approach for multi-scale representation of graph signals (Jansen
et al., 2009; Narang and Ortega, 2009; Rustamov and Guibas, 2013),
(ii) diffusion-based wavelets and diffusion based polynomial frames
(Coifman and Lafon, 2006; Maggioni and Mhaskar, 2008), and (iii)
separable filter-bank wavelets (Narang and Ortega, 2012). The wavelet
definition that can be directly related to the presented spectral domain
local graph Fourier transform, and has been commonly used in the graph
signal analysis, is based on the extension of the spectral domain form
of the classical wavelet transform and its polynomial approximations,
and was introduced in Hammond et al. (2011).

In classical signal processing theory, time-frequency analysis has
many common goals with the wavelet transform (and its generalization
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Figure 8.9: Vertex-frequency representation of a three-component signal in
Figure 8.1(d). The LGFT is based on raised cosine (Hann window) like band-
pass transfer functions for frequency selection, with K = 10, approximated using the
Chebyshev polynomials of various order, as shown in Figures 8.8(b)–(d). (a) The
LGFT of the signal from Figure 8.1(d), calculated using the Chebyshev polynomial
approximation of transfer functions given in Figure 8.8(b), with M = 6. (b) The
LGFT of the signal from Figure 8.1(d), calculated using the transfer functions for
frequency selection given in Figure 8.4(c), with M = 20. (c) The LGFT of the signal
from Figure 8.1(d), calculated using the transfer functions for frequency selection
given in Figure 8.4(d), withM = 80. Low resolution in (a) can be directly related with
low M = 6 used in approximation in Figure 8.8(b). The resolution is considerably
improved for M = 20.
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in the form of time-scale analysis). However, these two areas are usually
considered separately. The main goals of the wavelet analysis are to per-
form multi-resolution signal analysis, compression, and signal processing,
including the wavelet domain sparsity-driven signal denoising. The main
goals in classical time-frequency analysis are in spectral and signal pa-
rameter estimation (like, for example, the instantaneous frequency),
joint time-frequency domain processing, detection, and denoising of
nonstationary signals.

Since the same relation between these areas can be assumed for graph
signal processing, we shall consider only the spectral wavelet transform,
which is directly related to the frequency-varying LGFT and can be
considered as a special case of the frequency-varying vertex-frequency
analysis, rather than a transform aimed at graph signal compression
and its wavelet-like multi-resolution analysis.

The classic wavelet analysis is based on defining the “mother wavelet”
and using its dilatated and translated versions to create signal decom-
position kernels. A direct extension of this concept is not possible on
graphs as irregular signal domains, since the operations of dilatation
and translation are not possible in the same way as in the case of
simple regularly sampled line as the signal domain. As in classical signal
processing, wavelet coefficients can be defined as a projection of a graph
signal onto the wavelet kernel functions. Assume that the basic form for
the wavelet definition in the spectral domain is H(λp). The wavelet in
spectral domain then represents a scaled version of H(λp) in the scale
si, i = 1, 2, . . . ,K−1, and is denoted by Hammond et al. (2019), Behjat
and Van De Ville (2019), Behjat et al. (2015), Rustamov and Guibas
(2013), Jestrović et al. (2017), Masoumi et al. (2019), and Cioacă et al.
(2019)

Hi(λp) = H(siλp).

Additionally, a low-pass scale (father wavelet) function G(λp), plays
the role of low-pass function, H0(λp), in the LGFT. Therefore, a
set of discrete scales for the wavelet calculation, denoted by s ∈
{s1, s2, . . . , sK−1}, is assumed with the corresponding spectral transfer
functions, Hsi(λp) and G(λp). Now, in the same way as in the case of
the kernel form of the LGFT in (8.8), the graph wavelet transform is
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defined using the band-pass scaled wavelet kernel, ψm,si(n), instead of
the LGFT kernel, Hm,k(n), in (8.14). This yields

ψm,si(n) =
N−1∑
p=0

H(siλp)up(m)up(n), (8.27)

which corresponds to the LGFT kernel, Hm,k(n), defined in (8.16). This
yields the wavelet coefficients given by

W (m, si) =
N−1∑
n=0

ψm,si(n)x(n)

=
N−1∑
n=0

N−1∑
p=0

H(siλp)x(n)up(m)up(n)=
N−1∑
p=0

H(siλp)X(p)up(m).

The wavelet coefficients may be interpreted as the IGFT of
H(siλp)X(p), that is

W (m, si) = IGFT{H(siλp)X(p)}. (8.28)

Remark 38: We will use the notation H(siλ) = Hi(λ) with the cor-
responding matrix function form Hi(Λ). Notice that this scale-based
indexing is opposite to the classical frequency band indexing. The
largest scale for H(s1λ), 1 < s1λ ≤M , is obtained for the smallest s1,
1/s1 < λ ≤M/s1, where M > 1 is the coefficient of the scale changes,
which will be explained later. The associated spectral wavelet trans-
fer function, H(s1λ) = H1(λ), corresponds to the highest frequency
band. The wavelet transfer function in scale sK , H(sKλ) = HK(λ), is
associated with the lowest frequency band. Notation for the spectral
scale function (low-pass transfer function complementary to H(sKλ)
within the lowest spectral interval) is G(λ). The spectral scale function,
G(λ), plays the role of low-pass transfer function with spectral index 0
in the LGFT. Therefore, K spectral wavelet transfer functions H(siλ),
i = 1, 2, . . . ,K, along with the scale function G(λ), cover exactly K + 1
spectral bands as in the LGFT case.

According to (3.36), we can write

wi = Hi(L)x, (8.29)
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where wi is a column vector with elementsW (m, si),m = 0, 1, . . . , N−1.
If Hi(λ) = H(siλ) can be approximated by a polynomial in λ,

Hi(λ) ≈ Pi(λ), then the relation

wi ≈ Pi(L)x, (8.30)

follows, where Pi(L) is a polynomial in the graph Laplacian (see
Section 3.5 and Example 22).
Example 23: The wavelet transform (vertex-scale) representation of
a three-component signal in Figure 8.1(d), obtained using the Meyer-
like graph wavelet in the spectral domain, λ, will be illustrated here.
As in classical wavelet transform, the wavelet in the first scale should
correspond to the high-pass transfer function with nonzero values in
the interval λmax/M < λ ≤ λmax, where M > 1 is the coefficient of
the scale changes. In classical wavelet transforms the dyadic scheme
with M = 2 is commonly used. The scale based indexing is opposite to
the classical frequency indexing, where large indices indicate the high
frequency content. The Meyer-like graph wavelet in the first scale is
defined by Meyer (1992) and Leonardi and Van De Ville (2013)

H(s1λ) =


sin
(
π

2 vx(q(s1λ− 1))
)
, for 1 < s1λ ≤M,

0, elsewhere.

