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ABSTRACT
Modern data analytics applications on graphs often operate
on domains where graph topology is not known a priori,
and hence its determination becomes part of the problem
definition, rather than serving as prior knowledge which aids
the problem solution. Part III of this monograph starts by a
comprehensive account of ways to learn the pertinent graph
topology, ranging from the simplest case where the physics
of the problem already suggest a possible graph structure,
through to general cases where the graph structure is to
be learned from the data observed on a graph. A particu-
lar emphasis is placed on the use of standard “relationship
measures” in this context, including the correlation and
precision matrices, together with the ways to combine these
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with the available prior knowledge and structural conditions,
such as the smoothness of the graph signals or sparsity of
graph connections. Next, for learning sparse graphs (that
is, graphs with a small number of edges), the utility of the
least absolute shrinkage and selection operator, known as
(LASSO) is addressed, along with its graph specific variant,
the graphical LASSO. For completeness, both variants of
LASSO are derived in an intuitive way, starting from basic
principles. An in-depth elaboration of the graph topology
learning paradigm is provided through examples on physi-
cally well defined graphs, such as electric circuits, linear heat
transfer, social and computer networks, and spring-mass sys-
tems. We also review main trends in graph neural networks
(GNN) and graph convolutional networks (GCN) from the
perspective of graph signal filtering. Particular insight is
given to the role of di�usion processes over graphs, to show
that GCNs can be understood from the graph di�usion per-
spective. Given the largely heuristic nature of the existing
GCNs, their treatment through graph di�usion processes
may also serve as a basis for new designs of GCNs. Tensor
representation of lattice-structured graphs is next consid-
ered, and it is shown that tensors (multidimensional data
arrays) can be treated as a special class of graph signals,
whereby the graph vertices reside on a high-dimensional reg-
ular lattice structure. Finally, the concept of graph tensor
networks is shown to provide a unifying framework for learn-
ing of big data on irregular domains. This part of monograph
concludes with an in-dept account of emerging applications
in financial data processing and underground transportation
network modeling. More specifically, by means of portfolio
cuts of an asset graph, we show how domain knowledge
can be meaningfully incorporated into investment analysis,
while the underground transportation example addresses
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vulnerability of stations in the London underground network
to tra�c disruption.

Keywords: graph theory; random data on graphs; big data on graphs;
signal processing on graphs; machine learning on graphs; graph
topology learning; systems on graphs; vertex-frequency estimation;
graph neural networks; graphs and tensors.



1
Introduction

Graph data analytics have already shown enormous potential, as their
flexibility in the choice of graph topologies (irregular data domains) and
connections between the entities (vertices) allows for both a rigorous
account of irregularly spaced information such as locations and social
connections, and also for the incorporation of semantic and contextual
cues, even for otherwise regular structures such as images.

In Part I and Part II of this monograph, it was assumed that
the graph itself is already defined prior to analyzing data on graphs.
The focus of Part I has been on defining graph properties through the
mathematical formalism of linear algebra, while Part II introduces graph
counterparts of several important standard data analytics algorithms,
again for a given graph. However, in many modern applications, graph
topology is not known a priori (Cioac� et al., 2019; Das et al., 2017;
Dong et al., 2015, 2016; Epskamp and Fried, 2018; Friedman et al., 2008;
Hamon et al., 2019, Meinshausen et al., 2006; Pavez and Ortega, 2016;
Pourahmadi, 2011; Rabiei et al., 2019; StankoviÊ et al., 2018, 2020),
and the focus of this part is therefore on simultaneous estimation of
data on a graph and the underlying graph topology. Without loss of
generality, it is convenient to assume that the vertices are given, while

335



336 Introduction

the edges and their associated weights are part of the solution to the
problem considered and need to be estimated from the vertex geometry
and/or the observed data (Bohannon et al., 2019; Caetano et al., 2009;
Camponogara and Nazari, 2015; Dal Col et al., 2019; Gu and Wang,
2019; Mao and Gu, 2019; Pasdeloup et al., 2019; Slawski and Hein, 2015;
Segarra et al., 2016; StankoviÊ and SejdiÊ, 2019; StankoviÊ et al., 2017;
Tanaka and Sakiyama, 2019; Thanou et al., 2014; Ubaru et al., 2017;
Yankelevsky and Elad, 2016; Zhao et al., 2012; Zheng et al., 2011).

Three scenarios for the estimation of graph edges from vertex geom-
etry or data are considered in this part of the monograph.

• Based on the geometry of vertex positions. In various sensor net-
work setups (such as temperature, pressure, and transportation),
the locations of the sensing positions (vertices) are known before-
hand, while the vertex distances convey physical meaning about
data dependence and thus may be employed for edge/weight
determination.

• Based on data association and data similarity. Various statisti-
cal measures are available to serve as data association metrics,
with the covariance and precision matrices most commonly used.
A strong correlation between data on two vertices would indicate
a large weight associated with the corresponding edge. A small
degree of correlation would indicate nonexistence of an edge (after
weight thresholding).

• Based on physically well defined relations among the sensing
positions. Examples include electric circuits, power networks, linear
heat transfer, social and computer networks, spring-mass systems,
to mention but a few. In these cases, edge weighting can usually
be well defined based on the underlying context of the considered
problem.

After a detailed elaboration of graph definition and graph topology
learning techniques, a summary of graph topology learning from data
using probabilistic generative models is given. This followed by an
account of graph neural networks (GNN), with a special emphasis on
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graph convolutional networks (GCN). The analysis is considered from
the perspective of graph signal filtering presented in Part II. Graph
data analysis is further generalized to the tensor representation of
lattice-structured graphs, whereby the graph vertices reside on a high-
dimensional tensor structure. Finally, two applications of graph-based
data analysis are given: (i) an example where domain knowledge is
incorporated into financial data analysis (the investment analysis), by
means of portfolio cuts; (ii) London underground transportation system.
The latter example demonstrates how graph theory can be used to
identify the stations in the London underground network which have
the greatest influence on the functionality of the tra�c, and also to
assess the impact of a station closure on service levels across the city.



2
Geometrically Defined Graph Topologies

For a graph that corresponds to a network with geometrically distributed
vertices, it is natural to relate the edge weights with the distance between
vertices. Consider vertices m and n whose locations in space are defined
by the position vectors (coordinates) rm and rn. The Euclidean distance,
rmn, between these two vertices is then

rmn = distance(m, n) = Îrm ≠ rnÎ2.

A common way to define the graph weights in such networks is through
an exponentially decaying function of the distance, rmn, for example as

Wmn =

Y
]

[
e

≠r2
mn/·2

, for rmn Æ Ÿ

0, for rmn > Ÿ or m = n,

(2.1)

where · and Ÿ are suitably chosen constants. This is also physically well
justified, as based on e

≠r2
mn/·2 the weights tend to 1 for closely spaced

vertices and diminish for distant vertices.
The rationale for this definition of edge weights is the assumption

that the signal value measured at a vertex n is similar to signal values
measured at its neighboring vertices. Then, the estimation of a signal at
a vertex n should also involve neighboring vertices which are connected

338
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with larger weights (close to 1), while the signal values sensed at farther
vertices would be less relevant, and are associated with smaller weighting
coe�cients or are not included at all. A physical interpretation of
the weights in (2.1), within the heat distribution and the heat kernel
frameworks, can be found in Belkin and Niyogi (2003), where the
constant ·

2 = 4t is considered as the heat kernel parameter, t. Moreover,
the Laplacian induced from such weight definition can converge to
the continuous Laplace–Beltrami operator if the data is random and
uniformly distributed and the number of data point is infinite (Belkin
and Niyogi, 2008).

The Gaussian function, used in (2.1), is appropriate in many appli-
cations, however, other forms to penalize data values associated with
the vertices which are far from the considered vertex may also be used.
Examples of such functions include various kernels, such as the kernel
given by Chen et al. (2015, 2016)

Wmn =

Y
]

[
e

≠rmn/·
, for rmn Æ Ÿ

0, for rmn > Ÿ or m = n

(2.2)

or the inverse Euclidean distance between vertices m and n, given by

Wmn =

Y
_]

_[

1
rmn

, for rmn Æ Ÿ

0, for rmn > Ÿ or m = n.

(2.3)

Obviously, the simplest form for the edge weighting coe�cients is a
binary scheme

Wmn = Amn =

Y
]

[
1, for rmn Æ Ÿ

0, for rmn > Ÿ or m = n,

(2.4)

which corresponds to an unweighted graph, with W = A. This form
can be obtained from (2.1) as ·

2 æ Œ (or the heat kernel parameter
approaches infinity).
Example 1: We shall illustrate the geometry-based formation of graph
structure on the well-known Swiss roll manifold as a domain for data
acquisition. This is a three-dimensional surface with the space coordi-
nates, (x, y, z), defined as functions of two parameters, › and ’, in the
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following form

x = 1
4fi

’ cos(’)

y = › (2.5)

z = 1
4fi

’ sin(’).

The Swiss roll manifold shown in Figure 2.1(a) was created for the
parameters, › and ’, ranging within the intervals ≠1 Æ › Æ 1 and
fi Æ ’ Æ 4fi.

More specifically, we considered a graph with N = 100 vertices,
which were randomly placed on the Swiss roll surface, with the coordi-
nates (xk, yk, zk), k = 1, 2, . . . , N , whereby

›k was uniformly random within ≠ 1 Æ ›k Æ 1
’k was uniformly random within fi Æ ’k Æ 4fi.

The vertices were connected with edges, with the corresponding edges
defined as in (2.1), that is

Wmn = exp(≠r
2
mn/·

2),

for rmn > 0.6, with Wmn = 0 for rmn Æ 0.6, as well as for m = n;
· = 1/2. The symbol rmn denotes the shortest geodesic distance between
the vertices m and n, measured along the Swiss roll manifold, in the
following way

r
2
mn = l

2
mn + (ym ≠ yn)2

,

where the arc length, lmn, of the parametric curve in (2.5) is

lmn =
⁄ ’n

’m

ı̂ıÙ
3

dx

d’

42
+

3
dz

d’

42
d’

= 1
4fi

⁄ ’n

’m

ı̂ıÙ
3

d(’ cos(’))
d’

42
+

3
d(’ sin(’))

d’

42
d’

= 1
4fi

⁄ ’n

’m

Ò
1 + ’2d’ = 1

4fi

31
2’

Ò
’2 + 1 + 1

2 ln
!Ò

’2 + 1 + ’
"4----

’n

’m

.

Small weight values were hard-thresholded to zero, in order to reduce
the number of edges associated with each vertex.
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Figure 2.1: Concept of graph definition based on problem geometry. (a) Vertices
(points) on a three-dimensional manifold called the Swiss roll surface. (b) A graph
representation on the Swiss roll manifold. (c) Two-dimensional presentation of the
three-dimensional graph from (b) obtained by unfolding the original 3D surface.
(d) Vertices colored using the spectral vector, qn = [u1(n), u2(n)], formed from the
two smoothest generalized eigenvectors of the graph Laplacian, u1 and u2. (e) Vertices
colored using the spectral vector, qn = [u1(n), u2(n), u3(n)], formed from the three
smoothest eigenvectors of the graph Laplacian, u1, u2, and u3. The vertex indexing
in (d) and (e) is performed based on the sorted values of the smoothest (Fiedler)
eigenvector, u1.
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Figure 2.1: Continued.

The so produced three-dimensional graph is shown in Figure 2.1(b),
and its two-dimensional presentation in Figure 2.1(c). The vertices
were ordered so that the values of the Fiedler eigenvector, u1(n), were
nondecreasing; the vertices were colored based on the two-dimensional
and three-dimensional spectral vectors, qn = [u1(n), u2(n)] and qn =
[u1(n), u2(n), u3(n)], of the Swiss roll in Figures 2.1(d) and (e). This
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kind of vertex indexing can also be used for clustering with, for example,
the k-means clustering presented in Part I, Remark 30.
Classical Gaussian filter within graph topology formulation.
To illustrate this classical operation on the discrete-time domain data,
assume that we desire to perform classical smoothing of a discrete-time
domain signal, x(n), at a vertex/instant n, through a moving average
operation on data observed at neighboring vertices/instants, x(m), using
a truncated Gaussian weighting function given by

g(m, n) = e
≠(m≠n)2/·2

for |m≠n| Æ Ÿ and g(m, n) = 0 for |m≠n| > Ÿ. The smoothed discrete-
time domain signal, y(n), can be expressed in classical data analysis as

y(n) =
ÿ

m

e
≠ (m≠n)2

·2 x(m) (2.6)

where the summation is performed for instants/vertices, m, such that
|n ≠ m| Æ Ÿ.

We shall now reformulate this classical data processing problem
within the graph topology framework. The distance between the sam-
pling instants/vertices, distance (m, n), plays a crucial role in signal
smoothing, and is defined as

distance(m, n) = rmn = Îm ≠ nÎ2 = |m ≠ n|.

The corresponding edge weights can be defined based on the Gaus-
sian smoothing function, and are given by Wmn = e

≠r2
mn/·2 for rmn Æ Ÿ,

and Wmn = 0 for rmn > Ÿ and m = n.
The classical smoothed signal, y(n), defined in (2.6) can now be

expressed in the form appropriate for the graph framework as

y(n) = x(n) +
ÿ

m

x(m)Wmn = x(n) +
ÿ

m

e
≠ (m≠n)2

·2 x(m)

where the summation is performed for vertices m such that |m ≠ n| Æ Ÿ

and m ”= n. This operation can be defined within the graph analysis
framework as a simple first order system on graph, given by

y = W0x + W1x
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Figure 2.2: Graph which corresponds to the weighted moving average operator
with Gaussian weights given in (2.6).

where the edge weights between the vertices m and n are defined
by Wmn.

For example, for · = 2 and Ÿ = 2, the edge weights Wmn are
shown in Figure 2.2 and this graph-based formulation is identical to the
classical discrete-time domain weighted moving average

y(n) = x(n) +
ÿ

m

Wmnx(m) =
n+2ÿ

m=n≠2
e

≠ (m≠n)2
4 x(m), (2.7)

with the output signal samples, y(n), equal to the output of a first-order
system on the graph given by

y = W0x + W1x = 3.29L0x ≠ L1x,

where W0 and L0 are identity matrices, by definition.
For image input data, where the vertices correspond to the pixel

positions and the Euclidean distance between pixels is used to model
the image domain as a graph, the previous example would model a
moving average filtered image, using a radial Gaussian window.
Example 2: Consider the benchmark Minnesota roadmap graph, for
which the connectivity map (adjacency matrix) is designated by the
road connections and the vertices are located at the road crossings. The
edges are defined by the adjacency matrix and were weighted according
to their Eucledian distances using the weighting scheme in (2.2), with
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· = 25 km, to give
Wmn = e

≠r2
mn/·2

,

where the threshold Ÿ was not used since the connectivity is already
determined by the given adjacency matrix.

We considered a simulated temperature signal in the Minnesota area
(normalized temperature filed) which was calculated as

x(n) = 0.9
3

0.1 + 0.8e
≠

!
x≠150

100

"2
≠

!
y≠400

200

"2

,

+ 0.5e
≠

!
x≠450

200

"2
≠

!
y≠400

100

"2

+ e
≠

!
x≠500

250

"2
≠

!
y≠150

200

"24
+ ‹(n)

where ‹(n) is white Gaussian noise with a standard deviation ‡‹ = 0.3.
The noise-free and noisy versions of this graph temperature signal are
given respectively in Figures 2.3(a) and (b). The noisy signal was filtered
in the vertex domain by a low-pass filter implemented using Taubin’s
– ≠ — algorithm (presented in Part II, Section 6.2) with – = 0.15
and — = 0.1, and the so enhanced temperature signal is shown in
Figure 2.3(c). The output SNR of 19.34 dB was achieved for the input
SNR of 9.35 dB, a gain of 10 dB.
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(a)

(b)

(c)

Figure 2.3: Temperatures simulated on the Minnesota roadmap graph. (a) Original
synthetic temperature field signal. (b) Noisy temperature signal. (c) Low-pass filtered
temperature signal from (b). The signal values are designated by the corresponding
vertex color.



3
Graph Topology Based on Signal Similarity

In the previous sections, graph weights were defined on the assumption
that the geometric distance of vertices, where the signal is sensed, is a
reliable indicator of data similarity, or some other more general data
association. Indeed, this is the case with, for example, the measure-
ments of atmospheric temperature and (barometric) pressure when the
terrain configuration has no influence on the similarity of measured
data. However, in general, the geometric distance between vertices may
not be a good indicator of data similarity.