For 2 ≤ i ≤ K the Meyer-like graph wavelet is given by

H(siλ) =



sin
(
π

2 vx(q(siλ− 1))
)
, for 1 < siλ ≤M

cos
(
π

2 vx
(
q

(
siλ

M
− 1

)))
, for M < siλ ≤M2

0, elsewhere,

where q = 1/(M − 1). The initial interval is defined by s1 = M/λmax,
so that 1 < siλ ≤ M corresponds to λmax/M < λ ≤ λmax, while the
other interval bounds are defined using a geometric sequence of scale
factors,

si = si−1M = s1M
i−1 = 1

λmax
M i.
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Observe that the larger the scale factor si (and the scale index i), the
narrower the transfer function, H(siλ), while the progression coeffi-
cient is

M = (q + 1)/q > 1.

In classical wavelet transforms the dyadic scheme with M = 2 is
commonly used. The last value of the scale factor, sK = MK/λmax/M ,
is defined by K and indicates how close the last wavelet transfer function
is to λ = 0.

The polynomial function, vx(x), is defined by

vx(x) = x4(35− 84x+ 70x2 − 20x3), for 0 ≤ x ≤ 1, with
vx(q(0)) = vx(0) = 0, vx(q(M − 1)) = vx(1) = 1. (8.31)

The wavelet transfer functions,

Hi(λ) = H(siλ),

are of a band-pass type. The main property (condition for the recon-
struction) is that the wavelet functions in two successive scales satisfy
the following property

H2
i (λ) +H2

i+1(λ)

= cos2
(
π

2 vx
(
q

(
siλ

M
− 1

)))
+ sin2

(
π

2 vx
(
q

(
siλ

M
− 1

)))
= 1,

within
M < siλ ≤M2.

This property implies ∑K
i=1H

2(siλ) = 1 for all λ except in the last
interval, sKλ ∈ [0,M2]. To handle the low-pass spectral components
(the interval for λ closest to λ = 0), the low-pass type scale function,
G(λ)), is added in the form

G(λ)=


1, for 0 ≤ λ ≤M/sK = λmax/MK−1

cos
(
π

2 vx
(
q

(
sKλ

M
− 1
)))

, for M < sKλ ≤M2

0, elsewhere.
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Remark 39: The number of wavelet transfer functions, K, does not
depend on the other wavelet parameters. A large value of K will only
increase the number of intervals and the resolution (producing smaller
width of the first interval defined by λmax/MK−1) toward λ → 0, as
shown in Figures 8.10(a)–(c).

Remark 40: The wavelet transfer functions, H(siλ), including the
low-pass scale function, G(λ), defined in Example 23 satisfy the relation

K∑
i=1

H2(siλ) +G2(λ) = 1.

Example 24: For q = 1, M = 2, and K = 9 the Meyer wavelet
functions are given in Figure 8.10(a). The Meyer wavelet functions for
q = 3, M = 4/3, K = 13 and q = 9, M = 10/9, K = 45 are shown
in Figures 8.10(b) and (c). The vertex-frequency representation of the
signal from Figure 8.1 using these three sets of wavelet transfer functions
are shown in Figures 8.11(a)–(c).
Polynomial SGWT approximation. Chebyshev approximation of
the wavelet functions, H(siλ) = Hi(λ), in the form

P̄i,M−1(λ) = ci,0
2 +

M−1∑
m=1

ci,mT̄m(λ), (8.32)

can be used for the vertex domain wavelet transform implementation

P̄i,M−1(L) = ci,0
2 +

M−1∑
m=1

ci,mT̄m(L), i = 0, 1, 2, . . . ,K

using only the (M − 1)-neighborhood of each considered vertex, and
without any graph Laplacian eigendecomposition analysis. The Cheby-
shev polynomials can be calculated recursively, as in (3.28), with a
change of variables and the recursive implementation as described in
detail in Examples 5 and 22.

Windows Defined Using the Vertex Neighborhood

In order to show that the window, hm(n), which is localized at a vertex
m can also be defined using the vertex neighborhood, recall that the
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Figure 8.10: Exemplars of Meyer wavelet functions (acting as transfer functions in
the wavelet transform), shown in the spectral domain. (a) Band-pass Meyer wavelet
functions H(siλ), i = 1, 2, . . . ,K and the low-pass scale function G(λ), for K = 9
and M = 2. (b) Band-pass Meyer wavelet functions H(siλ), i = 1, 2, . . . ,K and the
low-pass scale function G(λ), for K = 13 and M = 3/2. (c) Band-pass Meyer wavelet
functions H(siλ), i = 0, 1, . . . ,K and the low-pass function G(λ), for K = 45 and
M = 10/9. Transfer functions H(s2λ), H(s2λ), H(s5λ) are designated by the thick
black line, for each of the considered setups in (a)–(c), respectively; their values at
λp are shown in gray.
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Figure 8.11: Vertex-frequency representation of a three-component signal in
Figure 8.1(d). (a) The Meyer wavelet transform of the signal from Figure 8.1(d),
calculated using the transfer functions for frequency selection given in Figure 8.10(a).
(b) The Meyer wavelet transform of the signal from Figure 8.1(d), calculated using
the transfer functions for frequency selection given in Figure 8.10(b). (c) The Meyer
wavelet transform of the signal from Figure 8.1(d), calculated using the Meyer wavelet
transform transfer functions for frequency selection given in Figure 8.10(c). Wavelet
values were reassigned to spectral indices, p, in order to illustrate the change in
resolution. The same value of SGWT, W (m, k), is assigned to each spectral index, p,
when λp ∈ (ak+bk

2 , bk+ck
2 ], without any scaling.
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distance, dmn, between vertices m and n is equal to the length of the
shortest walk from vertex m to vertex n, and that dmn takes integer
values. Then, the window function can be defined as a function of vertex
distance, in the form

hm(n) = g(dmn),
where g(d) corresponds to any basic window function in classical signal
processing. For example, we can use the Hann window, given by

hm(n) = 1
2(1 + cos(πdmn/D)), for 0 ≤ dmn < D,

where D is the assumed window width.
For convenience, window functions for every vertex can be calculated

in a matrix form as follows:

• For the vertices for which the distance is dmn = 1, window func-
tions are defined through an adjacency (neighborhood one) matrix
A1 = A. In other words, the vertices which belong to the one-
neighborhood of a vertex, m, are indicated by unit-value elements
in the mth row of the adjacency matrix A (in unweighted graphs).
In weighed graphs, the corresponding adjacency matrix A can be
obtained from the weighting matrix W as A = sign(W).

• Window functions for vertices m and n, for which the distance is
dmn = 2 are defined by the matrix

A2 = (A�A1) ◦ (1−A1) ◦ (1− I),

where the symbol � denotes the logical (Boolean) matrix product,
◦ is the Hadamard (element-by-element) product, and 1 is a
matrix with all elements equal to 1. The nonzero elements of the
mth row of the matrix A�A1 then designate the vertices that are
connected to the vertex m with walks of length K = 2 or lower. It
should be mentioned that the element-by-element multiplication
of (A�A1) by matrix (1−A1) removes the vertices connected
with walks of length 1, while the multiplication by (1− I) removes
the diagonal elements from (A�A1).