One such example is in image processing, where the pixel color
values themselves can be used as an indicator of signal similarity; this
can be achieved in combination with the distances between pixels, which
play the role of vertices. If the intensity values at pixels indexed by m

and n are denoted by x(m) and x(n), then the di�erence of intensities
is defined by

Intensitydistance(m, n) = rmn = |x(m) ≠ x(n)|,

and the corresponding weights may be defined as

Wmn =

Y
]

[
e

≠(x(m)≠x(n))2/·2
, for rmn Æ Ÿ and flmn Æ “

0, for rmn > Ÿ or flmn > “ or m = n,

347
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where flmn is a geometric distance between the considered pixels/vertices
and · , Ÿ, and “ are chosen constants.

More reliable measures of data similarity can be defined when it is
possible to collect more than one snapshot of data for a given set of
sensing points/vertices. Assume that at every vertex n = 0, 1, . . . , N ≠ 1
we have acquired P signal values, denoted by xp(n), p = 1, 2, . . . , P .
Such a dataset may be equally treated as multivariate data or signal
measurements in a sequence. Then, an appropriate similarity measure
for a real-valued signal at vertices m and n may be

r
2
mn =

qP
p=1(xp(m) ≠ xp(n))2

qN≠1
m=1

qN≠1
n=1

qP
p=1(xp(m) ≠ xp(n))2 (3.1)

so that
qN≠1

m=1
qN≠1

n=1 r
2
mn = 1.

The graph weights can again be defined using any of the previous
forms, for example, as

Wmn =

Y
]

[
e

≠r2
mn/·2

, for rmn Æ Ÿ

0, for rmn > Ÿ or m = n,

or

Wmn =

Y
]

[
e

≠rmn/·
, for rmn Æ Ÿ

0, for rmn > Ÿ or m = n.

The geometric distance between the considered pixels/vertices, flmn,
can also be included in the weight definition.

Random observations. When the signal values, xp(n), acquired over
P observations, p = 1, 2, . . . , P at N vertices n = 0, 1, . . . , N ≠ 1, are
drawn from zero-mean random noise with equal variances, ‡

2
x = 1, the

similarity measure can be defined by

r
2
mn =

qP
p=1(xp(m) ≠ xp(n))2

ÒqP
p=1 x2

p(m)
qP

p=1 x2
p(n)

= 2(1 ≠ Rx(m, n))

where

Rx(m, n) = 1
P

Pÿ

p=1
xp(m)xp(n)
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represents the normalized sample autocorrelation function and ‡
2
x =

1
P

qP
p=1 x

2
p(n) = 1 for su�ciently large P .

Similarity metrics for images. The same structure can be used for
other applications, such as in image classification or handwritten letter
recognition. In these cases, the distance between an image m and an
image n is equal to

rmn = Imagedistance(m, n) = Îxm ≠ xnÎF , (3.2)

where
ÎxÎF =

Ûÿ

m

ÿ

n

|x(m, n)|2,

is the Frobenius norm of an image matrix x (that is, the square root of
the sum of squared image values over all pixels).
Block collaborative image processing. A class of recent e�cient
image processing algorithms is based on detecting similar blocks within
an image, followed by collaborative processing using those similar blocks.
Image enhancement algorithms then assume that the basic images are
also similar within these blocks, while the corresponding noise is not
related and can be averaged out. The similarity between the image
blocks, xm and xn, may then be defined similar to (3.2), using their
distance given by

rmn = Blockdistance(m, n) = Îxm ≠ xnÎF .

The similarity among the blocks in an image can be modeled by a
graph, and such graph models may be used as bases for collaborative
processing of image blocks. Recall that a block of B ◊ B pixels is an
example of a vertex in a B

2-dimensional space, since it is defined by
B ◊ B independent pixel values (vertex coordinates/dimensions).
Generalized distance measure. The Euclidean distance is typically
used in the calculation of the distance between two blocks of data,
xm and xn. It may be generalized by introducing the inner product
matrix, H, into distance calculation to yield

r
2
mn = (xm ≠ xn)T H(xm ≠ xn),
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where the data sets xm and xn are represented in the column vector
form. When the inner product matrix, H, is an identity matrix, H = I,
the standard Euclidean distance is obtained. If we use, for example,
H = UCUT

C , where UC is the matrix with cosine transform basis
functions as its columns, we will arrive at

r
2
mn = (xm ≠ xn)T UCUT

C(xm ≠ xn)
= (Cm ≠ Cn)T (Cm ≠ Cn) = ÎCm ≠ CnÎ2

2,

where Cn is the 2D discrete cosine transform (2D DCT) of xn, written
in a vector column format. By virtue of this representation, problem
dimensionality can straightforwardly be reduced using only the K

slowest-varying basis functions, U(K)
C , instead of the full 2D DCT trans-

formation matrix (this operation corresponds to low-pass filtering of xn

in the 2D DCT domain, by keeping the K slowest-varying coe�cients).
In this case, the distance, r

2
mn, is of the form

r
2
mn = (xm ≠ xn)T U(K)

C U(K)T

C (xm ≠ xn)
= ÎC(K)

m ≠ C(K)
n Î2

2,

and is calculated based on the reduced original dimensionality of xn or
Cn to the dimensionality K of C(K)

n .
Another interesting form of the inner product matrix is the inverse

covariance matrix H = �≠1, which will be discussed later in Sections 4.4
and 6.8.
Example 3: A noisy image with a designated set of 29 blocks of pixels
is shown in Figure 3.1(a). The similarity between any two of the blocks
was defined based on the distance

r
2
mn = 1

B2 ÎCm ≠ CnÎ2
F ,

where Cn represents the matrix form of the 2D DCT of the image
block xn.

The 2D DCT was then hard-thresholded, with a threshold equal
to 0.1 max |Cn|, to reduce the influence of noise (and dimensionality
problems), that is, all 2D DCT coe�cients bellow this threshold were
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Figure 3.1: Graph learning based on the similarity of blocks of image data. (a) Orig-
inal image with designated blocks of pixels. (b) The graph produced from the blocks
in (a). Notice that the resulting graph consists of seven disconnected subgraphs,
which correspond to the seven di�erent groups of blocks.
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set to zero, to give

Cn(k, l) =

Y
]

[
Cn(k, l), if |Cn(k, l)| > 0.1 max |Cn|
0, elsewhere.

The edge weights, Wmn, for a graph representation of the considered
blocks (as vertices) were then calculated as

Wmn = exp(≠r
2
mnB),

for rmn Æ 0.26, and Wmn = 0 for rmn > 0.26, or m = n, with B = 16.
The so obtained graph, which indicates block similarity, is given in

Figure 3.1(b). This graph representation is very convenient for collabo-
rative image processing, since the graph structure will ensure that the
processing is performed independently on the sets of blocks which share
relevant information (connected subgraphs). Notice that the blocks
within each subgraph can be considered as a 3D signal of RGB com-
ponents. Then, for example, a simple averaging over similar blocks
(within one subgraph), will not significantly degrade the image detail,
while at the same time it will reduce the corresponding noise, as it is
uncorrelated in di�erent blocks.

This is precisely the principle of the Block-Matching and 3D filtering
(BM3D) algorithm, where the noise and the image are estimated from
the set of similar blocks (in our example, from the blocks within a
subgraph). The estimation of the related set of blocks in the image
and the estimation of noise power is then used to define the Wiener
filter. Such Wiener filter is used to filter all related blocks (within the
subgraph). The procedure is repeated for each set of similar blocks
(subgraphs). Of course, in the case of the BM3D algorithm, for each
considered (reference) block, xn, it is desirable to search over the whole
image and to find as many similar blocks as possible in order to obtain
the best possible Wiener filter and consequently achieve maximum
possible noise reduction.

In this example, the blocks and the threshold for edge weights, Wmn,
were selected so as to produce disconnected graph components and a
clear segmentation scheme. If this was not the case, vertex clustering
and graph segmentation could be performed using the theory presented
in Part I.
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Recall that in Part I, Example 24 the structural similarity index
(SSIM), was used instead of the simple di�erence/distance, to relate
and cluster images.
Example 4: Eight images with the hand-written letter “b” were con-
sidered and the task was to create their graph representation. The
SSIM was calculated for each pair of images and the edge-weights were
equal to the calculated SSIM values, as shown in Figure 3.2(a). For the
graph from Figure 3.2(b), the generalized eigenvectors of the Laplacian
were calculated and the vertices were colored using first the smoothest
(Fiedler) eigenvector, u1, and then using the two smoothest eigenvectors
u1 and u2, as a basis for image clusterings, as respectively shown in
Figure 3.2(c) (left) and (right).
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Figure 3.2: Graph representation of a set of hand-written images of the let-
ter “b”. The images serve as vertices, while the weight matrix for the edges is
defined through the structural similarity index metric (SSIM) between the images,
with Wmn = SSIM(m, n). The vertices are colored in (c) using first the smoothest
(Fiedler) eigenvector, u1, and then the two smoothest eigenvectors, u1 and u2, of the
generalized eigenvectors of the Laplacian (with the corresponding spectral vectors
qn = [u1(n)] and qn = [u1(n), u2(n)]) respectively shown in Figure 3.2(c) (left) and
(right).



4
Learning of Graph Laplacian from Data

Consider a graph signal for which we have available P independent
observations. Denote by xp(n) the observed signal at a vertex, n, and
for an observation, p. The column vector with graph signal samples
from the pth observation is denoted by xp. All observations from this
graph signal can then be arranged into an N ◊ P matrix, given by

XP = [x1, x2, . . . , xP ].

Designate the (n + 1)-th row of this matrix by a row vector, yn, which
corresponds to the vertex n, that is

yn = [x1(n), x2(n), . . . , xP (n)]. (4.1)

Then, the matrix of observations can also be written as

XP =

S

WWWWU

y0
y1
...

yN≠1

T

XXXXV
.

355
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The correlation coe�cient between vertices m and n, estimated by
averaging over the set of P observations, is then given by

Rx(m, n) = 1
P

Pÿ

p=1
xp(m)xp(n) = 1

P
ymyT

n

or in a matrix form
Rx = 1

P
XP XT

P . (4.2)

If the observations are not zero-mean, then we should use the covariance
matrix, �, with elements

�x(m, n) = 1
P

Pÿ

p=1
(xp(m) ≠ µ(m))(xp(n) ≠ µ(n)), (4.3)

where µ(n) is the mean of the observations at the vertex n.
Remark 1: Since the correlation matrix in (4.2) includes contribution
from signals at all vertices, it accumulates correlations obtained through
all possible walks from the current vertex, n, to any other vertex, m.
This also means that the correlation coe�cient between two vertices will
produce misleading results if there exists one or more other vertices, q,
where the signal is strongly correlated with both of the considered
vertices, m and n. This is why the naive use of correlation tends to
overestimate the strength of direct vertex connections; this renders it a
poor metric for establishing direct links (edges) between vertices. To
resolve this issue, either additional conditions should be imposed on the
correlation matrix, or other statistical parameters may be used for edge
weight estimation.

Example 5: Consider four random graph signals observed at the ver-
tices n = 0, 1, 2, 3, and given by

xp(0) = ‹0(p)
xp(1) = xp(0) + ‹1(p)
xp(2) = xp(1) + ‹2(p)
xp(3) = xp(2) + ‹3(p),

(4.4)

where ‹0(p), ‹1(p), ‹2(p), ‹3(p) are mutually uncorrelated, white ran-
dom variables with zero mean and unit variance. The elements of the
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correlation matrix for the above signals can be calculated as, for example
Rx(0, 1) = E{xp(0)xp(1)} = E{xp(0)(xp(0) + ‹1(p))} = 1

or
Rx(0, 2) = E{xp(0)xp(2)} = E{xp(0)(xp(1) + ‹2(p))}

= E{xp(0)(xp(0) + ‹2(p) + ‹2(p))} = 1.

Observe from (4.4) that, although the signal value xp(2) is not directly
related to xp(0), the correlation coe�cient, Rx(0, 2), is nonzero and
even equal to Rx(0, 1), since there is an indirect link between these two
signal values through xp(1). In practical applications, it is therefore
desirable to avoid this indirect cumulative contribution to the correlation
coe�cient which results in an overestimated edge weight.

All correlation coe�cients for the above example can be written in
a matrix form as

Rx =

S

WWWU

1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

T

XXXV , (4.5)

with the inverse correlation matrix, called the precision matrix, as

C = R≠1
x =

S

WWWU

2 ≠1 0 0
≠1 2 ≠1 0

0 ≠1 2 ≠1
0 0 ≠1 1

T

XXXV . (4.6)

Remark 2: Observe that while the autocorrelation in (4.5) overesti-
mates the strength of edge links, the precision matrix in (4.6) produces
the desired results, since for example, C(0, 2) = 0, which indicates that
there is no direct relation between xp(0) and xp(2), although xp(2) is
indirectly linked to xp(0) through xp(1).

Similar to the normalized correlation, the normalized precision
matrix, C(N), is defined by C

(N)
mn = Cmn/

Ô
CmmCnn to produce

C(N) =

S

WWWU

1 ≠0.5 0 0
≠0.5 1 ≠0.5 0

0 ≠0.5 1 ≠1/
Ô

2
0 0 ≠1/

Ô
2 1

T

XXXV . (4.7)
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4.1 Imposing Sparsity on the Connectivity Matrix

The minimization of the sparsity of the weight matrix keeps the number
of its nonzero values to the minimum (StankoviÊ, 2001; StankoviÊ et al.,
2019c), thus resulting in graphs with the smallest possible number of
edges.

Consider the vertex n = 0 and the graph signal observation vector
as in (4.1), at this vertex. We can estimate the edge weights from this
vertex to all other vertices, —0m, m = 1, 2, 3, . . . , N ≠ 1, by minimizing
the cost function (Epskamp and Fried, 2018; Meinshausen et al., 2006;
Pourahmadi, 2011),

J0 =
....y0 ≠

N≠1ÿ

m=1
—0mym

....
2

2
+ fl

N≠1ÿ

m=1
|—0m|. (4.8)

Physically, the first term promotes the correlation between the observa-
tions y0 at the considered vertex (n = 0) and the observations ym at all
the other vertices, for m = 1, 2, 3, . . . , N ≠ 1; the second term promotes
sparsity in the coe�cient vector —0 (number of nonzero coe�cients
—0m), while the parameter fl balances between these two criteria.

The matrix form of the cost function (4.8) is given by
J0 = ÎyT

0 ≠ YT
0 —T

0 Î2
2 + flÎ—0Î1, (4.9)

where Y0 is obtained from the matrix XP after the first row is removed
and used as y0, with

—0 = [—01, —02, . . . , —0N≠1].

Example 6: For the correlation matrix from Example 5 and the obser-
vation vector, y0, at the vertex n = 0, given by

y0 = [x1(0), x2(0), . . . , xP (0)] = [‹0(1), ‹0(2), . . . , ‹0(P )],
we can find the solution to (4.9) with fl = 0, which corresponds to the
two-norm minimization of the error function, given by

ˆJ0
ˆ—T

0
= 2Y0(yT

0 ≠ YT
0 —T

0 ) = 0

or

—T
0 = (Y0YT

0 )≠1Y0yT
0 =

S

WU
2 2 2
2 3 3
2 3 4

T

XV

≠1 S

WU
1
1
1

T

XV =

S

WU
0.5
0
0

T

XV ,
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since Y0YT
0 and Y0yT

0 are submatrices of the correlation matrix Rx,
given in (4.5).

In the same way, the other three coe�cient vectors, —T
1 , —T

2 , —T
3 ,

were calculated to produce (with added zero-values at the diagonal) the
coe�cient matrix

— =

S

WWWU

0 0.5 0 0
0.5 0 0.5 0
0 0.5 0 0.5
0 0 1 0

T

XXXV . (4.10)

Since this procedure does not guarantee the symmetry of —nm = —mn,
the edge weights could have also been calculated through the geometric
mean,

Wnm =


—nm—mn, (4.11)
to produce

W =

S

WWWU

0 0.5 0 0
0.5 0 0.5 0
0 0.5 0 1/

Ô
2

0 0 1/
Ô

2 0

T

XXXV . (4.12)

This weight matrix is symmetric and corresponds to an undirected
graph.

The graph Laplacian, L = D ≠ W, is then obtained by changing the
signs of the elements in W and adding appropriate diagonal elements, D,
such that the sum for each row or column is zero, that is

L =

S

WWWU

0.5 ≠0.5 0 0
≠0.5 1 ≠0.5 0

0 ≠0.5 1.207 ≠0.707
0 0 ≠0.707 0.707

T

XXXV .

Notice that the structure of nonzero o�-diagonal elements in this matrix
is the same as in the normalized precision matrix in (4.7), although
the corresponding values were obtained through two quite di�erent
approaches to the estimation of the relations among graph data observed
at di�erent vertices.
LASSO approach. In general, the problem in (4.9) can be solved
using the well established least absolute shrinkage and selection opera-
tor (LASSO) type minimization, the regression analysis method that
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performs both variable selection and regularization, as

—0 = lasso(YT
0 , yT

0 , fl).

For more detail on the derivation and implementation of LASSO see
Section 5 and Algorithm 1.

Algorithm 1. LASSO (ISTA variant), B=lasso(Y, y, fl)
Input:

• Observation column vector y, P ◊ 1
• Observation matrix Y, P ◊ N

• Sparsity promotion parameter fl

1: B Ω 0N◊1
2: – Ω 2 max{eig(YT Y)}
3: repeat
4: s Ω 1

–
YT (y ≠ YB) + B

5: for k Ω 1 to N do

6: B(k) Ω

Y
__]

__[

s(k) + fl, for s(k) < ≠fl

0, for |s(k)| Æ fl

s(k) ≠ fl, for s(k) > fl

7: until stopping criterion is satisfied

Output:
• Reconstructed coe�cients B

For the data from Example 6, the LASSO approach yields

—0 = lasso(YT
0 , yT

0 , 0.01) = [0.49, 0, 0].

This result is almost the same as the first row (excluding the first element
assumed to be zero) in the matrix — in (4.10), as was expected since
the solution in the first row in (4.10) is already with maximum sparsity.
Since in this setting the number of independent observations, P , could
be significantly larger than the number of coe�cients, —0m, for this
case the least squares estimation is optimal and there are no additional
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degrees of freedom available to improve the sparsity of the solution (the
solution, in this case is already with one nonzero element, that is, with
the maximum possible sparsity). On the other hand, ways to promote
sparsity would be necessary if the number of observations is smaller
than the number of vertices (compressive sensing theory framework).

The minimization in (4.9) was performed for the vertex n = 0, and
should be repeated for all vertices n = 1, 2, . . . , N ≠ 1, through the cost
function

Jn = ÎyT
n ≠ YT

n —nÎ2
2 + flÎ—nÎ1,

to obtain
—n = lasso(YT

n , yT
n , fl).

In general, if the resulting weight matrix, —, is not symmetric then
the edge weights could be calculated as Wnm =

Ô
—nm—mn, as mentioned

in (4.11).
Example 7: As an example for graph learning from data using the
LASSO approach, consider the graph from Figure 2.2, Part I and
P = 3,000 observations, which were simulated by assuming external
white Gaussian sources with zero-mean and variance ‡

2 = 1, located at
two randomly chosen vertices (see Section 5 and Figure 6.2). An N ◊ P

matrix of observed signal values, XP , was then formed, and from its rows
the vector yn and matrix Yn were obtained. The matrix of coe�cients
— = [—mn]N◊N follows from lasso(YT

n , yT
n , fl) with n = 0, 1, 2, 3, 4, 5, 6, 7

and fl = 0.2, to yield

— =

S

WWWWWWWWWWWWWU

0 0.0 0.75 0.16 0 0 0 0
0.03 0 0.35 0 0.19 0 0 0.18
0.75 0.35 0 0.10 0.11 0 0 0
0.16 0 0.10 0 0 0 0.45 0
0 0.19 0.11 0 0 0.74 0 0
0 0 0 0 0.74 0 0 0.19
0 0 0 0.45 0 0 0 0.58
0 0 0 0 0 0.19 0.58 0

T

XXXXXXXXXXXXXV

.

The ground truth weights and the weights estimated through the
LASSO are shown in Figures 4.1(a), (b). The estimation was repeated for
the cases of (i) a smaller value of balance parameter fl = 0.05 (reducing
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Figure 4.1: Estimation of the weight matrix for the graph from Figure 2.2 in Part I
with color-coded element values. (a) Ground truth weight matrix. (b) Estimated
weight matrix with LASSO and fl = 0.2. (c) Estimated weight matrix with LASSO
and fl = 0.05. (d) Estimated weight matrix with LASSO and fl = 1.

the sparsity contribution and resulting in an increased number of nonzero
weights, as in Figure 4.1(c)), and (ii) a larger balance parameter fl = 1
(strengthening the sparsity contribution and resulting in a reduced
number of nonzero weights, as Figure 4.1(d)).

The same experiment was next repeated for the unweighted graph
from Figure 2.1(a) in Part I, and the result is shown in Figure 4.2. In
this case, the obtained values of — were used to decide whether Amn = 1
or Amn = 0.
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Figure 4.2: Adjacency matrix for the unweighted graph from Figure 2.1(a) in Part
I. (a) Ground truth adjacency matrix. (b) Estimated adjacency matrix with LASSO
and fl = 0.2.

Example 8: The graph topology in the temperature estimation ex-
ample in Part II, Section 2 was determined based on the geometry
and geographic distances of the locations/vertices where the temper-
ature is sensed (StankoviÊ et al., 2019b). Now, we shall revisit this
example by simulating the temperature field, X, at the locations shown
in Figure 4.3(a) and over a period of time with the aim to learn the
graph topology from this data. The simulated temperature field over
P = 150 days is shown in Figure 4.3(b). The weight matrix calculated
from the geographic positions of the vertices is denoted as the ground
truth weight matrix, W, and shown in Figure 4.3(c). The corresponding
weight matrix, which is learned from data in Figure 4.3(b) using the
column LASSO with fl = 0.2, is given in Figure 4.3(d). Before the
calculation of the correlation matrices, the mean value of the sensed
temperatures was removed from xp(n), for each observation p.

4.2 Smoothness Constrained Learning of Graph Laplacian

Consider a set of noisy graph data, xp(n), measured over P observations,
p = 1, 2, . . . , P , at N vertices n = 0, 1 . . . , N ≠1, of an undirected graph.
The aim is to learn the graph connectivity (its graph Laplacian) from
the observed data. To this end, it is necessary to find a signal, yp(n),
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Figure 4.3: Data-based learning of graph topology in the temperature sensing
example from Part II, Section 2. (a) Sensing locations in a geographic region along
the Adriatic sea. (b) Temperatures measured at N = 16 sensing locations over
P = 150 days. (c) Ground truth weight matrix, W, obtained through geographic
properties of the sensing locations as in Part II, Section 2. (d) The weight matrix,
W, estimated solely based on the analysis of data from (b) and using the LASSO
approach.
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that is close to the observations, xp(n), under the condition that yp(n)
is as smooth as possible on a graph. This formulation is similar to that
addressed in Part I.
Remark 3: The smoothness condition may be imposed based on the
physically meaningful assumption that the data at close and strongly
related vertices should have similar values, that is, without abrupt
changes in signal values from vertex to vertex. This requirement imposes
gradual change of data over the graph domain, as is the case in many
practical applications (Chepuri et al., 2017; Dong et al., 2016, 2019;
Kalofolias, 2016; Sadhanala et al., 2016).

The graph signal, yp(n), can now be found by minimizing the cost
function

Jp = 1
2Îyp ≠ xpÎ2

2 + –yT
p Lyp, for p = 1, 2, . . . , P,

whereby the first term aims at finding yp which is as close as possible to
xp, while the second term, yT

p Lyp, promotes the smoothness of graph
signal yp.
Remark 4: The di�erence in the problem considered here from the
smoothing problem addressed in Part I is that here the graph Laplacian
(graph edges and their weights) is not known. In other words, the graph
Laplacian, L, has to be determined along with the output signal yp,
that is, the graph topology has to be learned from data.

Since we have available P graph-wise observations, we can form the
N ◊ P matrices

XP = [x1, x2, . . . , xP ]

and
YP = [y1, y2, . . . , yP ].

Notice that here the vectors yn above have to be calculated, and they
are not related to the rearranged signal vectors, defined with the same
notation, in the previous section.
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4.3 Graph Topology Estimation with the Graph Laplacian
Energy Condition

In addition to the signal smoothness, it is very useful to introduce the
energy of graph Laplacian as an optimization condition, since none of
the above conditions is sensitive to the scaling of the graph Laplacian
elements and their possibly large values. Such cost function is then of
the following form, Dong et al. (2016, 2019)

J =
Pÿ

p=1

51
2Îyp ≠ xpÎ2

2 + –yT
p Lyp

6
+ —ÎLÎ2

F ,

where the penalty for the energy (squared Frobenius norm of a matrix)
of the graph Laplacian, given by

ÎLÎ2
F =

ÿ

m

ÿ

n

L
2
mn

is involved in order to keep its values as low as possible.
The cost function for the whole set of P observations can now be

written in a compact form as

J = 1
2ÎYP ≠ XP Î2

F + –Trace{YT
P LYP } + —ÎLÎ2

F , (4.13)

where Trace{YT
P LYP } is a scalar which can be written as

Pÿ

p=1
yT

p Lyp = Trace{YT
P LYP }.

The above analysis assumes that the Laplacian has been first nor-
malized. In order to avoid trivial solutions, the condition

Trace{L} = N (4.14)

is also used (as the diagonal elements of the ground truth normalized
graph Laplacian are Lnn = 1), along with the condition that the o�-
diagonal elements are either zero or negative, that is

Lmn = Lnm Æ 0 for n ”= m. (4.15)
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As with any Laplacian matrix, the sum of the graph Laplacian elements
over every row or column is zero, that is

N≠1ÿ

m=0
Lnm = 0 and

N≠1ÿ

n=0
Lnm = 0. (4.16)

Remark 5: The optimization problem in (4.13) aims to learn the graph
topology from the graph data by finding the Laplacian of a graph which
is most likely to generate the observed graph data. The formulation in
(4.13) is obviously jointly convex with respect to both the observed signal
and the Laplacian, and can be solved through an iterative two-step
procedure, given in Algorithm 2.

Algorithm 2. Iterative procedure for solving the problem of graph
learning from data, given in (4.13)

1: Assume that
YP = XP .

2: Estimate the graph Laplacian, L, by minimizing

J1 = –Trace{YT
P LYP } + ÎLÎ2

F

with the conditions given in (4.14)–(4.16), for the normalized graph
Laplacian form.

3: For the Laplacian obtained in the Step 2, the signal YP is calculated
by minimizing

J2 = 1
2ÎYP ≠ XP Î2

F + –Trace{YT
P LYP }.

Iteratively repeat Step 2 and Step 3.
Step 3 has a closed form solution explained in Part I.

4.4 Learning of Generalized Laplacian-Graphical LASSO

The generalized Laplacian, Q, is defined as Dong et al. (2016, 2019)

Q = –I ≠ N,



368 Learning of Graph Laplacian from Data

where N is a nonnegative symmetric matrix and Q is a symmetric
positive semidefinite matrix. Any generalized Laplacian can be written
as a sum of a standard Laplacian, L, and a diagonal matrix, P, that is

Q = L + P.

Remark 6: The generalized Laplacian allows for the existence of self-
loops on the vertices; these self-loops are defined by matrix P.

Example 9: For the data in Example 5, the precision matrix is of the
form

C = R≠1
x =

S

WWWU

2 ≠1 0 0
≠1 2 ≠1 0

0 ≠1 2 ≠1
0 0 ≠1 1

T

XXXV .

It may be considered as a generalized graph Laplacian since

R≠1
x =

S

WWWU

2 ≠1 0 0
≠1 2 ≠1 0

0 ≠1 2 ≠1
0 0 ≠1 1

T

XXXV

=

S

WWWU

1 ≠1 0 0
≠1 2 ≠1 0

0 ≠1 2 ≠1
0 0 ≠1 1

T

XXXV +

S

WWWU

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

T

XXXV

= L + P.

This means that R≠1
x in this example may be interpreted as standard

graph Laplacian with a self-loop at the vertex n = 0.
We will next show that owing to its physically relevant properties,

the precision matrix, C = R≠1
x , can be used as an estimate of the

generalized Laplacian, Q.
Estimation of graph Laplacian through precision matrix. Con-
sider a set of noisy signals xp(n) acquired over P observations, p =
1, 2, . . . , P , at N vertices, n = 0, 1 . . . , N ≠ 1, of an undirected graph.
Our aim is to learn the graph connectivity (its Laplacian) based on the
condition that the observed graph signal in the pth realization, xp, is as



4.4. Learning of Generalized Laplacian-Graphical LASSO 369

smooth as possible on the graph defined by a generalized Laplacian, Q,
as explained in Remark 3. The cost function to achieve this goal can be
conveniently defined by the signal smoothness function

Jp = xT
p Qxp, for p = 1, 2, . . . , P.

The cumulative smoothness for all data xp, p = 1, 2, . . . , P , is then
expressed as

J = 1
P

Pÿ

p=1
xT

p Qxp, (4.17)

while the correlation matrix of the all considered observations can be
written as

Rx = 1
P

Pÿ

p=1
xpxT

p

= 1
P

[x1, x2, . . . , xP ][x1, x2, . . . , xP ]T

= 1
P

XP XT
P .

The smoothness index for all observations is now of the following form

J = 1
P

Pÿ

p=1
xT

p Qxp = Trace{RxQ},

since

J = 1
P

Pÿ

p=1
xT

p Qxp

= 1
P

Trace{[x1, x2, . . . , xP ]T Q[x1, x2, . . . , xP ]}

= 1
P

Trace{XT
P QXP } = 1

P
Trace{XP XT

P Q}

= Trace{RxQ}.

To avoid a trivial solution, the conditions for the generalized Lapla-
cian should be incorporated. For symmetric positive definite matrices,
all eigenvalues are positive, and since for any matrix, Q, the product
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of its eigenvalues is equal to det(Q), this condition can be included by
adding the term ln(det(Q)) to the cost function, to give

J = ≠ ln(det(Q)) + Trace{RxQ}. (4.18)

Maximum likelihood interpretation. The interpretation of the cost
function in (4.18) within the theory of Gaussian random signals and
maximum likelihood estimation is given in Section 6.8. If we assume
that the graph data at N vertices are N -dimensional random vari-
ables, with zero-mean and an unknown precision matrix Q, then their
N -dimensional probability density function is given by

P (xp) = 1


(2fi)p

Ò
det(Q) exp

3
≠1

2xT
p Qxp

4
.

Within the maximum likelihood framework, the goal is to find the
unknown parameter (matrix) Q so that the distribution fits the data
in an optimal form. This optimal parameter matrix is obtained by
di�erentiating the probability or its logarithm (log-likelihood) function,

≠ ln
)
P (xp)

Ò
(2fi)p

*
= ≠ ln

;Ò
det(Q) exp

3
≠ 1

2xT
p Qxp

4<

= ≠1
2 ln{det(Q)} + 1

2xT
p Qxp, (4.19)

and setting the obtained derivative to zero.
Example 10: The concept of finding the best precision, Q, the recip-
rocal of the variance of Gaussian distribution, Q = 1/‡

2, to fit the data
will be now illustrated on a simple setup. Assume that four observations
of signal xp(n), p = 1, 2, 3, 4, at the vertex n = 0 are available, and are
given by x1(0) = 0.2, x2(0) = ≠0.3, x3(0) = ≠0.4, and x4(0) = ≠0.5.
It is also known that the data are zero-mean. The goal is to find the
precision, Q = 1/‡

2, or variance, ‡
2, of the Gaussian distribution of

the observed data, given by

P (xp(0)) = 1
‡

Ô
2fi

exp
3

≠
x

2
p(0)
2‡2

4
=

Û
Q

2fi
exp

3
≠ 1

2xp(0)Qxp(0)
4

which corresponds to the best fit to the observed data. The log-likelihood
function of the joint distribution of these four observed data points is
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then

J = ≠ ln(P (x1(0))P (x2(0))P (x3(0))P (x4(0)))

= ≠ ln
3 1

4fi2 Q
2
e

≠ 1
2 0.22Q

e
≠ 1

2 0.32Q
e

≠ 1
2 0.42Q

e
≠ 1

2 0.52Q
4

= 2 ln(2fi) ≠ 2 ln(Q) + 1
2(0.22 + 0.32 + 0.42 + 0.52)Q

= 2 ln(2fi) ≠ 2 ln(Q) + 1
20.54Q.

The di�erentiation of this expression with respect to Q = 1/‡
2 produces

≠2/Q + 1
20.54 = 0 or Q = 4/0.54 = 7.4 and

‡ =
Ò

1/Q = 0.36.

The same value would have been produced by a simple standard devia-
tion estimator, ‡ =


(0.22 + 0.32 + 0.42 + 0.52)/4.