• For dmn = d ≥ 2, we arrive at a recursive relation for the calcula-
tion of a matrix which will give the information about the vertices
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separated by the distance d. Such a matrix has the form

Ad = (A�Ad−1) ◦ (1−Ad−1) ◦ (1− I). (8.33)

The window matrix for an assumed graph window width, D, can
now be defined as

PD = g(0)I + g(1)A1 + · · ·+ g(D − 1)AD−1,

so that a graph signal which is localized around a vertex m, may be
formed based on this matrix, as

xm(n) = hm(n)x(n) = PD(n,m)x(n).

The LGFT representation of a graph signal, x(n), then becomes

S(m, k) =
N−1∑
n=0

x(n)hm(n) uk(n) =
N−1∑
n=0

x(n)PD(n,m) uk(n), (8.34)

with the vertex-frequency kernel given by

Hm,k(n) = hm(n)uk(n) = PD(n,m)uk(n). (8.35)

This allows us to arrive at the matrix form of the LGFT, given by

S = UT (PD ◦ [x, x, . . . , x]), (8.36)

where [x, x, . . . , x] is an N ×N matrix, the columns of which are the
signal vector, x.

For a rectangular function g(d) = 1, for d < D, the LGFT can be
calculated recursively with respect to the window width, D, as

SD = SD−1 + UT (AD−1 ◦ [x, x, . . . , x]). (8.37)

Example 25: Consider the local vertex-frequency representation of
the signal from Figure 8.1, using vertex domain defined windows. The
localization kernels, Hm,k(n) = hm(n)uk(n), are shown in Figure 8.12
for two vertices and two spectral indices. Observe that for the spectral
index k = 0, the localization kernel is proportional to the localization
function hm(n), given in Figures 8.12(a) and (c) for the vertices m = 34
and m = 78. Frequency modulated forms of these localization functions
are shown in Figures 8.12(b) and (d), for the same vertices and k = 20.
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Figure 8.12: Localization kernels for vertex-frequency analysis, Hm,k(n) =
hm(n)uk(n), for the case of vertex domain defined windows in the local graph
Fourier transform, S(m, k) =

∑N−1
n=0 x(n)Hm,k(n). (a) Localization kernelH34,0(n) =

h34(n)u0(n) ∼ h34(n), for a constant eigenvector, u0(n) = 1/
√
N , centered at the

vertex m = 34. (b) The same localization kernel as in (a), but centered at the vertex
m = 78. (c) Localization kernel, H34,20(n) = h34(n)u20(n), centered at the vertex
m = 35 and frequency shifted by u20(n). Observe the variations in kernel amplitude,
which indicate a modulation of the localization window, hm(n). (d) The same local-
ization kernel as in (c), but centered at the vertex m = 78. (e) Three-dimensional
representation of the kernel H34,0(n) = h34(n)u0(n). (f) Three-dimensional represen-
tation of the kernel H78,0(n) = h78(n)u0(n).
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Figure 8.13: Local vertex-frequency spectrum calculated using the LGFT and
vertex neighborhood windows, as in (8.35). This representation immediately shows
that the graph signal consists of three components located at spectral indices k = 8,
k = 66, and k = 27, with the corresponding vertex indices in their respective vertex
subsets V1, V2, and V3, where V1 ∪ V2 ∪ V3 = V. The marginal properties are also
given in the panels to the right and below the vertex-frequency representation, and
they differ from the ideal ones given respectively by |x(n)|2 and |X(k)|2.

A vertex domain window is next used to analyze the graph signal
from Figure 8.1. The vertex-frequency representation, S(n, k), obtained
with the LGFT and the vertex domain localization window is given
in Figure 8.13. Again, we can observe three constituent graph signal
components in three distinct vertex regions. The marginals of S(n, k)
are also shown in the right and bottom panels.

Remark 41: Directed graphs. The vertex neighborhood, as a set
of vertices that can be reached from the considered vertex by a walk
whose length is at most D, may be also defined on directed graphs. In
this case, this approach corresponds to one-sided windows in classical
signal analysis.
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If we want to define two-sided window, then we should also include
all vertices from which we can reach the considered vertex by walk
whose length is at most D. This means that for a directed graph we
should assume that vertices with distance dmn = 1 from the considered
vertex m are the vertices from which we can reach vertex m with walk of
length 1. In this case A1 = A + AT where addition is logical operation
(Boolean OR). The matrix A2 is

A2 = (A�A + AT �AT ) ◦ (1− I) ◦ (1−A1).

This procedure could be continued for walks up to the desired
maximal length D.

For a circular directed graph in this way, we will get the classical
STFT with symmetric window.

Window Parameter Optimization

The concentration of local vertex spectrum representation can be mea-
sured using the normalized one-norm (Stanković, 2001), as

M = 1
F

N−1∑
m=0

N−1∑
k=0
|S(m, k)| = 1

F
‖S‖1, (8.38)

where

F = ‖S‖F =

√√√√N−1∑
m=0

N−1∑
k=0
|S(m, k)|2

is the Frobenius norm of matrix S. Alternatively, any other norm ‖S‖pp,
with 0 ≤ p ≤ 1 can be used instead of ‖S‖1. Recall that norms with
p close to 0 are noise sensitive, while the norm with p = 1 is the
only convex norm, which hence allows for gradient based optimization
(Stanković, 2001).
Example 26: The concentration measure, M(τ) = ‖S‖1/‖S‖F , for
the signal from Figure 8.1, the window given in (8.2), and for various
τ is shown in Figure 8.14, along with the optimal vertex frequency
representation. This representation is similar to that shown in Figure 8.3,
where an empirical value of τ = 3 was used, with the same localization
window and kernel form.
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Figure 8.14: Principle of the optimization of localization window. (a) Measure of
the concentration of graph spectrogram for a varying spectral domain window param-
eter τ . (b) The corresponding optimal vertex-frequency representation, calculated
with τ = 7, together with its marginals.

The optimal τ can be obtained in only a few steps through the
iteration

τk = τk−1 − α(M(τk−1)−M(τk−2)),

with α a step-size parameter.
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The optimization of parameter τ can also be achieved through graph
uncertainty principle based techniques (Agaskar and Lu, 2013; Tsitsvero
et al., 2016).

8.2 Inversion of the LGFT

The inversion relation of the LGFT, calculated using any of the presented
localization (window) forms, will next be considered in a unified way;
the two approaches for the LGFT inversion here are: (i) inversion by
summation of LGFT and (ii) kernel based inversion.