Example 11: Similar analysis, as in the previous example, can be
performed for P observations at two vertices, n = 0 and n = 1,
[xp(0), xp(1)]T . The goal is to estimate the parameters of the preci-
sion matrix

Q =
C

Q11 Q12
Q21 Q22

D

of the joint Gaussian distribution of [xp(0), xp(1)]T , defined as

P ([xp(0), xp(1)]T ) =


det(Q)
2fi

e
≠ 1

2 [xp(0),xp(1)]Q[xp(0),xp(1)]T (4.20)

=
Ô

Q11Q22 ≠ Q12Q21
2fi

◊ e
≠ 1

2 (Q11x2
p(0)+(Q12+Q21)xp(0)xp(1)+Q22x2

p(1))
.

(4.21)

Using P available realizations,

[x1(0), x1(1)], [x2(0), x2(1)], . . . , [xP (0), xP (1)]

and the corresponding P -variate normal distribution of two variables
as a product of P distributions as in (4.21), we can find the parameters
Q11, Q12, Q21, Q22 which produce the best distribution fit, using the
partial derivatives of the log-likelihood function.
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For example, a partial derivative of the log-likelihood function with
respect to Q11 would produce

≠P

2
Q22Ô

Q11Q22 ≠ Q12Q21
+ 1

2(x2
1(0) + x

2
2(0) + · · · + x

2
P (0)) = 0.

Observe that the term
Q22Ô

Q11Q22 ≠ Q12Q21
= Q22

det(Q)
is just the first element of the inverse of matrix Q, while the term
(x2

1(0) + x
2
2(0) + · · · + x

2
P (0)) is the first element of the correlation

matrix Rx, multiplied by P . In a similar way, the derivations over Q12,
Q21, and Q22, will produce the remaining elements of the inverse of
matrix Q and the correlation matrix Rx. In the matrix notation, the
solution to the so obtained system of the four equations is given by

Q≠1 = 1
P

S

WWWWWU

Pÿ

p=1
x

2
p(0)

Pÿ

p=1
xp(0)xp(1)

Pÿ

p=1
xp(1)xp(0)

Pÿ

p=1
x

2
p(1)

T

XXXXXV
= Rx.

Notice that at least P = 2 independent observations, P Ø N , are needed,
since for P = 1 observation, P < N , and the rank of the correlation
matrix, Rx, would be 1, which is lower than its dimension. In that case,
the correlation matrix would not be invertible.

The cost function in (4.18) minimizes the logarithm of the joint
probability density function of a graph signal xp under the Gaussian
assumption. The minimization of the cost function J with respect to Q,
with ˆJ/ˆQ = 0, produces

ˆJ

ˆQ = ˆ

ˆQ(≠ ln(det(Q)) + Trace{RxQ}). (4.22)

In order to find this derivative, we will use the relation among the trace
of a positive semidefinite matrix, its eigenvalues, ⁄k, and the trace of
the eigenvalue matrix, �, in the form

ln(det(Q)) =
Nÿ

k=1
ln(⁄k)

= Trace(ln(�)) = Trace(ln(Q)). (4.23)
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Note also that for a di�erentiable matrix function, f(Q), the following
holds

ˆ

ˆQ(Trace{f(Q)}) = ˆf(Q)
ˆQ . (4.24)

Having in mind the properties in (4.23) and (4.24), we can write

ˆJ

ˆQ = ≠Q≠1 + Rx. (4.25)

The best estimate of Q follows from ˆJ/ˆQ = 0, and has the form

Q = R≠1
x . (4.26)

Remark 7: The solution in (4.26), being equal to the precision matrix,
can be used as the generalized Laplacian estimate in order to obtain
the underlying graph structure.

Example 12: The weight matrix which corresponds to the inverse of
the correlation matrix Rx, for which the positive and small o�-diagonal
values were set to zero, is shown in Figure 4.4(b). Here, we consider
the graph from Figure 2.2 in Part I and P = 10,000 observations.
The observations were simulated by assuming white Gaussian external
sources with zero-mean and variance ‡

2 = 1, located at a randomly
chosen vertex (as described in more detail in Section 4).
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Figure 4.4: Weight matrix for the graph from Figure 2.2 in Part I. (a) Ground truth
weight matrix. (b) Estimated weight matrix using the inverse correlation (precision)
matrix.
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Remark 8: Notice that the correlation matrix, Rx, may be singular.
The correlation matrix, Rx, is always singular when the number of
observations, P , is lower than the number vertices (dimension of the
correlation matrix, N) that is, N > P . This follows from the fact
that the correlation matrix is formed as a combination of P signals,
Rx = 1

P

qP
p=1 xpxT

p , which means that its dimensionality is spanned
over at most P independent vectors (eigenvectors), and therefore its
rank is equal to or lower than P (see Example 19 in Section 5).

Also, this form will not produce a matrix satisfying the conditions
for a generalized Laplacian. The inverse correlation function may also
have positive o�-diagonal values. Therefore, for a reliable solution, the
cost function in (4.18) should have additional constraints. Here, we will
present two of such constraints.

Graphical LASSO. In this approach, the classical reconstruction
formulation of a sparse signal is used as the additional constraint on
the precision matrix and the cost function from (4.18) (Friedman et al.,
2008). The sparsity constraint on the generalized Laplacian is added
to achieve the solution with the smallest possible number of nonzero
entries in the estimated graph weight matrix – the smallest number of
edges. The sparsity condition also allows for the problem solution with
a reduced correlation matrix rank (as within the compressive sensing
framework described in Part II). The cost function, with the included
sparsity penalty function, ÎQÎ1, is then defined as

J = ≠ ln(det(Q)) + Trace{RxQ} + flÎQÎ1. (4.27)

This minimization problem can be solved in many ways, one of which is
the graphical LASSO algorithm, an extension of the standard LASSO
algorithm to graph problems (see Algorithm 3 for the implementation
and Section 5 for the derivation of graphical LASSO).
Example 13: For the same signal as in Example 12, the weight matrix
obtained using the graphical LASSO,

W = glasso(Rx, 0.3),

where both positive and small element values are set to zero, is shown
in Figure 4.5(b) (see also Example 19).
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Algorithm 3. Graphical LASSO, Q = glasso(R, fl)
Input:

• Correlation matrix R
• Regularization parameter fl

1: Mi Ω 100, Ep Ω 0.0001
2: [p, n] Ω size(R)
3: Cp Ω mean(|R ≠ diag(diag(R))|)Ep

4: V0 = R + flI
5: V = V0
6: for r = 1 to Mi do
7: for j = p to 1 step ≠1 do
8: V11 Ω V
9: V11 Ω V11 with removed jth row

10: V11 Ω V11 with removed jth column
11: v22 Ω V (j, j)
12: r12 Ω jth column of R
13: r12 Ω r12 with removed jth element
14: A Ω

Ô
V11

15: b Ω (
Ô

V11)≠1r12

16: — = lasso(A, b, fl), as in Algorithm 1

17: v12 Ω V11—
18: V Ω V with v12 inserted as the jth column
19: v12 Ω vT

12 with v22 inserted as the jth element
20: V Ω V with v12 inserted as the jth row
21: if mean(|V ≠ V0| < Cp) break, end
22: V0 = V
23: Q = V≠1

• Estimated precision matrix Q

Generalized Laplacian constrained approach. Another possible
approach employs the Lagrange multipliers, B, which are added in such
a way that these values do not change the diagonal elements of Q, and
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Figure 4.5: Weight matrix for the graph from Figure 2.2 in Part I. (a) Ground
truth weight matrix. (b) Estimated weight matrix using the graphical LASSO and
inverse correlation (precision) matrix.

ensure that all
Qmn = Qnm Æ 0

for n ”= m, with Bnm = Bmn Ø 0. The diagonal elements of matrix B
are therefore Bnn = 0. Finally, the condition BnmQnm = 0 for all n and
m is used. In this case, the minimization solution for the generalized
Laplacian is obtained as

Q = (Rx + B)≠1

based on the cost function

J = ≠ ln(det(Q)) + Trace{RxQ} + Trace{BQ}.

The results obtained in this case are similar to those obtained with the
graphical LASSO approach.

4.5 Graph Topology Learning Based on the Eigenvectors

Assume that the available observations of a graph signal, xp(n), are
graph wide sense stationary (GWSS), that is, they can be considered
as the output of a linear system H(L), driven by white noise, Áp, as
the input. In other words, the signal on a graph is formed using a
linear combination of a white noise realization, Áp, and its graph shifted
versions. The output signal after M such graph shifts, defined by the
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normalized Laplacian, is given by

xp = (hM LM + hM≠1LM≠1 + · · · + h1L1 + h0L0)Áp. (4.28)

This graph signal can be written in a compact form

xp = H(L)Áp,

with its correlation matrix given by (for ‡
2
Á = 1)

Rx = 1
P

Pÿ

p=1
xpxT

p = 1
P

Pÿ

p=1
H(L)ÁpÁT

p H
T (L)

= H(L)
3 1

P

Pÿ

p=1
ÁpÁT

p

4
H

T (L)

= H(L)HT (L) = UT |H(�)|2U (4.29)

where Áp is a white noise with unit variance, and U is the matrix of
graph Laplacian eigenvectors, L = UT �U.

From (4.29), it is now obvious that we can learn about the graph
eigenvectors from the decomposition of the autocorrelation matrix. The
same holds for the precision matrix, Q = R≠1

x , since the inverse matrix
has the same eigenvectors as the original matrix.

For the normalized graph Laplacian, it is straightforward to relate
the Laplacian, LN , based shift and the normalized weight matrix, WN ,
based shift since

Lp
N = (I ≠ WN )p = I ≠ pWN + · · · + (≠1)pWp

N .

Therefore from (4.29), in order to estimate the graph connectivity
(estimate its Laplacian or adjacency matrix) we can use the eigenvectors
of the autocorrelation matrix.
Remark 9: Since we do not know H(�), it is natural to assume that
the graph is defined by the eigenvalues, �, that produce the smallest
number of edges. This can be achieved by minimizing the number of
nonzero values in L for the given eigenvectors (Marques et al., 2017;
Segarra et al., 2017).

The minimization problem of determining a graph now becomes

min
⁄k

ÎLÎ0 subject to L =
N≠1ÿ

k=0
⁄kukuT

k , (4.30)
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while the convex (norm-one) form of this minimization problem is

min
⁄k

ÎLÎ1 subject to L =
N≠1ÿ

k=0
⁄kukuT

k . (4.31)

Remark 10: The convex norm-one based form in (4.31) can produce the
same solution as the original norm-zero form in (4.30) if the Laplacian
sparsity is low and the Laplacian satisfies some other conditions (in the
sense discussed in Section 4.2).

Since the eigenvectors are obtained from the decomposition of the
correlation matrix, spectral analysis performed in this way is related to
principal component analysis (PCA), where the signal is decomposed
through the set of eigenvectors of the correlation matrix.

This approach to graph topology learning can be summarized
through the following steps.

1. For a given set of graph signal observations, xp, p = 1, 2, . . . , P ,
calculate the correlation matrix

Rx = 1
P

Pÿ

p=1
xpxT

p . (4.32)

2. Perform the eigen decomposition of the correlation matrix, in the
form

Rx = UT �RxU
�Rx = URxUT

.
(4.33)

3. Find the eigenvalues, ⁄k, of the graph Laplacian, L = UT �U, such
that it assumes the sparsest possible form, using the minimization

min
⁄k

ÎLÎ1 subject to L =
N≠1ÿ

k=0
⁄kukuT

k . (4.34)

Dimensionality-reduction methods. It is often reasonable to as-
sume that the observed graph signals are generated by exciting a low-
order graph system with white noise as the input. However, the problem
of estimating the polynomial coe�cients from its samples at unknown
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(eigenvalue) positions is under-determined and cannot be directly solved.
By adding the constraint that true eigenvalue positions should produce
a sparse graph Laplacian, the solution becomes tractable within the
compressive sensing framework (StankoviÊ et al., 2020).

In this way, instead of the minimization over N variables, ⁄k, k =
0, 1, . . . , N ≠ 1, we can find the Laplacian eigenvalues starting from the
eigendecomposition of the correlation matrix of a signal produced by a
system on a graph, that is,

Rx = U|H(�)|2UT = U�RxUT
. (4.35)

Assume that the transfer function of the graph system is of a polynomial
form

H(⁄k) = h0 + h1⁄k + h2⁄
2
k + · · · + hM ⁄

M
k (4.36)

with M π N . From the correlation matrix eigendecomposition in (4.35),
we have N values of H(⁄k) obtained as square roots of the eigenvalues
of the correlation matrix, ⁄

(Rx)
k . Without loss of generality, we will

assume a nondecreasing H(⁄k), that is H(⁄k≠1) Æ H(⁄k). The problem
now boils down to the determination of the Laplacian eigenvalues, ⁄k,
k = 0, 1, . . . , N ≠1, having in mind that ⁄0 = 0,

qN≠1
k=0 ⁄k = N and that

there exist (unknown) coe�cients hi, i = 0, 1, . . . , M such that (4.36) is
satisfied for each k, while the true values ⁄k produce the sparsest graph
Laplacian, L.

The estimation of the system coe�cients, Laplacian eigenvalues and
Laplacian itself is performed using this polynomial fitting method
in the following way.

1. Select (M + 1) indices m0 = 0 < m1 < · · · < mM = N with the
corresponding transfer function values H(⁄mi), for i = 0, 1, . . . , M .
Assume that (M + 1) eigenvalues are ⁄̄0 = 0, ⁄̄m1 = ›1, ⁄̄m2 =
›2, . . . , ⁄̄mM≠1 = ›M≠1, ⁄̄mM = 1, where 0 < ›1 < ›2 < · · · <

›M≠1 < 1.

2. Then, the coe�cients of an Mth order polynomial

P (⁄̄) = a0 + a1⁄̄ + a2⁄̄
2 + · · · + aM ⁄̄

M

can be found such that P (⁄̂i) = H(⁄mi), for i = 0, 1, . . . , M , is a
Lagrange polynomial of Mth order defined by (M + 1) points.
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3. Now, the eigenvalues ⁄̄k, for each k, can be calculated as a solution
of

P (⁄̄) = H(⁄k), 0 Æ ⁄̄ Æ 1

for the unknown ⁄̄. Note that this solution is unique if the poly-
nomial P (⁄̂) is an increasing function for 0 Æ ⁄̂ Æ 1.

4. Having in mind that
qN≠1

k=0 ⁄k = N , the eigenvalues, ⁄̂k, can be
found by scaling the obtained values, ⁄̄k, for each k, as ⁄̂k =
N ⁄̄k/

qN≠1
k=0 ⁄̄k.

5. For the so obtained estimates of the eigenvalues, ⁄̂k, the normalized
graph Laplacian can be calculated as L = U�̂UT , where �̂ is a
diagonal matrix with ⁄̂k on the diagonal.

6. The above procedure should be repeated for various 0 < ›1 < ›2 <

· · · < ›M≠1 < 1 and the final solution is obtained by minimizing
the energy normalized sparsity condition, given by

min
›1,›2,...,›M≠1

ÎLÎ1
ÎLÎ2

.

Notice that for M = 1, we should consider only two points in
Step 1, and there is no need for the minimization of variables ›i. For
M = 2, we have one minimization variable 0 < ›1 < 1. For M = 3, the
minimization is performed over only two variables, 0 < ›1 < ›2 < 1.
Given that dimensionality of the minimization problem is (M ≠ 1),
and since M π N , the dimensionality reduction of this method when
compared to (4.34) is evident.

The spectral indices 0 = m0, m1, . . . , mM = N , selected in Step 1,
should be equally spaced over N possible values. For M = 2, the index
m1 should be close to (N ≠ 1)/2, while for M = 3 the indices m1 and
m2 should be close to (N ≠ 1)/3 and 2(N ≠ 1)/3, respectively.
Example 14: Consider a graph with N = 8 vertices, for which the
weight matrix is given in Figure 4.6(a). An N ◊P matrix of the simulated
signal, XP , was formed by calculating the graph signal as in (4.28),
with a given graph, its weight matrix, W = I ≠ L, the normalized
Laplacian, L, system order M , and system coe�cients, h0, h1, . . . , hM .
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Figure 4.6: Estimation of the weight matrix, W = I ≠ L, for the graph with N = 8
vertices. (a) Ground truth weight matrix. (b) Estimated weight matrix using sparsity
minimization of the normalized Laplacian. (c) Sparsity measure minimization, as
a function of parameter ›1. (d) The exact (blue lines) and estimated (red crosses)
eigenvalues of the normalized Laplacian.

White Gaussian external sources, Áp, with zero-mean and variance
‡

2 = 1 were assumed in all P = 10,000 realizations.
The presented polynomial fitting method was implemented for the

assumed degree M = 2 of the polynomial H(⁄), with h0 = 0.3, h1 = 0.2,
and h2 = 0.5 used in the graph signal simulation, according to (4.28). By
forming Rx from XP and after its eigendecomposition, the eigenvectors
U were estimated, while the eigenvalues of the correlation matrix were
used to calculate H(⁄k) =

Ò
⁄

(Rx)
k .

Observe that the polynomial fitting method reduces to the one-
dimensional minimization over variable 0 < ›1 < 1, as shown in
Figure 4.7. After the minimum value of the sparsity measure is found,
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Figure 4.7: Illustration of eigenvalue calculation based on their second order poly-

nomial, obtained from H(⁄k) =
Ò

⁄
(Rx)
k .

the eigenvalues are calculated with the corresponding parameter, ›1.
The Laplacian then follows from L = UT �U.

In this case, the obtained error in the weight matrix elements (abso-
lute value of the o�-diagonal elements of the Laplacian) is characterized
by the MSE = ≠35.1 dB, with the results presented in Figure 4.6. The
true weight matrix, W = I ≠ L, along with the estimated one, is given
in Figures 4.6(a) and (b), and the sparsity measure function is plotted
in Figure 4.6(c), while the true and the estimated Laplacian eigenvalues
are given in Figure 4.6(d).

Example 15: The experiment from Example 14 was repeated for a low
number of observations, P = 8NL = 256, where NL = 32 is the sparsity
of the Laplacian matrix according to practical hints for the number of
measurements and sparsity (Candès et al., 2006). The reconstruction
using the polynomial fitting produced the MSE = ≠18.0 dB.
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Figure 4.8: Estimation of the weight matrix for the graph with N = 8 vertices.
(a) Ground truth weight matrix. (b) Estimated weight matrix using the polynomial
fitting method. (c) Sparsity measure minimization, as a function of parameters ›1
and ›2. (d) The exact (blue lines) and estimated (red crosses) eigenvalues of the
normalized Laplacian. (e) Estimated weight matrix using the LASSO minimization.
(f) Estimated weight matrix using the graphical LASSO.
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Figure 4.9: Estimation of the weight matrix for a graph with N = 50 randomly
positioned vertices. (a) Ground truth weight matrix. (b) Estimated weight matrix
using sparsity minimization of the normalized Laplacian and the polynomial fitting
method.

In this experiment, we assumed M = 3 and h0 = 0.4, h1 = 0.5,
h2 = 0.4, and h3 = 0.2 when simulating the graph signal, XP . The
correlation matrix was estimated using this simulated signal, along with
its eigenvectors and eigenvalues. We now have two minimization vari-
ables ›1 and ›2, 0 < ›1 < ›2 < 1. The results for the polynomial fitting
method are presented in Figures 4.8(a)–(d). The obtained estimation er-
ror was MSE = ≠34.9 dB. The sparsity measure function (Figure 4.8(c))
is now two-dimensional and is calculated only when unique solutions
are obtained in Step 3 of the polynomial fitting method. These results
were compared with those obtained using the rows of the correlation
matrix, —n = lasso(YT

n , yT
n , 0.2) (Figure 4.8(e)) and graphical LASSO,

Q = glasso(Rx, 0.3) (Figure 4.8(f)), with the optimized values of the
parameter fl. In these cases, the obtained error in the weight matrix
elements was characterized by MSE = ≠10.3 dB and MSE = ≠14.5 dB,
respectively.

Example 16: Finally, the polynomial fitting method was tested on a
larger scale graph, with N = 50 and M = 2. The original and estimated
weight matrices are shown in Figure 4.9.

So far, the examples related to classical data analytics have used
Fourier analysis and a circular directed graph. The problem formulation
presented in this section can also be used to define a graph such that
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Figure 4.10: Graphs for which the Laplacian eigenvectors are the Hadamard
transform basis functions for N = 8 (left) and N = 16 (right). Di�erent colors and
widths of the edges correspond to specific indicated weights.

the spectral analysis on this graph leads to some other well known
transforms.
Example 17: We shall illustrate the method of defining a graph which
corresponds to the classical Hadamard transform with N = 8, and with
the eigenvectors

U = 1Ô
8

S

WWWWWWWWWWWWWU

1 1 1 1 1 1 1 1
1 ≠1 1 ≠1 1 ≠1 1 ≠1
1 1 ≠1 ≠1 1 1 ≠1 ≠1
1 ≠1 ≠1 1 1 ≠1 ≠1 1
1 1 1 1 ≠1 ≠1 ≠1 ≠1
1 ≠1 1 ≠1 ≠1 1 ≠1 1
1 1 ≠1 ≠1 ≠1 ≠1 1 1
1 ≠1 ≠1 1 ≠1 1 1 ≠1

T

XXXXXXXXXXXXXV

.

If the eigenvalues are found so as to minimize the number of nonzero
elements in the Laplacian, we obtain the graphs for N = 8 and N = 16,
as shown in Figure 4.10.

A methodology to estimate the underlying graph topology by means
of capturing both spatial and time dependencies among multiple time
series was introduced in Mei and Moura (2016), whereby time depen-
dencies among data channels are modeled by an auto-regressive (AR)
process, while spatial dependencies are estimated by describing the
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matrix coe�cients of the AR process as graph polynomial filters. These
authors present three algorithms to estimate the graph adjacency matrix
and parameters of the graph polynomial filters.

Another important aspect is that the physical process at hand may
dictate that graph topologies need to “jump” between a finite number
of discrete states, as manifested by sudden changes in their behavior,
the problem considered in Baingana and Giannakis (2016). This type of
analysis was inspired by the modeling of contagions, such as the spread of
popular news stories or infectious diseases, which propagate in cascades
over dynamic graphs/networks. For example, an e-mail network may
switch topologies from predominantly work-based connections during
the week to friend-based connections over the weekend. In such settings,
approaches which assume that network dynamics arise as a result of
slow topology variations may yield unpredictable results. To this end,
Baingana and Giannakis (2016) employ prior knowledge to introduce
novel structural equation models with switched dynamics to e�ectively
capture such causal relationships.



5
From Newton Minimization to Graphical

LASSO, via LASSO

Most current approaches to the learning of graph topology from the
available data are based on the regression method of the least absolute
shrinkage and selection operator (LASSO), with its extension to graphs
called the graphical LASSO (GLASSO). This class of methods has
already been used in the previous section to learn graph topologies.
Because of their importance, they will now be derived and explained in
detail, starting from simple one-dimensional Newton minimization.

5.1 Newton Method

We shall first briefly review the Newton iterative algorithm for finding
the minimum of a convex function. Consider a function, f(x), and
assume that it is di�erentiable. Denote the position of the minimum of
f(x) by x

ú. The first derivative of f(x) at the minimum point position

x
ú = x + �x

can be expanded into a Taylor series around an arbitrary position x,
using the linear model (which is exact if f

ÕÕÕ(x) = 0 for all x), as

f
Õ(xú) = f

Õ(x) + f
ÕÕ(x)�x. (5.1)

387
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Since f
Õ(xú) = 0, by definition, with �x = x

ú ≠ x, the relation in (5.1)
can be rewritten as

x
ú ≠ x = ≠ f

Õ(x)
f ÕÕ(x) .

This formula is used to define an iterative procedure (called Newton’s
iterative method) for finding the position of the minimum of function
f(x), denoted by x

ú, starting from an x = x0, as

xk+1 = xk ≠ –f
Õ(xk). (5.2)

The parameter – is commonly used instead of 1/f
ÕÕ(x) to control the

iteration step, and its value should be

0 < – Æ max(|1/f
ÕÕ(x)|),

for the considered interval of x. This is the form of the well-known
steepest descent method for convex function minimization.

Notice that the value x
ú = x ≠ –f

Õ(x) would also be obtained as a
result of the minimization of a cost function defined by the quadratic
form

x
ú = arg min

z
G(z)

= arg min
z

3
f(x) + f

Õ(x)(z ≠ x) + 1
2–

(z ≠ x)2
4

.

Namely, from the zero-value of the derivative of this cost function

d

dz

3
f(x) + f

Õ(x)(z ≠ x) + 1
2–

(z ≠ x)2
4

= 0

we would arrive at

z = x ≠ –f
Õ(x) = x

ú
.

Next, assume that we wish to minimize the cost function

J(x) = 1
2–

(x ≠ y)2 + fl|x|,

where fl is a parameter. This cost function corresponds to the minimiza-
tion of the squared di�erence between x and y, that is (x ≠ y)2, with
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an additional sparsity constraint on x, given by |x|. From

dJ(x)
dx

= 1
–

(x ≠ y) + flsign(x) = 0

we immediately obtain

x + fl–sign(x) = y.

Soft-thresholding, denoted as soft(y, –fl), may be used as a solution to
this equation, to yield

x = soft(y, –fl) =

Y
_]

_[

y + –fl, for y < ≠–fl

0, for |y| Æ –fl

y ≠ –fl, for y > –fl.

(5.3)

This form could be considered as the LASSO method for one-dimensional
variables. Now, we can proceed with deriving the LASSO method for
N -dimensional variables.

5.2 Standard LASSO

For the LASSO minimization with N -dimensional variables, we will
consider the cost function

J(X) = Îy ≠ AXÎ2
2 + flÎXÎ1

= ÎyÎ2
2 ≠ 2XT AT y + XT AT AX + flÎXÎ1,

where y is an M ◊ 1 column vector, X is an N ◊ 1 column vector, and
A is an M ◊ N matrix (StankoviÊ, 2015).

The minimization of this cost function with respect to the
N -dimensional variable, X, will produce a value which minimizes
Îy ≠ AXÎ2

2, meaning that AX is as close to y as possible, while at the
same time promoting the sparsity of X, through the term ÎXÎ1 in the
minimization. The balance between these two requirements is governed
by the parameter fl.

Consider first the di�erentiable part of the cost function J(X)
denoted by

JD(X) = Îy ≠ AXÎ2
2 = (y ≠ AX)T (y ≠ AX). (5.4)
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Its derivatives are
ˆJD(X)

ˆXT
= ≠2AT y + 2XT AT A

and
ˆ

2
JD(X)

(ˆXT )2 = 2AT A.

A linear model for the first derivative of JD(X) around its minimum, Xú,
which corresponds to (5.1), is given by

ˆJD(Xú)
ˆXT

= 0 = ˆJD(X)
ˆXT

+ (�X)ˆ
2
JD(X)

(ˆXT )2 .

By replacing the inverse of the second order derivative, 1/
!ˆ2JD(X)

(ˆXT )2
"
, by

a constant diagonal matrix –I, as in (5.2), we have

�X = Xú ≠ X = ≠
ˆJD(X)

ˆXT

ˆ2JD(X)
(ˆXT )2

= ≠–
ˆJD(X)

ˆXT
,

or
Xú = X ≠ –

ˆJD(X)
ˆXT

, (5.5)

with

0 < – <
1

max Î2AT AÎ = 1
2⁄max

,

where ⁄max is the maximum eigenvalue of matrix AT A.
In order to find Z = Xú that minimizes the complete cost function

J(X) we can minimize the squared value of the di�erence

Z ≠
3

X ≠ –IˆJD(X)
ˆXT

4

and the norm-one of Z, by forming the cost function, G(Z), as

G(Z) = 1
2–

....Z ≠
3

X ≠ –IˆJD(X)
ˆXT

4....
2

2
+ flÎZÎ1.

The minimization of G(Z) will produce Z which is as close as possible to
the desired solution in (5.5), while minimizing its norm-one (maximum
sparsity) at the same time, with fl as the balance parameter.
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If we use the notation

Y =
3

X ≠ –IˆJD(X)
ˆXT

4
,

the solution of

Xú = arg min
Z

G(Z) = arg min
Z

1
2–

ÎZ ≠ YÎ2
2 + flÎZÎ1

is obtained from
1
–

(Xú ≠ Y) + flsign(Xú) = 0.

Using the soft-thresholding function as in (5.3), we can further write

Xú = soft(Y, –fl).

Next, we can replace the value of Y by

Y =
3

X ≠ –IˆJD(X)
ˆXT

4
= X ≠ –I(≠2AT y + 2XT AT A)

= 2–AT y + (I ≠ 2–AT A)X.

The iterative formula for the solution of the so defined minimization
problem is obtained by replacing Xú = Xk+1 and X = Xk, to yield

Xk+1 = soft(2–AT (y ≠ AXk) + Xk, –fl). (5.6)

This formula can be rewritten for each element of Xk and implemented
as in Algorithm 1. This is the essence of the LASSO (Least Absolute
Shrinkage and Selection Operator) iterative algorithm. Notice that
X0 = AT y is commonly used as the initial estimate.
Example 18: Consider a sparse signal, X(k), with N = 60 elements.
In general, to calculate these signal elements we need at least M = 60
measurements (linear combinations of signal elements). A signal can
be reconstructed from a reduced set of M < N measurements if it is
sparse, with K π N nonzero elements at unknown positions.

Assume that the original sparse signal of the total length N = 60 has
the values in the transform domain given by X(k) = 0 for all k except
for X(5) = 1, X(12) = 0.5, X(31) = 0.9, and X(45) = ≠0.75, and that
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it is measured with a matrix A with only M = 40 < N measurements
stored in vector y.

The measurement matrix A is formed as a Gaussian random matrix
of the size 40 ◊ 60, with elements N (0, ‡

2), where ‡
2 = 1/40 is used.

All 60 signal values were reconstructed using these 40 measurements, y,
and the matrix A, in 1000 iterations. In the initial iteration, X0 = AT y,
was used; then for each next iteration k, the new values of X were
calculated using (5.6) and Algorithm 1, given the data y and matrix A.
The results for fl = 0.1 and fl = 0.001 are shown in Figure 5.1. For a
very small fl = 0.001, the result is not sparse, since the constraint is too
weak.

5.3 Graphical LASSO

In graph model learning, the corresponding cost function of the form

J(Q) = ≠ ln(det Q) + Trace(QRx) + flÎQÎ1

may be used. Here, Q is the N ◊ N generalized Laplacian matrix, while
Rx is the available N ◊ N data correlation matrix. Physical meaning
of these terms is explained in Section 4.4.

The derivative of the cost function with respect to the elements of
Q can be written as

≠Q≠1 + Rx + flsign(Q) = 0 (5.7)

at ˆJ(Q)/ˆQ = 0.
Upon introducing the notation

V = Q≠1

or
VQ = I

we can write

V =
C
V11 v12
vT

12 v22

D

Q =
C
Q11 q12
qT

12 q22

D

(5.8)
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Figure 5.1: A sparse signal with N = 60 samples and K = 4 nonzero elements,
which is reconstructed using a reduced set of M = 40 observations and the LASSO
iterative algorithm. The top panel shows the result for the matched filter (initial
estimate), X0 = AT y, and the middle and bottom panel for the LASSO iterative
algorithm with fl = 0.1 and fl = 0.001. Observe a poor reconstruction for a very
small fl = 0.001, which according to (5.6) could not yield a sparse signal.
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and
C
V11 v12
vT

12 v22

D C
Q11 q12
qT

12 q22

D

=
C

I 0
0T 1

D

, (5.9)

where Q11 and V11 are (N ≠ 1) ◊ (N ≠ 1) matrices, v12 and q12 are
(N ≠ 1) ◊ 1 column vectors, and v22 and q22 are scalars.

After multiplying the first row of blocks in V with the last column
of blocks in Q, we have

V11q12 + v12q22 = 0

which gives
v12 = ≠V11q12/q22 = V11—, (5.10)

where
— = ≠q12/q22 (5.11)

is normalized with q22 > 0.
Now, from the derivative Equation (5.7) we may write

≠
C
V11 v12
vT

12 v22

D

+
C
R11 r12
rT

12 r22

D

+ flsign
AC

Q11 q12
qT

12 q22

DB

= 0.

For the upper right block we have

≠v12 + r12 + flsign(q12) = 0,

while after replacing v12 = V11— and q12 = ≠—/q22 from (5.10) and
(5.11) we arrive at

≠V11— + r12 ≠ flsign(—) = 0. (5.12)

The solution to this equation for — has been already defined within the
LASSO framework, and is given by

—iV11(i) = soft
3

r12(i) ≠
ÿ

k ”=i

V11(k, i)—k, fl

4
. (5.13)

In order to apply the LASSO as in (5.6), we can interpret the minimiza-
tion of the di�erence

AT (y ≠ AX) = AT y ≠ AT AX
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in (5.6) as the task of finding the least-squares estimate of AT y by
AT AX. Now, we can adjust (5.12) to assume a similar form

≠V1/2
11 V1/2

11 — + V1/2
11 V≠1/2

11 r12 ≠ flsign(—) = 0. (5.14)

In this case, the matrix V1/2
11 plays the role of A in (5.6) and V≠1/2

11 r12
plays the role of y. Therefore, the standard LASSO should be calculated
using

— = lasso(V1/2
11 , V≠1/2

11 r12, fl) (5.15)

as in Algorithm 3.
Now, the graphical LASSO (GLASSO) iterative algorithm can be

summarized as follows.