Inversion by the Summation of the LGFT

The reconstruction of a graph signal, x(n), from its local spectrum,
S(m, k), can be performed through an inverse GFT of (8.5), based on
the graph windowed signal

x(n)hm(n) =
N−1∑
k=0

S(m, k)uk(n) (8.39)

followed by a summation over all vertices, m, to yield

x(n) = 1∑N−1
m=0 hm(n)

N−1∑
m=0

N−1∑
k=0

S(m, k)uk(n). (8.40)

Remark 42: If the windows, hm(n), for every vertex, n, satisfy the
condition

N−1∑
m=0

hm(n) = 1,

then the reconstruction does not depend on the vertex index, n, or in
other words such reconstruction is vertex independent. This becomes
clear from

x(n) =
N−1∑
m=0

N−1∑
k=0

S(m, k)uk(n) =
N−1∑
k=0

X(k)uk(n), (8.41)

where

X(k) =
N−1∑
m=0

S(m, k)
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is a projection of the LGFT onto the spectral index axis. For windows
obtained using the generalized graph shift in (8.33), this conditions is
always satisfied since H(0) = 1.

The condition ∑N−1
m=0 hm(n) = 1 can be enforced by normalizing the

elements of the matrix Ad, d = 1, 2, . . . , D − 1 in (8.33), prior to the
calculation of matrix PD, in such a way that the sum of each of its
columns is equal to 1, which allows us to arrive at

N−1∑
m=0

hm(n) =
N−1∑
m=0

PD(n,m) =
D−1∑
d=1

g(d) = const.

In general, the local vertex spectrum, S(m, k), can also be calculated
over a reduced set of vertices, m ∈M ⊂ V . In this case, the summation
over m in the reconstruction formula should be executed over only the
vertices m ∈M, while a vertex-independent reconstruction is achieved
if ∑m∈M hm(n) = 1.

Inversion of the LGFT with Band-Pass Functions

For the LGFT, defined in (8.18) as sk = ∑M−1
p=0 hp,kLpx, the inversion is

obtained by a summation over all spectral index shifts, k = 0, 1, . . . ,K,
that is

K∑
k=0

sk =
K∑
k=0

N−1∑
p=0

hp,kLpx =
K∑
k=0

Hk(L)x = x, (8.42)

if∑K
k=0Hk(L) = I. This condition is equivalent to the following spectral

domain form
K∑
k=0

Hk(Λ) = I (8.43)

since U∑K
k=0Hk(Λ)UT = I and UTU = I. The condition in (8.43) is

used to define the transfer functions in Figure 8.4.

Kernel-Based Inversion

Another approach to the inversion of the local vertex spectrum, S(m, k),
follows the Gabor expansion framework (Stanković et al., 2014), whereby
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the local vertex spectrum, S(m, k), is projected back to the vertex-
frequency localized kernels, Hm,k(n). The inversion for two forms of the
LGFT, defined as in (8.6) and (8.17), will be analyzed.

(a) For the LGFT defined in (8.6), the sum of all of its projections
to the localized kernels, Hm,k(n), is

N−1∑
m=0

N−1∑
k=0

S(m, k)Hm,k(n)

=
N−1∑
m=0

(N−1∑
k=0

S(m, k)hm(n)uk(n)
)

=
N−1∑
m=0

(N−1∑
i=0

IGFT
k→i
{S(m, k)}IGFT

k→i
{hm(n)uk(n)}

)

=
N−1∑
m=0

N−1∑
i=0

[x(i)hm(i)][hm(n)δ(n− i)]

=
N−1∑
m=0

x(n)h2
m(n) = x(n)

N−1∑
m=0

h2
m(n), (8.44)

where IGFT denotes the inverse GFT transform. Parseval’s theorem
for graph signals

N−1∑
n=0

x(n)y(n) =
N−1∑
k=0

X(k)Y (k)

was used in the derivation. In this form of the LGFT all possible spectral
shifts, k = 0, 1, . . . , N − 1, are used.

The inversion formula for the local vertex spectrum, S(m, k), which
yields the original graph signal, x(n), then becomes

x(n) = 1∑N−1
m=0 h

2
m(n)

N−1∑
m=0

N−1∑
k=0

S(m, k)Hm,k(n). (8.45)

Remark 43: This kind of kernel-based inversion is vertex-invariant if
the sum over all vertices, m, is invariant with respect to n and is equal
to 1, that is

N−1∑
m=0

h2
m(n) = 1. (8.46)
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If the LGFT, S(m, k), is calculated over a reduced set of vertices,
m ∈ M ⊂ V, then the vertex independent reconstruction condition
becomes ∑m∈M h2

m(n) = 1.
(b) For the LGFT with spectral shifted spectral windows, defined

in (8.17), the kernel based inversion is of the form

x(n) =
N−1∑
m=0

K∑
k=0

S(m, k)Hm,k(n) (8.47)

if the following condition
K∑
k=0

H2
k(λp) = 1 (8.48)

is satisfied for all λp, p = 0, 1, 2, . . . , N − 1.
The inversion formula in (8.47), with condition (8.48), follows from
N−1∑
m=0

K∑
k=0

S(m, k)Hm,k(n)

=
N−1∑
m=0

K∑
k=0

N−1∑
p=0

X(p)Hk(λp)up(m)
N−1∑
l=0

Hk(λl)ul(m)ul(n). (8.49)

Since ∑N−1
m=0 up(m)ul(m) = δ(p− l), the last expression reduces to the

graph signal, x(n),
K∑
k=0

N−1∑
p=0

X(p)Hk(λp)Hk(λp)up(n) = x(n), (8.50)

if the transfer functions, Hk(λp), k = 0, 1, . . . ,K, satisfy the condition
in (8.48) for all λp.

Vertex-Varying Filtering

Filtering in the vertex-frequency domain may be implemented using a
vertex-frequency support function, B(m, k). The filtered LGFT is then
given by

Sf (m, k) = S(m, k)B(m, k),
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(a)

(b)

(c)

Figure 8.15: Vertex-varying filtering of a graph signal. (a) The original graph signal,
x(n), from Figure 8.1 (d). (b) The graph signal, x(n), corrupted by an additive white
Gaussian noise, at SNRin = 5.3 dB. (c) The graph signal, xf (n), after vertex-varying
filtering based on thresholding of the LGFT of noisy graph signal, S(m, k), with the
final signal-to-noise ratio SNRout = 10.36 dB.

and the filtered signal, xf (n), is obtained by the inversion of Sf (m, k)
using the above mentioned inversion methods. The filtering support
function, B(m, k), can be obtained, for example, by thresholding noisy
values of the local vertex spectrum, S(m, k).
Example 27: Consider the graph signal, x(n), from Figure 8.1(d), also
shown in Figure 8.15(a), and its version corrupted by an additive white
Gaussian noise, at the signal-to-noise ratio of SNRin = 5.3 dB, given
in Figure 8.15(b). The LGFT, S(m, k) of the noisy graph signal is
calculated according to (8.17), using shifted bandpass spectral transfer
functions, Hk(λp), k = 0, 1, . . . ,K, p = 0, 1, . . . , N − 1, given by (8.20)
without squares (Hk(λp)→ H2

k(λp)), which allows ∑K
k=0H

2
k(λp) = 1 to
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hold, instead of ∑K
k=0Hk(λp) = 1. In this way, the condition for the

inversion (8.48) is satisfied. The transfer functions, Hk(λp), otherwise
correspond to those shown in Figure 8.4(b) with K = 25.