• In the initial step, use

V = Rx + flI.

• For each coordinate, j = 1, 2, . . . , N , the matrix equation of the
form (5.9) is written. For each j, the reduced matrix V11 is formed
by omitting the jth row and the jth column. Then, the matrix
Rx is rearranged accordingly.

• Equation (5.13) is solved using (5.15).

• The matrix V is updated for each j by inserting the jth column

v12 = V11—,

and inserting at the jth row vT
12 with the element v22 at the jth

position.

• After all j indices are used in the calculation, the final estimate
of the generalized Laplacian is obtained as Q = V≠1.

This calculation procedure is also presented in Algorithm 3.
Remark 11: Notice that the value of matrix Q = V≠1 is updated for
each j and in the last iteration, using the column vector

q12 = ≠—q22,
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where q22 can be calculated from vT
12q12 + v22q22 = 1 or ≠vT

12—q22 +
v22q22 = 1, finally producing the values

q22 = 1
v22 ≠ vT

12—
,

and
q12 = —

vT
12— ≠ v22

which are used to update the jth column and row of the matrix Q in
the same as the update of matrix V.

This algorithm can be used for iterative matrix inversion with fl = 0.

Example 19: Consider a graph with N = 50 vertices and with a small
number of edges, so that the weight matrix, W, is sparse. The ground
truth weight matrix, W, is shown in Figure 5.2(a). This matrix was
then estimated from a large number, P = 1000, of observations of a
signal on this graph. Both the precision matrix, R≠1, and the graphical
LASSO, given in Figures 5.2(b) and (c), produce good estimation of the
weight matrix, W. Next, the number of observations was significantly
reduced to P = 40 < N = 50, a case when the correlation matrix, R, is
singular and of rank lower or equal to P = 40. In this case, the sparsity
of the weight matrix is crucial for the solution. Here, only the graphical
LASSO, which includes the sparsity constraint, was able to produce
good result, as shown in Figure 5.2(e), while the precision matrix could
be calculated only through a pseudo-inverse, and cannot be used as the
weight matrix estimate, as can be seen from Figure 5.2(d).
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Figure 5.2: Estimation of the weight matrix, W, for a graph with N = 50 randomly
positioned vertices. (a) Ground truth weight matrix, W. (b) Precision matrix, for
a large number of observations, P = 1000 ∫ N = 50. (c) Estimated weight matrix
using the graphical LASSO, for a large number of observations, P = 1000 ∫ N = 50.
(d) Precision matrix, for a small number of observations, P = 40 < N = 50 (the
correlation matrix, R, is singular and with a rank lower or equal to P , so that
pseudo-inversion is used). (e) Estimated weight matrix using the graphical LASSO,
for a small number of observations, P = 40 < N = 50.



6
Physically Well Defined Graphs

The simplest scenario for graph connectivity consideration is when the
graph associated with a problem at hand is physically well defined.
Examples of such graphs are manifold, including electric circuits, power
networks, linear heat transfer, social and computer networks, and spring-
mass systems, all of which will be addressed in this section.

6.1 Resistive Electrical Circuits

Graph theory based methods for the analysis and transformations of
electrical circuits have long been part of classical courses and textbooks.
It is also interesting that some general information theory problems can
be interpreted and solved within the graph approach to basic electric
circuits. In such cases, the underlying graph topology is well defined
and is a part of the problem statement.

The graph Laplacian can also be considered within the basic electric
circuit theory. In this case, since the graph Laplacian can be derived
based on the Kirchho�’s laws, it is also known as the Kirchho� matrix.

Graph Representation of Electric Circuits

Consider a resistive electric circuit, and the electric potential in the
circuit vertices (nodes), denoted by x(n). The vertices in an electrical

398
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circuit are connected with edges, where the weight of an edge connecting
the vertices n and m is defined by the edge conductance, Wnm. The
conductances are the reciprocal values to edge resistances

Wnm = 1
Rnm

.

The current in the edge from vertex n to vertex m is then equal to

inm = x(n) ≠ x(m)
Rnm

= Wnm(x(n) ≠ x(m)).

In addition to the edge currents, an external current generator may
be attached to every vertex, and can be considered as a source of signal
change in the vertices; the external current at a vertex n is denoted by
in.

Since the sum of all currents going in/from a vertex n, n = 0, 1, . . . ,

N ≠ 1, must be 0, that is

≠in +
ÿ

m

inm = 0,

the current of the external generator at a vertex n must be equal to the
sum of all edge currents going in/from this vertex, to give

in =
ÿ

m

Wnm(x(n) ≠ x(m)) = dnx(n) ≠
ÿ

m

Wnmx(m),

n = 0, 1, . . . , N ≠ 1,

where

dn =
ÿ

m

Wnm =
N≠1ÿ

m=0
Wnm

is the degree of vertex n. The summation over m can be extended to all
vertices, m = 0, 1, . . . , N ≠ 1, since Wnm = 0 if there is no edge between
vertices n and m.

The above equations can be written in a matrix form as

i = Dx ≠ Wx

or
Lx = i (6.1)
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where L = D ≠ W is the Laplacian of a graph representing an electric
circuit and i is the vector of currents at every vertex.

If the Laplacian matrix is decomposed as L = U�UT , from (6.1)
we have �UT x =UT i, and

�X = I, (6.2)

where X = UT x and I = UT i are the GDFT of graph signals x and i
(see Part II, Section 3.6).

From (6.2), the components of the spectral transform vector, X,
satisfy

⁄kX(k) = I(k)

for each k.
A signal measured on an electrical circuit graph can be related to

the above theory in several ways. For example, potentials on all vertices
could be measured under some measurement noise, which calls for data
filtering on a graph. Another possible case is when external conditions
are imposed, for example external sources are applied to some vertices.
We are then interested in the values of electric potential at all vertices,
a problem which corresponds to graph signal reconstruction.

For nontrivial solutions, there should be an external source on at
least two vertices. If we assume that a vertex with an external source is
chosen as a reference vertex, then the signal or external source values at
these vertices (with external sources) are su�cient to find signal values
at all other vertices.
Example 20: Consider the graph and signal sensed on the graph
presented in Figure 6.1. The signal values are

x = [6.71, 6.88, 7.13, 5.25, 6.67, 8.18, 2.62, 0]T

and the graph Laplacian (as a matrix operator) applied to the signal
yields

Lx = [0, 0, 1, 0, 0, 2, 0, ≠3]T .

Observe that in this case the vertices indexed by 0, 1, 3, 4, 6 are not
active, and their values can be obtained as linear combinations of the
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Figure 6.1: Electric potential, x(n), as a signal on an electric circuit graph.

signals at neighboring active vertices, that is

1.21x(0) ≠ 0.23x(1) ≠ 0.74x(2) ≠ 0.24x(3) = 0
≠0.23x(0) + 0.81x(1) ≠ 0.35x(2) ≠ 0.23x(4) = 0
≠0.24x(0) ≠ 0.26x(2) + 0.82x(3) ≠ 0.32x(6) = 0 (6.3)

≠0.23x(1) ≠ 0.24x(2) + 1.12x(4) ≠ 0.51x(5) ≠ 0.14x(7) = 0
≠0.32x(3) + 0.64x(6) ≠ 0.32x(7) = 0.

After solving this system with known signal values x(2) = 7.13,
x(5) = 8.18, and x(7) = 0 at the active vertices, we obtain the remaining
signal values

xp = [x(0), x(1), x(3), x(4), x(6)]T = [6.71, 6.88, 5.25, 6.67, 2.62]T .

Graph Transformations

A graph with one or more inactive vertices (where the elements of Lx
are equal to zero) can be simplified by removing these vertices using
the well-known transformations of edges connected in series, parallel, or
star-to-mesh transforms. This process corresponds to the downsampling
of the graph signal (see also Part II). The reduction of an electrical
network via a Schur complement of the associated conductance matrix
is known as the Kron reduction, whereby the vertices are separated into
two groups: active vertices and inner vertices. The inner vertices can
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Figure 6.2: Electric potential, x(n), as a signal on an electric circuit graph observed
at the three vertices with nonzero external sources. For this graph, all other values
of x(n) in Figure 6.1 can be calculated based on the signal values at vertices n = 2,
n = 5, and n = 7.

be eliminated from the graph without changing the electric network
conditions; this is achieved via equivalent transformations, such as the
“star-mesh” transformations (Dorfler and Bullo, 2012).

Similar procedure can be used to add inactive vertices, either by
inserting a vertex within an edge or by transforming meshes to stars, in
what corresponds to the interpolation of the graph signal.
Example 21: For the graph and the graph signal from Example 20,
the active vertices are n = 2, 5, 7, as shown in Figure 6.2, while the
signal values at all vertices are given in Figure 6.1. Notice that the
existing signal values will not change, for the given external sources, if
the graph is “downsampled”, as shown in Figure 6.3, or if the graph
signal is “interpolated” by adding new vertices, as shown in Figure 6.4.
This is closely related to link prediction, that will be addressed later.

Graph Data Denoising for Sparse External Sources

The set of external sources are considered sparse if their number is much
smaller than the number of vertices, N . For this scenario, the norm-zero
of the external sources vector, Lx, is such that ÎLxÎ0 π N . If the noisy
observations, y, of data on graph, x, are available and we know that the
number of external sources is small, then the cost function for denoising
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Figure 6.3: Graph signal, x(n), from Figure 6.1, observed on a graph with a
reduced number of vertices (“downsampling”), whereby the vertices n = 6 and n = 1
are removed (crosses in green dots). Observe that the signal values at the active
vertices, n = 2, n = 5, and n = 7, are not changed. The edge weights in gray
shade are the equivalent values obtained using the standard resistor, Rmn = 1/Wmn,
transformations.

Figure 6.4: Graph signal, x(n), from Figure 6.1 observed on a graph with an
extended number of vertices (“interpolation”). Observe that the signal values at all
vertices, n = 0, 1, 2, 3, 4, 5, 6, 7, from Figure 6.2 are not changed. In the locations
where the new vertices n = 8 and n = 9 are added, the graph signal is interpolated
using x(2), x(5), and x(7), as in (6.3), and the corresponding edge weights are shown
in gray.

can be written in the form
J = Îy ≠ xÎ2

2 + flÎLxÎ0. (6.4)
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This minimization problem can be solved either using the corresponding
norm-one form

J = Îy ≠ xÎ2
2 + flÎLxÎ1 (6.5)

or using a kind of matching pursuit, as presented in the next example
within a classical data denoising scenario.
Example 22: Consider the classical time domain and a piece-wise
linear signal, of which noisy observations are available, as shown in
Figure 6.5(a). In standard analysis, the graph representation of the
domain of this signal is an undirected and unweighted path graph,
where the elements of Lx play the role of external sources, as shown in
Figure 6.5(b). We shall assume that n = 0 is the reference vertex with
x(0) = 0.

The data denoising problem is then solved in the following way.
The initial estimate of the external sources is calculated as Ly. Since
we assumed that the external sources are sparse, we will consider the
positions, k1, k2, k3, k4, and k5, of K = 5 largest absolute values of the
initial estimate.

The largest K nonzero values of the external source vector, Ly, are
denoted by JK , with the elements i(k1), i(k2), . . . , i(kK). The value of
JK is found in such a way that it minimizes the di�erence between the
estimated data, L(≠1)

K JK , and the observations, y, that is

minJK Îy ≠ L(≠1)
K JKÎ2

2,

where L(≠1)
K is obtained from the inverse transform of the graph Lapla-

cian (after the reference row and column, at n = 0 are omitted) by
keeping only K columns which correspond to the nonzero positions in
the external source vector, JK . The solution therefore becomes

JK = pinv(L(≠1)
K )y.

After the nonzero external sources are found, the full external source
vector, [i(1), i(2), . . . , i(N ≠ 1)]T , is formed using the calculated nonzero
values in JK and inserting zero values at the remaining positions, as
shown in Figure 6.5(c).
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Figure 6.5: Original piece-wise linear noisy signal (top) and the reconstructed signal
(bottom), with the Laplacian of the noisy observations and its re-estimated sparse
version (middle panels).

Finally, the reconstructed signal is obtained from
S

WWWWU

L11 L12 . . . L1,N≠1
L21 L22 . . . L2,N≠1

...
... . . . ...

LN≠1,2 LN≠1,2 . . . LN≠1,N≠1

T

XXXXV

S

WWWWU

x(1)
x(2)

...
x(N ≠ 1)

T

XXXXV
=

S

WWWWU

i(1)
i(2)

...
i(N ≠ 1)

T

XXXXV
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as, x = L≠1J, with the result shown in Figure 6.5(d). Note that the
matrix L is obtained from the graph Laplacian matrix by removing the
reference vertex row and column.

Remark 12: The crucial advantage over the standard total variation
(TV) minimization approach in the compressive sensing based denoising
is that the cost function used in Example 22 does not penalize for the
linear changes of the signal, while the TV approach promotes piece-wise
constant signals.

6.2 Heat Transfer

The same model as in resistive electrical circuits can be used for a
heat transfer network. In this case, the signal values are the measured
temperatures, x(n) = T (n), while the heat flux is defined as

qnm = (T (n) ≠ T (m))Cnm = (x(n) ≠ x(m))Wnm,

where Cnm are the heat transfer constants, which represent edge weights
in the underlying graph, Cnm = Wnm.

Then, the input heat flux in a vertex n can be written as

qn =
ÿ

m

Wnm(x(n) ≠ x(m)) = dnx(n) ≠
N≠1ÿ

m=0
Wnmx(m),

with
q = Lx.

Active vertices are those with an external heat flux, while the passive
vertices are those where all heat flux coming to a vertex is forwarded to
other vertices, through the edges. An example of a heat transfer graph
is given in Figure 6.6.

6.3 Spring-Mass Systems

A spring mass system can also be modeled as a graph. Consider a
system of N = 4 masses which correspond to a path graph, as in
Figure 6.7. Assume that all displacements and forces are aligned with
springs. According to Hook’s law, the displacements, x(n), and the
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Figure 6.6: Temperature, x(n) = T (n), as a signal on a heat transfer graph, with
q1, q2, . . ., q7, as the external heat flux values at the corresponding vertices.

Figure 6.7: Spring-mass system on a path graph.

forces, Fn, at the steady state are related as

k1(x(1) ≠ x(2)) = F1

k1(x(2) ≠ x(1)) + k2(x(2) ≠ x(3)) = F2

k2(x(3) ≠ x(2)) + k3(x(3) ≠ x(4)) = F3

k3(x(4) ≠ x(3)) = F4

or in a matrix form
S

WWWU

k1 ≠k1 0 0
≠k1 k1 + k2 ≠k2

0 ≠k2 k2 + k3 ≠k3
0 0 ≠k3 k3

T

XXXV

S

WWWU

x1
x2
x3
x4

T

XXXV =

S

WWWU

F1
F2
F3
F4

T

XXXV

Lx = F.

These equations define a weighted graph and its corresponding graph
Laplacian.

Given that the graph Laplacian is a singular matrix, in order to
solve this system for unknown displacements (graph signal), we should



408 Physically Well Defined Graphs

introduce a reference vertex with a fixed position (zero displacement).
Then, the system Lx = F can be solved.

6.4 Social Networks and Linked Pages

Social networks are also examples of well defined graphs, where the
vertices are network members and the edges define their relationships
within a social network. If two members in a social network are related,
then the corresponding edge weight is 1, and the weight matrix is equal
to the adjacency matrix. An example of a small social network with the
corresponding member links is shown in Figure 6.8.

Pages with hyper-links can also be considered as a well defined
directed graph; an example of links between N = 8 pages is given
in Figure 6.9. An interesting parameter for this kind of graphs is the
PageRank.

Figure 6.8: An example of a small social network represented as an undirected
graph.
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Figure 6.9: Hyper-linked internet pages in a holiday search scenario, which can be
represented as a directed graph. The vertices 0 to 7 reflect the nature of web search,
as follows. 0: Venue search results. 1: Places to visit at the venue from 0. 2: Search
for road trip. 3: Google search engine. 4: Car hire website. 5: Trustpilot ranking of
car rental agent. 6: Personalized roadmap for the trip. 7: Review of sites of interest.

6.5 PageRank

The PageRank was defined by Google to rank the web pages. For a
directed graph, PageRank of a vertex n is defined as a graph signal
satisfying the relation

x(n) =
ÿ

m

1
dm

Wmnx(m),

where Wmn are weights of the directed edges connecting vertices m and
n, and dm is the outgoing degree of a vertex m. This means that the
PageRank of each vertex is related to the PageRank of the vertices
connected to it.

The PageRank is usually calculated using an iterative procedure
defined by

xk+1(n) =
ÿ

m

1
dm

Wmnxk(m), (6.6)
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starting from an arbitrary PageRank, for example x0(n) = 1. In the
original definition by Google, the scaling factors of 0.15 and 0.85 were
added, to give

xk+1(n) = 0.15 + 0.85
ÿ

m

1
dm

Wmnxk(m). (6.7)

Example 23: Consider the graph from Figure 6.9 (the same graph
as in Part I, Figure 2.1(b)). In this case, the vertices represent pages
on the Internet, while the directed edges designate their relations. For
example, the page which corresponds to vertex 0 cites (gives a hyper-link
to) page marked with 1, while it is cited (hyper-linked) by pages at
vertex 2 and vertex 3. All other vertices are connected by the edges in
the same way. Intuitively, we can expect that the rank in this network
is higher for the pages that are highly cited (hyper-linked) with other
also highly cited (hyper-linked) pages. To find the rank of the pages
in this graph/network, we first need to calculate the PageRank for all
pages/vertices. The weight/adjacency matrix of this graph, W = A, is
given by (see also Part I, Equation (2.2))

W =

0
1
2
3
4
5
6
7

S

WWWWWWWWWWWWWU

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 1
1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0

T

XXXXXXXXXXXXXV

. (6.8)

The outgoing vertex degrees are calculated as sums of columns of
the matrix WT , that is dm =

q7
n=0 Wmn, with their values

d = [1 1 4 1 3 1 2 2].

Now, the PageRank values for vertices can be obtained through an
iterative procedure, as in (6.6), starting with the initial page ranks
x0 = [1, 1, 1, 1, 1, 1, 1, 1]. After a few iterations, the results for PageRank
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are as follows
S

WWWWWWWWWWWWU

xT
0

xT
1

xT
2
...

xT
5
...

xT
11

T

XXXXXXXXXXXXV

=

S

WWWWWWWWWWWWU

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.25 1.33 1.83 0.75 0.25 0.33 0.50 1.75
1.21 1.33 2.29 0.71 0.46 0.08 0.87 1.04

...
1.29 1.68 2.10 0.80 0.52 0.17 0.46 0.99

...
1.33 1.53 2.14 0.80 0.55 0.18 0.48 0.99

T

XXXXXXXXXXXXV

.

The matrix form of the iterations in (6.6) is

xk+1 = WN xk,

where WN is obtained from WT by dividing all elements of the mth
column, m = 0, 1, . . . , N ≠ 1, by dm. The mean-values of matrix WN

columns are normalized.
Example 24: The normalized adjacency/weighting matrix from Exam-
ple 23, is

WN =

S

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWU

0 0 1
4 1 0 0 0 0

1 0 0 0 1
3 0 0 0

0 1 0 0 1
3 0 0 1

2

0 0 1
4 0 0 0 1

2 0

0 0 1
4 0 0 0 0 0

0 0 0 0 1
3 0 0 0

0 0 0 0 0 0 0 1
2

0 0 1
4 0 0 1 1

2 0

T

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXV

.

The final, steady state, PageRank x can then be obtained from

x = WN x,
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and represents the eigenvector of the matrix WN which corresponds to
the eigenvalue equal to 1.
Example 25: The eigenvalue decomposition of the matrix WN in
Example 23 results in the eigenvector which corresponds to eigenvalue
⁄k = 1, whose elements are

xT = [1.33 1.52 2.18 0.79 0.55 0.18 0.48 0.97].

The eigenvector is normalized by its mean value, and is obtained via
the iterative solution after 11 iterations.

6.6 Random Walk

Assume that the signal, x(n), represents the probability that a random
walker is present at a vertex n. The random walker will then transit from
the vertex n to one of its neighboring vertices, m, with probability pnm.
There are several ways to define this probability and the corresponding
forms of random walk; for an extensive review see Masuda et al. (2017).
Here, we consider two random-walk definitions:

• vertex-centric random walk, and

• edge-centric random walk.

In the vertex-centric random walk, the probability, pnm, that a
random walker will transit from the vertex n to one of its neighboring
vertices, m, is defined by

pnm = Wnmq
m Wnm

= 1
dn

Wnm, (6.9)

where Wnm are the a�nities of the walker to transit from a vertex n

to a vertex m, and dn =
q

m Wnm is the degree of a vertex n. The
probability, xp+1(m), that a walker is at the vertex m at the time step
(p + 1) is then equal to the sum of all probabilities that a walker was at
one the vertices, n, with the distance equal to one (neighboring vertices
to the vertex m) multiplied by the probabilities that the walker transits
from the vertex n to the vertex m, that is

xp+1(m) =
ÿ

n

xp(n)pnm =
ÿ

n

xp(n) 1
dn

Wnm. (6.10)
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The calculation of the signal x(n) can now be naturally considered
within the graph framework, where Wnm are edge weights.

The probabilities at the stage (p + 1) of the random walk transition
are calculated starting from the probabilities at the previous stage as
in (6.10), which, in the compact matrix form, is given by

xp+1 = WD≠1xp

or
D≠1/2xp+1 = D≠1/2WD≠1/2D≠1/2xp,

where the matrix W is a matrix of weighting coe�cients and D is the
degree matrix.

In the steady state, when xp+1 = xp = x, we have

y = D≠1/2WD≠1/2y

where y = D≠1/2x. The solution is the smoothest eigenvector of the
normalized Laplacian, LN = I ≠ D≠1/2WD≠1/2, calculated from

(I ≠ D≠1/2WD≠1/2)y = 0,

and is given by y = [1, 1, . . . , 1]T /
Ô

N or

x = D1/2[1, 1, . . . , 1]T /

Ô
N.

Note that the vector x is not constant, and its elements are given by
x(n) =


dn/N .

In the edge-centric random walk, the probability, pnm, is defined
by

xp+1(m) =
ÿ

n

xp(n)pnm = 1
dm

ÿ

n

xp(n)Wnm. (6.11)

In this case, the in-flow probability
q

n xp(n)Wnm for the vertex m is
equal (balanced) to the out-flow probability of this vertex, xp+1(m)dm =q

n xp+1(m)Wnm. This model of random walk is also called the fluid
model and it has a simple interpretation within the electric circuits
framework, since the probabilities (if considered as the electric poten-
tials) satisfy the first Kircho� low for the vertex m serving as an electric
circuit node, that is

ÿ

n

(xp+1(m) ≠ xp(n))Wnm = 0.
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The matrix form of the edge-centric random walk is given by
xp+1 = D≠1Wxp

or Dxp+1 = Wxp. In the steady state, for xp+1 = xp = x, we have
Dx = Wx

or
Lx = 0. (6.12)

The solution to this equation is the smoothest (constant) eigenvector of
the graph Laplacian, x = [1, 1, . . . , 1]T /

Ô
N .

The presented graph theory framework admits for various problem
formulations and solutions.
Example 26: Consider the graph from Figure 2.2 in Part I and the
case where we desire to find the probabilities, x(n), that the walker
reaches vertex 5 before it reaches vertex 7, starting from any vertex n,
and assuming that transition probabilities may be defined according
the edge-centered random walk model. We therefore have to solve the
system Lx = 0, with x(5) = 1 and x(7) = 0.

In the same way, we can solve another practically interesting problem.
A piece of information has reached a member of the social network in
Figure 6.10 at vertex 4 (in green circle), but it has not reached the
member at vertex 3 (in red circle). The task is to find probabilities that
the information is known to a vertex n.

Since the information is present at vertex 4, then x(4) = 1 is a
certain event, and the fact that the information has not reached vertex
3 means that x(3) = 0. Again, according to the analysis from (6.9)
to (6.12), we have to solve the system Lx = 0, with x(4) = 1 and
x(3) = 0, that is

S

WWWWWWWWWWWWWU

3 ≠1 ≠1 ≠1 0 0 0 0
≠1 3 ≠1 0 ≠1 0 0 0
≠1 ≠1 4 ≠1 ≠1 0 0 0
≠1 0 ≠1 3 0 0 ≠1 0
0 ≠1 ≠1 0 4 ≠1 0 ≠1
0 0 0 0 ≠1 2 0 ≠1
0 0 0 ≠1 0 0 2 ≠1
0 0 0 0 ≠1 ≠1 ≠1 3

T

XXXXXXXXXXXXXV

S

WWWWWWWWWWWWWU

x(0)
x(1)
x(2)

0
1

x(5)
x(6)
x(7)

T

XXXXXXXXXXXXXV

= 0, (6.13)
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Figure 6.10: A small social network from Figure 6.8, where we are interested in
the probability that a piece of news has reached vertex 4 (policeman, in green circle),
but has not reached vertex 3 (chef, in red circle). Example 26 considers this scenario
within the framework of random walk on graphs.

where the corresponding columns and rows are removed (rows for the
known signal values, x(3) and x(4), and the column for the zero-valued
signal, x(3)), while the green font designates the column to be moved
on the right side of the equation for the known signal value, x(4) = 1.
The solution is obtained from

S

WWWWWWWWU

3 ≠1 ≠1 0 0 0
≠1 3 ≠1 0 0 0
≠1 ≠1 4 0 0 0
0 0 0 2 0 ≠1
0 0 0 0 2 ≠1
0 0 0 ≠1 ≠1 3

T

XXXXXXXXV

S

WWWWWWWWU

x(0)
x(1)
x(2)
x(5)
x(6)
x(7)

T

XXXXXXXXV

=

S

WWWWWWWWU

0
1
1
1
0
1

T

XXXXXXXXV

, (6.14)

with the inserted values x(4) = 1 and x(3) = 0, in the following form

x = [0.375, 0.625, 0.5, 0, 1, 0.875, 0.375, 0.75]T .

This means that the information is most probably available to the
vertex 5, with probability x(5) = 0.875, while the lowest probability is
that the information is available to the vertices 0 or 6, with probability
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x(0) = x(6) = 0.375, as can be expected from an intuitive analysis of
this graph with a small number of vertices.

6.7 Hitting and Commute Time

The random walk problem is closely related to the hitting and commute
time. The hitting time, h(m, n), from a vertex m to any vertex n is
defined as the expected number of steps for a random walker to travel
from the vertex m to a vertex n. Denote by x

(m)
p (l) the hitting time

from the reference vertex m to the vertices l which are the neighboring
vertices of the considered vertex n. Then, the random walker will arrive
from a vertex l to the vertex n in one step with the probability that it
chooses to transit from the specific l to the considered n. The probability
that a random walker is at the neighboring vertex l, and then transits
to the vertex, n, is given by

pln = Wlnq
k Wnk

= 1
dn

Wln.

The hitting time for a vertex n is equal to the sum of all hitting times
of neighboring vertices, with one step added, that is

x
(m)
p+1(n) =

ÿ

l

x
(m)
p (l)pln + 1 = 1

dn

ÿ

l

x
(m)
p (l)Wln + 1.

The matrix form of this equation is

x(m)
p+1 = D≠1Wx(m)

p +

S

WWWWU

1
1
...
1

T

XXXXV
.

In the steady state, we have

Dx(m) = Wx(m) + d,

where d = D[1, 1, . . . , 1]T is a degree vector. Finally the hitting time,
h(m, n) = x

(m)(n), is a solution to the linear system of equations

Lmx(m) = d (6.15)
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with the reference vertex m, where x(m) = 0 is removed from the vector
x to form x(m) with elements h(m, n), n = 0, 1, . . . , N ≠ 1, n ”= m.
The equation for vertex m is also removed, so that the system is of an
(N ≠ 1)-order and the matrix Lm is obtained from the graph Laplacian,
L, by removing its mth row and mth column.
Example 27: We shall calculate the hitting time for all vertices, n,
from the vertex m = 3 for the graph from Figure 2.2 in Part I. For this
graph, we have
S

WWWWWWU

1.21 ≠0.23 ≠0.74 0 0 0 0
≠0.23 0.81 ≠0.35 ≠0.23 0 0 0
≠0.74 ≠0.35 1.59 ≠0.24 0 0 0
0 ≠0.23 ≠0.24 1.12 ≠0.51 0 ≠0.14
0 0 0 ≠0.51 0.66 0 ≠0.15
0 0 0 0 0 0.64 ≠0.32
0 0 0 ≠0.14 ≠0.15 ≠0.32 0.61

T

XXXXXXV

S

WWWWWWU

h(3, 0)
h(3, 1)
h(3, 2)
h(3, 4)
h(3, 5)
h(3, 6)
h(3, 7)

T

XXXXXXV
=

S

WWWWWWU

1.21
0.81
1.59
1.12
0.66
0.64
0.61

T

XXXXXXV

and this matrix is obtained from the graph Laplacian by removing the
row and column corresponding to m = 3. The hitting times from the
vertex m = 3 are then obtained as

S

WWWWWWWWWWU

h(3, 0)
h(3, 1)
h(3, 2)
h(3, 4)
h(3, 5)
h(3, 6)
h(3, 7)

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

9.0155
11.3003
9.5942
12.6594
13.1427
6.1930
10.3860

T

XXXXXXXXXXV

.

The commute time, CT (m, n) between vertices m and n is defined
as the expected time for the random walker to reach a vertex n starting
from vertex m, and then to return (see Part I, Section 4.5), to give

CT (m, n) = h(m, n) + h(n, m).

Example 28: We consider the task of finding the commute time be-
tween the vertices m = 0 and n = N ≠ 1 = 7 for the graph from
Figure 2 in Part I, also shown in Figure 6.11. If we desire to use the full
Laplacian matrix and the electric circuit framework for the calculation
of the hitting time, then we should include the mth equation with



418 Physically Well Defined Graphs

h(m, m) = x(m) = 0. Since the sum of all external sources (on the right
side of the Equation (6.15)) must be zero, this means that for the vertex
m = 0, the right side terms should be (d0 ≠ D), and the full Laplacian
form of (6.15) for the vertex m = 0 becomes

L

S

WWWWWWWU

0
h(0, 1)

...
h(0, 6)
h(0, 7)

T

XXXXXXXV

=

S

WWWWWWWU

d0 ≠ D

d1
...

d6
d7

T

XXXXXXXV

,

where D =
qN≠1

i=0 di, and di =
q

n Win are the degrees of vertices, i.
The same relation can be written for m = 7 (or any other vertex

m), to yield

L

S

WWWWWWWU

h(7, 0)
h(7, 1)

...
h(7, 6)

0

T

XXXXXXXV

=

S

WWWWWWWU

d0
d1
...

d6
d7 ≠ D

T

XXXXXXXV

.

The di�erence between the two previous systems of equations is

L

S

WWWWWWWU

≠h(7, 0)
h(0, 1) ≠ h(7, 1)

...
h(0, 6) ≠ h(7, 6)

h(0, 7)

T

XXXXXXXV

=

S

WWWWWWWU

≠D

0
...
0
D

T

XXXXXXXV

.

This system can be interpreted within the electric circuit framework as
the electric circuit with an external source at m = 0 whose current is
i(0) = ≠D. This external source is closed at m = 7 with the current
i(7) = D, while there are no sources at any other vertex. The di�erence
of voltages in this electric circuit at m = 0 and m = 7 is equal to the
di�erence of the seventh element, h(0, 7), and the first element, ≠h(0, 7),
to yield

x0,7 = h(0, 7) ≠ (≠h(7, 0)) = h(0, 7) + h(7, 0)

= CT (0, 7) = R
(0,7)
e� i(7)
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Figure 6.11: Electric circuit interpretation of the commute time, CT (m, n) =
DR

(m,n)
e� .

where R
(0,7)
e� is the e�ective electric resistance between m = 0 and

m = N ≠ 1 = 7, as illustrated in Figure 6.11.
Finally, the previous relation holds for any two vertices, m and n,

that is
CT (m, n) = DR

(m,n)
e�

where D =
qN≠1

i=0 di.

Example 29: The commute time between vertices m = 0 and n = 7
for the graph from Figure 2.2 in Part I, also shown in Figure 6.11, can
be obtained by calculating the hitting times h(0, 7) and h(7, 0), as in
Example 27. The result is

CT (7, 0) = h(0, 7) + h(7, 0) = 10.7436 + 19.6524 = 30.3960.