The vertex-varying filtering is performed using Sf (m, k) = S(m, k) ·
B(m, k) for m = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K, with a simple
thresholding-based filtering support function

B(m, k) =

0, for |S(m, k)| < T

1, otherwise,

m = 0, 1, . . . , N − 1, k = 0, 1, . . . ,K, with the threshold T = 0.09
set empirically. The output graph signal, xf (n), is obtained using the
inversion relation in (8.47) for the filtered LGFT, Sf (m, k), and shown
in Figure 8.15(c). The achieved output SNR was SNRout = 10.36 dB.

If the signal is filtered using the graph Wiener filter, as in Section 7.3,
with the estimated noise level σε = 0.12, and the available noisy signal,
H(λk) = |X(k)|2/(|X(k)|2 + σ2

ε), with xf (n) = IGFT{X(k)H(λk)},
then the output SNR is SNRout = 7.80 dB. This value is lower that in
the vertex-varying filtering case. If we knew the signal without noise
and used it in the definition of the Wiener filter, the output SNR would
have been improved to 15.78 dB.

8.3 Uncertainty Principle for Graph Signals

In the classical signal analysis, the purpose of a window function is to
enhance signal localization in the joint time-frequency domain. However,
the uncertainty principle prevents an ideal localization in both time
and frequency. Various forms of the uncertainty principle in the signal
analysis have been defined, with surveys in Ricaud and Torrésani (2014)
and Perraudin et al. (2018). Various forms of the uncertainty principle
in graph signal processing are studied in Erb (2019).

These forms are closely related to the concentration measures in time-
frequency distributions; for a review see Stanković (2001). While the
common uncertainty principle form in time-frequency analysis (whose
quantum mechanical form is called the Robertson-Schrödinger inequal-
ity) establishes the lower bound for the product of effective signal
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widths (variances) in the time and the frequency domain (Cohen, 1995;
Stanković, 1997), here we will use a form of the sparsity support measure
(Ricaud and Torrésani, 2014; Stanković, 2001) as the one which clearly
and in a simple way shows a significant difference in both classical
Fourier based analysis and graph signal transforms with respect to the
expected concentration in the joint vertex-frequency domain.

In classical signal analysis, the purpose of a window function is to
enhance signal localization in the joint time-frequency domain. However,
the uncertainty principle prevents the ideal localization in both time
and frequency. Indeed, in the classical DFT analysis the uncertainty
principle states that

‖x‖0‖X‖0 ≥ N, (8.51)
or in other words, that the product of the number of nonzero signal
values, ‖x‖0, and the number of its nonzero DFT coefficients, ‖X‖0,
is greater or equal than the total number of signal samples N ; they
cannot simultaneously assume small values.

To arrive at the uncertainty principle for graph signals, consider a
graph signal, x, and its spectral transform, X, in a domain of orthonor-
mal basis functions, uk(n). Then, the uncertainty principle states that
Tsitsvero et al. (2016), Agaskar and Lu (2013), Elad and Bruckstein
(2002), and Perraudin et al. (2018)

‖x‖0‖X‖0 ≥
1

maxk,m{|uk(m)|2} . (8.52)

This form of the uncertainty principle is generic, and indeed for the basis
functions uk(n) = 1√

N
exp(j2πnk/N), the standard DFT uncertainty

principle form in (8.51) follows. A simple derivation of the support
uncertainty principle shall be given in Section 8.5 (Stanković, 2020).
Remark 44: Note, however, that in graph signal processing, the eigen-
vectors/basis functions can assume quite different forms than in the
standard DFT case. For example, when one vertex is loosely connected
with other vertices, then max{|uk(m)|2} → 1 and even ‖x‖0‖X‖0 ≥ 1 is
possible for the uncertainty condition in (8.52). This means that, unlike
the classical Fourier transform-based time and frequency domains, a
graph signal can be well localized in both the vertex and the spectral
domains.
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Example 28: For the graph shown in Figure 8.1, we have

max
k,m
{|uk(m)|2} = 0.8713

which indicates that even ‖x‖0‖X‖0 ≥ 1.1478 is possible. In other words,
a graph signal for which the number of nonzero samples, x(n), in the
vertex domain is just two, will not violate the uncertainty principle even
if it has just one nonzero GFT coefficient, X(k).

8.4 Graph Spectrogram and Frames

Based on (8.5), the graph spectrogram can be defined as

|S(m, k)|2 =
∣∣∣∣N−1∑
n=0

x(n)hm(n)uk(n)
∣∣∣∣2. (8.53)

Then, according to Parseval’s theorem, the vertex marginal property,
which is a projection of |S(m, k)|2 onto the vertex index axis, is given
by

N−1∑
k=0
|S(m, k)|2 =

N−1∑
k=0

S(m, k)
N−1∑
n=0

x(n)hm(n) uk(n)

=
N−1∑
n=0
|x(n)hm(n)|2,

which would be equal to the signal power, |x(m)|2, at the vertex m,
if hm(n) = δ(m− n). Since this is not the case, the vertex marginal
property of the graph spectrogram is equal to the power of the graph
signal in hand, smoothed by the window, hm(n).
Energy of graph spectrogram. For the total energy of graph spec-
trogram, we consequently have

N−1∑
m=0

N−1∑
k=0
|S(m, k)|2 =

N−1∑
n=0

(
|x(n)|2

N−1∑
m=0
|hm(n)|2

)
. (8.54)

If ∑N−1
m=0 |hm(n)|2 = 1 for all n, then the spectrogram on the graph is

energy unbiased (statistically consistent with respect to the energy),
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that is
N−1∑
m=0

N−1∑
k=0
|S(m, k)|2 =

N−1∑
n=0
|x(n)|2 = ‖x‖2 = Ex. (8.55)

The LGFT viewed as a frame. A set of functions, S(m, k), is called
a frame for the expansion of a graph signal, x, if

A‖x‖2 ≤
N−1∑
m=0
|S(m, k)|2 ≤ B‖x‖2,

where A and B are positive constants. If A = B, the frame is termed
Parseval’s tight frame and the signal can be recovered as

x(n) = 1
A

N−1∑
m=0

N−1∑
k=0

S(m, k)hm(n)uk(n).

The constants A and B govern the numerical stability of recovering the
original signal x from the coefficients S(m, k).

The conditions for two forms of the LGFT, defined as in (8.6) and
(8.17), to represent frames will be analyzed next.

(a) The LGFT, defined as in (8.6), is a frame, since in this case Parse-
val’s theorem holds (Behjat et al., 2016; Girault, 2015; Hammond
et al., 2011; Sakiyama and Tanaka, 2014), that is

N−1∑
m=0
|hm(n)|2 =

N−1∑
k=0
|H(k)|2|uk(n)|2, (8.56)

which allows us to write

1
N
H2(0) ≤

N−1∑
m=0
|hm(n)|2 ≤ max

n,k
|uk(n)|2

N−1∑
k=0
|H(k)|2 = γ2Eh,

(8.57)
where γ = maxn,k |uk(n)| and

Eh =
N−1∑
k=0
|H(k)|2.
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By multiplying both sides of the above inequalities by ‖x‖2, we
arrive at

1
N
H2(0)‖x‖2 ≤

N−1∑
m=0

N−1∑
k=0
|S(m, k)|2 ≤ ‖x‖2γ2Eh. (8.58)

A frame is termed a tight frame if the equality in (8.57) holds,
that is, if

N−1∑
m=0
|hm(n)|2 = 1,

which is the same condition as in (8.46).

(b) The LGFT defined in (8.17) is a tight frame if
K∑
k=0

N−1∑
m=0
|S(m, k)|2 =

K∑
k=0

N−1∑
p=0
|X(p)Hk(λp)|2 = Ex, (8.59)

where Parseval’s theorem for the S(m, k) as the GFT of X(p) ·
Hk(λp) was used to yield

N−1∑
m=0
|S(m, k)|2 =

N−1∑
p=0
|X(p)Hk(λp)|2.

This means that the LGFT in (8.17) is a tight frame if
K∑
k=0
|Hk(λp)|2 = 1 for p = 0, 1, . . . , N − 1.

This condition is used to define transfer functions in Figures 8.4(b)
and (c).
From (8.59), it is straightforward to conclude that the graph
spectrogram energy is bounded with

AEx ≤
K∑
k=0

N−1∑
m=0
|S(m, k)|2 ≤ BEx, (8.60)

where A and B are respectively the minimum and the maximum
of value of

g(λp) =
K∑
k=0
|Hk(λp)|2.



8.4. Graph Spectrogram and Frames 309

Graph Wavelet Transform Inversion

The wavelet inversion formula

x(n) =
N−1∑
n=0

K∑
i=0

ψ(n, si)W (n, si) (8.61)

can be derived in the same way and under the same condition as in
(8.47)–(8.48), where a set of discrete scales for the wavelet calculation,
denoted by s ∈ {s1, s1, . . . , sK}, is assumed, and ψ(n, s0) is used as a
notation for the scale function, φ(n), whose spectral transfer function is
G(λ), as explained in Remark 38. In the same way as in the LGFT case,
it can be shown that the wavelet transform represents a frame with

A‖x‖2 ≤
N−1∑
n=0

K∑
i=0
|W (n, si)|2 ≤ B‖x‖2, (8.62)

where (Leonardi and Van De Ville (2013), Hammond et al. (2019), and
Behjat and Van De Ville (2019))

A = min
0≤λ≤λmax

g(λ),

B = max
0≤λ≤λmax

g(λ),

and the function g(λ) is defined by

g(λ) =
K∑
i=1

H2(siλ) +G2(λ).

The low-pass scale function,G(λ), is added in the reconstruction formula,
since all H(siλ) = 0 for λ = 0, as explained in Example 23 and
Remark 38. It should be mentioned that the spectral functions of the
wavelet transform, H(siλ), form Parseval’s frame if

g(λ) = 1.

Since the number of wavelet transform coefficients, W (n, si), for each
n and i, is greater than the number of signal samples, N , this repre-
sentation is redundant, and this redundancy allows us to implement
the transform through a fast algorithm, rather than using the explicit
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computation of all wavelet coefficients (Behjat and Van De Ville, 2019;
Hammond et al., 2019). Indeed, for large graphs, it can be computation-
ally too complex to compute the full eigendecomposition of the graph
Laplacian. A common way to avoid this computational burden is to use
a polynomial approximation schemes for H(siλ), i = 1, 2, . . . ,K, and
G(λ). One such approach is the truncated Chebyshev polynomial ap-
proximation method which is based on the application of the continuous
spectral window functions with Chebyshev polynomials, which admit
order-recursive calculation (see Section 3.5 and Example 3.5). If, for a
given scale, si, the wavelet function is approximated by a polynomial
in the Laplacian, Pi(L), then the wavelet transform can be efficiently
calculated using

wi = Pi(L)x, (8.63)
where wi a column vector with elements W (m, si), m = 0, 1, . . . ,
N − 1. Note that this form corresponds to the LGFT form in (8.18).

8.5 Vertex-Frequency Energy Distributions

Like in time-frequency analysis, the distribution of graph signal en-
ergy, as a function of the vertex and spectral indices, is an alternative
way to approach vertex-frequency analysis without localization win-
dows. A graph form of the Rihaczek distribution is used as the basic
distribution to introduce the concepts of vertex-frequency domain en-
ergy parameters, such as the local smoothness and marginal properties.
The graph Rihaczek distribution is then used to derive the support
uncertainty principle and to define a class of reduced interference vertex-
frequency energy distributions which satisfy the graph signal marginal
properties.

The energy of a general signal is usually defined as

E =
N−1∑
n=0

x2(n) =
N−1∑
n=0

x(n)
N−1∑
k=0

X(k)uk(n).

This expression can be rearranged into

E =
N−1∑
n=0

N−1∑
k=0

x(n)X(k)uk(n) =
N−1∑
n=0

N−1∑
k=0

E(n, k), (8.64)
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where for each vertex, the vertex-frequency energy distribution, E(n, k),
is defined by Stanković et al. (2018b, 2019b)

E(n, k) = x(n)X(k)uk(n) =
N−1∑
m=0

x(n)x(m)uk(m)uk(n). (8.65)

Remark 45: The definition in (8.65) corresponds to the Rihaczek dis-
tribution in classical time-frequency analysis (Boashash, 2015; Cohen,
1995; Stanković et al., 2014). Observe that based on the Rihaczek distri-
bution and the expression in (8.65), we may obtain a vertex-frequency
representation even without a localization window. This very important
property is also the main advantage (along with the concentration im-
provement) of classical time-frequency distributions with respect to the
spectrogram and STFT based time-frequency representations.

The marginal properties of the vertex-frequency energy distribution,
E(n, k), are defined as its projections onto the spectral index axis, k,
and the vertex index axis, n, to give

N−1∑
n=0

E(n, k) = |X(k)|2 and
N−1∑
k=0

E(n, k) = x2(n),

which correspond respectively to the squared spectra, |X(k)|2, and the
signal power, x2(n), of the graph signal, x(n).
Example 29: Figure 8.16 shows the vertex-frequency distribution,
E(n, k), of the graph signal from Figure 8.1, together with its marginal
properties. The marginal properties are satisfied up to the computer
precision. Observe also that the localization of energy is better than in
the cases obtained with the localization windows in Figures 8.3, 8.13,
and 8.14. Importantly, the distribution, E(n, k), does not employ a
localization window.

Smoothness Index and Local Smoothness

The smoothness index, l, in graph signal processing plays the role of
frequency, ω, in classical spectral analysis. For a graph signal, x, the
smoothness index is defined as the Rayleigh quotient of the matrix L
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Figure 8.16: Vertex-frequency energy distribution for the graph signal whose vertex-
frequency representation is given in Figure 8.3. No localization window was used
here.

and vector x, that is (see Section 4.2, Part I)

l = xTLx
xTx ≥ 0. (8.66)

Remark 46: The expression in (8.66) indicates that the smoothness
index can be considered as a measure of the rate of change of a graph
signal. Faster changing signals (corresponding to high-frequency signals)
have larger values of the smoothness index. The maximally smooth graph
signal is then a constant signal, x(n) = c, for which the smoothness
index is l = 0.

In the mathematics literature, the inverse of the smoothness index
is known as the curvature (curvature ∼ 1/l). While larger values of
the smoothness index correspond to graph signals with larger rates of
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change (less smooth graph signals), the larger values of curvature would
indicate smoother graph signals.

Notice that the smoothness index for an eigenvector, uk, of the
graph Laplacian, L, is equal to its corresponding eigenvalue, λk, that is

uTkLuk
uTk uk

= λk, (8.67)

since by definition Luk = λkuk.
Remark 47: If the above eigenvectors are the classical Fourier transform
basis functions, then the smoothness index corresponds to the squared
frequency of the considered basis function, λk ∼ ω2

k, while the curvature
corresponds to the squared period in harmonic signals.

This makes it possible to define the local smoothness index for a
vertex n, λ(n), in analogy with the standard instantaneous frequency,
ω(t), at an instant t, as Daković et al. (2019)

λ(n) = Lx(n)
x(n) , (8.68)

where it was assumed that x(n) 6= 0 and Lx(n) are the elements of the
vector Lx.

The properties of the local smoothness include:

1. The local smoothness index, λ(n), for a monocomponent signal

x(n) = αuk(n),

is vertex independent, and is equal to the global smoothness index,
λk, since

Lx(n) = αLuk(n) = αλkuk(n).

In the standard time-domain signal analysis, this property means
that the instantaneous frequency of a sinusoidal signal is equal to
its global frequency.

2. Assume a piece-wise monocomponent signal

x(n) = αiuki(n) for n ∈ Vi, i = 1, 2, . . . ,M,
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where Vi ⊂ V are the subsets of the vertices such that Vi ∩Vj = ∅
for i 6= j, V1 ∪ V2 ∪ · · · ∪ VM = V, that is, every vertex belongs
to only one subset, Vi. Given the monocomponent nature of this
signal, within each subset, Vi, the considered signal is proportional
to the eigenvector, uki(n).
Then, for each interior vertex, n ∈ Vi, i.e., a vertex whose neigh-
borhood lies in the same set, Vi, the local smoothness index is
given by

λ(n) =
αiLuki (n)
αiuki(n) = λki . (8.69)

3. An ideally concentrated vertex-frequency distribution (ideal dis-
tribution) can be defined as

I(n, k) ∼ |x(n)|2δ(λk − [λ(n)]),

whereby it is assumed that the local smoothness index is rounded
to the nearest eigenvalue.
This distribution can also be used as a local smoothness estimator,
since for each vertex, n, the maximum of I(n, k) is positioned
at λk = λ(n). An estimate of the spectral index at a vertex, n,
denoted by k̂(n), is then obtained as

k̂(n) = arg max
k
{I(n, k)},

so that the estimated local smoothness index becomes λ̂(n) =
λk̂(n). This type of estimator is widely used in classical time-
frequency analysis (Boashash, 2015; Cohen, 1995; Stanković et al.,
2014).

4. Local smoothness property. The vertex-frequency distribution,
E(n, k), satisfies the local smoothness property if∑N−1

k=0 λkE(n, k)∑N−1
k=0 E(n, k)

= λ(n). (8.70)

In that case, the centers of masses of the vertex-frequency dis-
tribution along the spectral index axis, k, should be exactly at
λ = λ(n), and can be used as an unbiased estimator of this graph
signal parameter.
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Figure 8.17: Local smoothness index, λ(n), of the graph signal from Figure 8.1.

Example 30: The vertex-frequency distribution, defined by E(n, k) =
x(n)X(k)uk(n), satisfies the local smoothness property in (8.70), since∑N−1

k=0 λkE(n, k)∑N−1
k=0 E(n, k)

=
∑N−1
k=0 λkx(n)X(k)uk(n)∑N−1
k=0 x(n)X(k)uk(n)

= Lx(n)
x(n) = λ(n).

The above relation follows from the fact that∑N−1
k=0 λkX(k)uk(n) are the

elements of the IGFT of λkX(k). Upon employing the matrix form of the
IGFT of ΛX, we have UΛX = UΛ(UTU)X = (UΛUT )(UX) = Lx.
With the notation, Lx(n), for the elements of Lx, we next obtain

N−1∑
k=0

λkX(k)uk(n) = Lx(n).

The local smoothness index for the graph signal from Figure 8.1 is
shown in Figure 8.17.

Support Uncertainty Principle Derivation

From the energy condition for the Rihaczek distribution in (8.65) and
(8.64), for the case of unit energy, we have

1 ≤
N−1∑
n=0

N−1∑
k=0
|E(n, k)|. (8.71)
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Assume, as in Elad and Bruckstein (2002), that the support, M, of
the signal, x(n), is M = {n1, n2, . . . , nM}, meaning that x(n) 6= 0 for
n ∈M and x(n) = 0 for n /∈M, while the support of the graph Fourier
transform, X(k), is K = {k1, k2, . . . , kK}, where X(k) 6= 0 for k ∈ K
and X(k) = 0 for k /∈ K. By definition, we can write

‖x‖0 = card{M} = M and ‖X‖0 = card{K} = K. (8.72)

Upon applying the Schwartz inequality to the square of (8.71), we have

1 =
( ∑
n∈M

∑
k∈K

E(n, k)
)2
≤
( ∑
n∈M

∑
k∈K
|x(n)| |X(k)| |uk(n)|

)2

=
( ∑
n∈M

∑
k∈K

(
√
|uk(n)||x(n)|) (

√
|uk(n)|X(k)|)

)2
(8.73)

≤
∑
n∈M

∑
k∈K
|uk(n)‖x(n)|2

∑
n∈M

∑
k∈K
|uk(n)‖X(k)|2 (8.74)

≤ max
n,k
{|uk(n)|2}KM = max

n,k
{|uk(n)|2}‖x‖0‖X‖0, (8.75)

from the unit energy of the graph signal, ∑n∈M |x(n)|2 = ∑
k∈K |X(k)|2

= 1.
The inequality in (8.75) results in the following support uncertainty

principle (Elad and Bruckstein, 2002)

‖x‖0‖X‖0 ≥
1

max
n,k
{|uk(n)|2}

. (8.76)

An improved bound of the support uncertainty principle was recently
derived in Stanković (2020), using the same relations.

Reduced Interference Distributions (RID) on Graphs

In order to emphasize the close relations with classical time-frequency
analysis, in this subsection we will use the complex-sensitive notation
for eigenvectors and spectral vectors. The frequency domain definition
of the energy distribution in (8.65) is given by

E(n, k) = x(n)X∗(k)u∗k(n) =
N−1∑
p=0

X(p)X∗(k)up(n)u∗k(n).
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Then, the general form of a graph distribution can be defined with the
help of a kernel φ(p, k, q), as Stanković et al. (2018a)

G(n, k) =
N−1∑
p=0

N−1∑
q=0

X(p)X∗(q)up(n)u∗q(n)φ(p, k, q). (8.77)

Observe that for φ(p, k, q) = δ(q−k), the graph Rihaczek distribution in
(8.65) follows, while the unbiased energy condition∑N−1

k=0
∑N−1
n=0 G(n, k) =

Ex is satisfied if
N−1∑
k=0

φ(p, k, p) = 1.

The so obtained distribution, G(n, k), may also satisfy the vertex
and frequency marginal properties, as elaborated below.

• The vertex marginal property is satisfied if
N−1∑
k=0

φ(p, k, q) = 1.

This is obvious from
N−1∑
k=0

G(n, k) =
N−1∑
p=0

N−1∑
q=0

X(p)X∗(q)up(n)u∗q(n) = |x(n)|2.

• The frequency marginal property is satisfied if

φ(p, k, p) = δ(p− k).

Then, the sum over all vertex indices produces
N−1∑
n=0

G(n, k) =
N−1∑
p=0
|X(p)|2φ(p, k, p) = |X(k)|2,

since ∑N−1
n=0 up(n)u∗q(n) = δ(p − q), that is, the eigenvectors are

orthonormal.

Reduced Interference Distribution Kernels

A straightforward extension of classical time-frequency kernels to graph
signal processing would be naturally based upon exploiting the relation
λ ∼ ω2, together with an appropriate exponential kernel normalization.
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Figure 8.18: The sinc kernel of the reduced interference vertex-frequency distribu-
tion in the frequency domain.

The simplest reduced interference kernel in the frequency–frequency
shift domain, which would satisfy the marginal properties, is the sinc
kernel, given by

φ(p, k, q) =


1

1 + 2|p− q| , for |k − p| ≤ |p− q|,

0, otherwise,

which is shown in Figure 8.18 at the frequency shift corresponding to
k = 50.
Example 31: The sinc kernel was used for a vertex-frequency repre-
sentation of the signal from Figure 8.1(d), with the results shown in
Figure 8.19. This representation is a smoothed version of the energy
vertex-frequency distribution in Figure 8.16, whereby both (vertex and
frequency) marginals are preserved.

Remark 48: Marginal properties of graph spectrogram. A gen-
eral vertex-frequency distribution can be written for the vertex–vertex
shift domain as a dual form of (8.77), to yield

G(n, k) =
N−1∑
m=0

N−1∑
l=0

x(m)x∗(l)uk(m)u∗k(l)ϕ(m,n, l), (8.78)
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Figure 8.19: Reduced interference vertex-frequency distribution of a signal whose
vertex-frequency representation is given in Figure 8.3. The marginal properties are
given in the panels to the right and below the vertex-frequency representation, and
are equal to their corresponding ideal forms given by |x(n)|2 and |X(k)|2.

where ϕ(m,n, l) is the kernel in this domain (the same mathematical
form as for the frequency–frequency shift domain kernel). The frequency
marginal is then satisfied if ∑N−1

n=0 ϕ(m,n, l) = 1 holds, while the vertex
marginal is met if ϕ(m,n,m) = δ(m − n). The relation of this dis-
tribution with the vertex domain spectrogram (8.1) is simple, and is
given by

ϕ(m,n, l) = hn(m)h∗n(l).

However, this kernel cannot satisfy both the frequency and vertex
marginal properties, while the unbiased energy condition ∑N−1

n=0 ϕ(m,n,
m) = 1 reduces to (8.46).

Remark 49: Classical time-frequency analysis follows as a special
case from the general form of graph distributions in (8.77), if the
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considered graph is a directed circular graph. This becomes obvious
upon recalling that the adjacency matrix eigendecomposition produces
complex-valued eigenvectors of the form uk(n) = exp(j2πnk/N)/

√
N .

With the kernel choice

φ(p, k, q) = φ(p− q, k − p) =
N−1∑
n=0

c(p− q, n)e−j
2πnk
N ej

2πnp
N

in (8.77), the classical (Rihaczek based) Cohen class of distributions
directly follows, where c(k, n) is the distribution kernel in the ambiguity
domain (Boashash, 2015; Cohen, 1995; Stanković et al., 2014).

A comparison of various vertex-frequency method may be found in
Stanković et al. (2020).

A interesting combination of the time and vertex signal variations
into time-vertex signal processing is done in Grassi et al. (2017) and
Bohannon et al. (2019).



9
Conclusion

Fundamental ideas of graph signals and their analysis have been in-
troduced starting from an intuitive multisensor estimation example,
frequently considered in traditional data analytics. The concept of sys-
tems on graphs has been defined using graph signal shift operators,
which generalize the signal shift concepts in traditional signal processing.
In Part II of our monograph, the Graph Discrete Fourier Transform
(GFT) has been at the core of the spectral domain representation of
graph signals and systems on graphs, and has been defined based on
both the adjacency matrix and graph Laplacian. These spectral domain
representations have been used as the basis to introduce graph signal
filtering concepts. Methods for the design of graph filters have been
presented next, including those based on the polynomial approximation.
Various ideas related to the sampling of graph signals, and particularly,
the challenging topic of the subsampling, have also been addressed
in this part of the monograph. This is followed by conditions for the
recovery of signals on graphs, from a reduced number of samples. The
concepts of time-varying signals on graphs and basic definitions and
methods related to processing random graph signals have also been
introduced.

321



322 Conclusion

While traditional approaches for graph signal analysis, clustering
and segmentation consider only graph topology and spectral properties
of graphs, when dealing with signals on graphs, localized analyzes should
be employed in order to consider both data on graphs and the graph
topology. Such a unified approach to define and implement graph signal
localization methods, which takes into account both the data on graph
and the corresponding graph topology, is at the core of the presented
vertex-frequency analysis. Like in classical time-frequency analysis,
main research efforts have been devoted to linear representations of
the graph signals which include a localization window for enhanced
signal discrimination. Several methods for the definition of localization
widows in the spectral and vertex domain have been addressed in
Part II of this monograph. Optimization of the window parameters,
uncertainty principle, and inversion methods have also been discussed.
Following classical time-frequency analysis, energy forms of vertex-
frequency energy and reduced interference distributions, which do not
use localization windows, have also been considered, together with the
elaboration of their role as an estimator of the local smoothness index.
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