The same result can be obtained by finding the e�ective resistance
between vertices m = 0 and n = 7 in the electric circuit from Figure 6.11
using the elementary calculations for the e�ective resistance, R

(7,0)
e� , to

give
R

(7,0)
e� = 4.0745.

With D =
q7

i=0 di = 7.46, the commute time, CT (7, 0) = DR
(7,0)
e� =

30.3960, follows.

6.8 Relating Gaussian Random Signal to Electric Circuits

Consider a random graph signal, x(n), and assume that each sample
is Gaussian distributed with mean, µn, and standard deviation, ‡n.
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Assuming that the signal values are correlated, the pdf of the signal x
is given by

P (x) = 1
Ò

(2fi)N

Ò
det(�≠1

x ) exp
3

≠1
2(x ≠ µ)T �≠1

x (x ≠ µ)
4

. (6.16)

The inverse of the autocovariance matrix is the precision matrix
Q = �≠1

x . Note that the term precision comes from the one-dimensional
case where the precision is inversely proportional to the variance, that
is Q = 1/‡

2.
The maximum likelihood estimate of x is then obtained from (6.16)

by minimizing
Ex = 1

2(x ≠ µ)T �≠1
x (x ≠ µ)

and the solution is
�≠1

x (x ≠ µ) = 0. (6.17)

For a zero-mean random signal, µ = 0 and �≠1
x x = 0, and the solution

in (6.17) corresponds to minimizing the energy of the change (maximal
smoothness) in the graph.

The generalized Laplacian corresponding to the precision matrix is
defined by

�≠1
x = Q = L + P

where P is a diagonal matrix such that the sum of columns of the
Laplacian is zero.

The edge weights can now be extracted from the Laplacian matrix.
Since the Laplacian is defined using the observed graph signal values,
this is a point where the presented analysis meets the discussion from
the previous section (see also Examples 10 and 11). The electric circuit
form of the minimization condition is obtained from

(L + P)(x ≠ µ) = 0

or
Lx = ≠Px + (L + P)µ.

In terms of the external current generators, we can define the problem as

Lx = ix + ig,
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where ix = ≠Px are voltage-driven current generators and ig =
(L + P)µ = Qµ are constant external current generators. Therefore,
the steady-state solution can be interpreted and solved in the same way
as we solve the described electric circuit. For example, if the observed
state is x(7) = 1 and µ(n) = 0, we can solve the system for other values
of x(n) for a given matrix �≠1

x = Q = L + P.



7
Graph Learning from Data and External Sources

In the seminal work on graph topologies by Gabriel Kron, all vertices
are assumed to be separable into two groups: active vertices and inner
vertices. Active vertices are exposed to external sources which may be
of di�erent natures, depending on the physical system represented by a
graph. Scenarios which admit the grouping into the active and inner
vertices include the following.

• In a graph representing an electric circuit, active vertices are
characterized by external currents/voltages which supply the
network with energy, which is consumed in its resistive edges.

• For graphs representing heat transfer, active vertices must include
sources/sinks of heat energy.

• In a transportation network, active vertices are those stations
where new influx of passengers can be generated, in contrast with
e.g., the transition hubs, where the passengers can only change
the lines, and cannot exit or enter the station.

• Active and inner vertices can also be recognized in the postal
service network. Here, the external vertices are the points where

422
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the mail is accepted and/or delivered from/to outside world, while
the inner vertices are places where the mail is only in transit
(sorted and redirected).

• In a computer network, the inner vertices are the servers with
no external input/output function, but only have the store and
data transfer functionality. Computers that can generate input
or output data would be active vertices (vertices with external
sources).

Notice that the external sources drive the system (graph), while the
inner sources can be organized in various ways to improve the e�ciency
of the system. In the Kron reduction of graphs, inner vertices are
commonly reorganized by appropriate transformations of graphs, such
as the “star-mesh” transformations.

In the previous section, learning of graph topology from data on
the graph has been considered based on the correlation and precision
matrices. The fundamental additional assumption is that the graph
signal is smooth over the vertices. Notice that if we were able to measure
the graph signal and external sources in the active vertices, then this
would make it possible to learn graph topology in an exact way.

Consider the pth observation of a signal on a graph,

xp = [xp(0), xp(1), . . . , xp(N ≠ 1)]T ,

and the corresponding external sources,

ip = [ip(0), ip(1), . . . , ip(N ≠ 1)]T .

Without loss of generality, assume that the (N ≠ 1)th vertex is a
reference, where xp(N ≠ 1) = 0 and ip(N ≠ 1) = ≠

qN≠2
n=0 ip(n). These

elements will be removed from the data and equations and only the
data on remaining vertices will be considered, and denoted as xp =
[xp(0), xp(1), . . . , xp(N ≠2)]T and ip = [ip(0), ip(1), . . . , ip(N ≠2)]T . The
electric circuit equation in (6.1) for the reduced set of data is then

S

WWWWU

l0
l1
...

lN≠2

T

XXXXV
xp = ip,
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where
li = [Li0, Li1, . . . , Li,N≠2]

are the rows of the graph Laplacian matrix, L, with the elements ranging
from n = 0 to n = N ≠ 2. In other words, the last element and the last
row in the graph Laplacian, which correspond to the reference vertex,
n = N ≠ 1, are omitted.

If P sets of observations are available, then we can write this system
in the form

S

WWWWU

l0
l1
...

lN≠2

T

XXXXV
[x1, x2, . . . , xP ] = [i1, i2, . . . , iP ].

or S

WWWWU

l0
l1
...

lN≠2

T

XXXXV
XN≠1,P = JN≠1,P

The matrices XN≠1,P and JN≠1,P represent respectively the signal on
the graph and external source matrices of dimensionality (N ≠ 1) ◊ P .

Now, we can consider the following cases.

• With P Ø N ≠ 1 independent available observations, the exact
form of the graph Laplacian (its first (N ≠ 1) rows and columns)
follows from

S

WWWWU

l0
l1
...

lN≠2

T

XXXXV
= JN≠1,P pinv{XN≠1,P }. (7.1)

The last column and the last row of the graph Laplacian, L, are
formed in such a way that the sum over every column or row is
zero.

• A more complex case arises when P < N ≠ 1. Then, the number
of observations is not su�cient to recover the graph Laplacian.
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However, if we assume that the graph Laplacian is sparse, with a
small number of nonzero elements (edges), the solution is achiev-
able within the compressive sensing framework. In order to adapt
the system in (7.1) to suit the standard LASSO algorithm, we
shall rewrite it in the form

XT
N≠1,P

S

WWWWU

l0
l1
...

lN≠2

T

XXXXV

T

= JT
N≠1,P .

Now, LASSO minimization can be performed for each data column,
lT
k , and the corresponding column of the external source matrix

JT
N≠1,P , denoted by ik, in the form

lk = lasso(XT
N≠1,P , ik, fl).

Another approach would be to transform the matrices with graph
Laplacian rows, ik, and external source matrix, JT

N≠1,P , into
column vectors to have

S

WWWWU

XT
N≠1,P 0 . . . 0

0 XT
N≠1,P . . . 0

...
... . . . ...

0 0 . . . XT
N≠1,P

T

XXXXV

S

WWWWU

lT
0

lT
1
...

lT
N≠2

T

XXXXV
=

S

WWWWU

i0
i1
...

iN≠2

T

XXXXV
.

Using the notation

(IN≠1,N≠1 ¢ XT
N≠1,P ) lvec = ivec

for the matrix and the vectors in the above equation (where
IN≠1,N≠1 is the identity matrix), this system can be solved using

lvec = lasso(IN≠1,N≠1 ¢ XT
N≠1,P , ivec, fl).

Example 30: Consider a graph with N = 50 vertices, and with a
small number of edges. Such a sparse graph Laplacian, L, is shown in
Figure 7.1(a). The graph Laplacian was estimated using a large number,
P = 60, of observations of the graph signal and external sources. Both
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Figure 7.1: Estimation of the graph Laplacian, L, for a graph with N = 50 randomly
positioned vertices and a small number of edges. (a) Ground truth graph Laplacian, L.
(b) Estimated graph Laplacian using the norm-two for a large number of observations,
P = 60 > N = 50. (c) Estimated graph Laplacian using the LASSO, for a large
number of observations, P = 60 > N = 50. (d) Estimated graph Laplacian using the
norm-two, for a small number of observations, P = 40 < N = 50. (e) Estimated graph
Laplacian using the LASSO, for a small number of observations, P = 40 < N = 50.
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the norm-two and the LASSO estimates of the graph Laplacian were
accurate, as shown in Figures 7.1(b) and (c). Next, the number of
observations was reduced to P = 40 < N = 50. In this case, the sparsity
of the graph Laplacian is crucial for the solution. The LASSO algorithm,
which includes the sparsity constraint, was still able to produce a good
result, as seen from Figure 7.1(e). The norm-two was calculated using
the pseudo-inverse of the data matrix, XT

N≠1,P , and was not appropriate
as the graph Laplacian estimator, as seen in Figure 7.1(d).

Finally, we should mention that in Example 30 we have not used the
conditions that the graph Laplacian is a symmetric matrix and that the
elements of the weight matrix, Wmn, from which the graph Laplacian
elements are formed, are nonnegative. These conditions can be used
within linear programming formulations to improve the estimation.



8
Random Signal Simulation on Graphs

This section addresses ways to simulate graph signals, as for testing
of any new method for learning graph topology based on the available
data, we have to show that the method is reliable and accurate on
simulated graphs and graph signals. To this end, we have to assume a
graph (randomly structured) and then to simulate data on such a graph.
Such data should exhibit a desired degree of randomness, in order to
infer the influence of graph connections to the signal form. Notice that
a graph signal should be influenced by the structure of a graph in an
implicit way. This influence is then used as the basis for graph topology
learning. Graph signal simulation is not straightforward and certainly
not a unique process. Some of the presented approaches to graph signal
simulation are based on the previously introduced analysis of signals on
graphs with physically well-defined topology in Section 6.

The representation of a graph and graph signal within the circuit
theory framework can be used to simulate random signals on graphs.
While several approaches are possible, we will here present some of the
most frequently used ones.

(1) Assume that the graph is initiated by external sources that are
random variables. In that case, the pth observation of a random

428



429

signal on this graph is simulated as a solution of the system of
equations

Lxp = Áp,

with ip = Áp. Note that one of the external sources (randomly
chosen for each observation p) should compensate for all other
sources, to ensure

qN≠1
n=0 Áp(n) = 0.

Since the graph Laplacian matrix is singular, the graph signal
value (the electric potential in the electric circuit case) at a vertex,
for example, for n = 0, should be considered as a reference and
its value should be assumed, for example, x(0) = 0. This strategy
may be used whenever the inversion of the graph Laplacian is
required.

(2) The graph is excited at only one of its vertices (and one
additional reference vertex) with a random external zero-mean
white source. The position of these vertices is randomly selected
for each p. Then, the random signal observation on a graph is
obtained as a solution to

Lxp = ip

where ip(n) = Áp”(n ≠ ni) ≠ Áp”(n ≠ nj) and ni and nj are two
randomly selected vertices at each observation.

(3) A minimal information needed to calculate a random graph signal
is the knowledge of signal values at two randomly positioned
vertices. Assuming that xp(n) = Áp”(n ≠ ni) + ‘p”(n ≠ nj) and
ni and nj are two randomly selected vertices at each observation;
then we may solve the system for all other signal samples, based on

Lxp = 0.

With the two assumed values, xp(n), at n = ni and n = nj , we
can solve this system for all other signal values. In the case of
external sources, the values should be compensated (their sum
should be zero), as mentioned earlier. In this case, there is no
need for compensation, which means that Áp and ‘p could be
independent random variables.
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(4) The signal on a graph is formed using a linear combination of
white noise Áp and its graph shifted versions. The output signal
after M such graph shifts, defined by the normalized Laplacian,
is given by

xp = (hM LM + hM≠1LM≠1 + · · · + h1L1 + h0L0)Áp. (8.1)

The resulting graph signal can be written in the form

xp = H(L)Áp.

(5) Analysis based on the adjacency matrix and graph shifts. Assume
that an undirected graph with the adjacency matrix A, is excited
at Na randomly chosen vertices n1, n2, . . . , nNa , ÷ = Na/N , with
spikes ”(n ≠ ni), i = 1, 2, . . . , Na. After shifting these spikes K

times, we obtain

x = AK
Naÿ

i=1
”ni ,

where ”ni is a graph signal with a nonzero value at n = ni only.
The parameters K and Na define the resulting signal smoothness.
An example of one realization of such a signal is presented in Part
II, Figure 3.6 for ÷ = 1/8, K = 1 (upper subplots) and ÷ = 2/8,
K = 1 (lower subplots) using the spikes ai”(n ≠ ni), where ai are
the spike amplitudes.

(6) Signals are commonly simulated as sums of the harmonic basis
functions, as in classical Fourier analysis. This kind of simulation
may be used in graph signal processing, too. Such a signal on a
graph can be written as

x =
Kÿ

i=1
akiuki

where uk are the eigenvectors of the Laplacian or adjacency matrix,
and ak are random constants. This kind of graph signal simulation,
with or without an additive noise, has been often used in this
part.
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Summary of Graph Learning from Data Using

Probabilistic Generative Models

Analytics of data on graphs with known or given topologies are feasible
for applications that involve physically meaningful structures, such as
citation networks, transport networks and observable social networks.
In those applications, various vertex or spectral domain techniques,
as mentioned in Part II of this monograph, have been successfully
implemented and developed to filter, analyze or visualize graph signals.
However, in many situations where the graph topology cannot be directly
observed or even when the data is partially observed, the inference of
graph structure is a key first step.
Remark 13: Given the observed graph data, graph topology learning
is an ill-posed problem. In other words, totally di�erent graphs can
generate the same data, while one set of observed data can result in
di�erent graph topologies, depending on the graph learning method
used. Thus, to infer graph topology we need to employ some priors,
for example, to match statistics by imposing sparsity or smoothness
conditions on the graph.

Previous sections in this monograph have introduced various sparsity
promotion techniques, such as the graphical LASSO (GLASSO) and
smoothness constrained graph learning, mostly from the perspective
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of linear algebra (Dong et al., 2019; Giannakis et al., 2018; Mateos
et al., 2019). However, it is more natural to connect and summarise
such techniques under the umbrella of probabilistic generative models.
A straightforward approach would be on the basis of some fundamen-
tal statistical models, such as the covariance or precision matrices of
Gaussian distribution (due to their positive definiteness property), the
Gaussian Markov random fields with local independence prior, or a
factor analysis models with smoothness assumption. We also envisage
further progress of generative models to be based on the concept of
di�usion processes on graphs, whereby the signal generating process
can be regarded as the graph signal that has been di�used by some
graph kernels (for example, polynomial kernels) from a white Gaussian
distributed noise.

Generally speaking, graph learning can be treated as an inverse
operation to the graph data generation process, that is, x = fG(z),
where x denotes the observed data. Here, the data are considered to be
the output of an unknown transform (denoted by fG) of some initial
state, z, on the graph G. Existing literature on learning a graph can be
thought of as an attempt to infer the generative process, fG , by matching
the data statistics, x, with di�erent priors that are imposed on z. We
should point out that in this section we discuss the problem of learning
graphs from fully observed graph data because of its underpinning role in
a number of advanced techniques, such as graph learning with partially
observed data (Grotas et al., 2019; Wai et al., 2019) and dynamic graph
learning (Chen et al., 2011; Ioannidis et al., 2019b; Kaplan, 2008).

9.1 Basic Gaussian Models

The simplest way of constructing a graph would be to associate edge
weights with the covariance of data observed on a graph; this is reason-
able under the Gaussian assumption, since the first two moments fully
capture the whole statistics of the distribution. Indeed, the non-zero
elements of the covariance matrix of graph data naturally provide con-
sistent estimation of the connectivity within a graph. This method is
explained within the introductory part of Section 4.
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Given a set of P independent and identically distributed (i.i.d.)
observed data vectors, x1, x2, . . . , xP , the empirical sample covariance
is calculated as

�x(m, n) = 1
P

Pÿ

p=1
(xp(m) ≠ µ(m))(xp(n) ≠ µ(n)), (9.1)

or

� = 1
P

Pÿ

p=1
(xp ≠ x)(xp ≠ x)T

, (9.2)

where x is the mean value of the observed samples. Alternatively, a
normalized version of � can also be employed in order to produce the
edge weights as

‡x(m, n) = �x(m, n)


�x(m, m)�x(n, n)
. (9.3)

For this empirical statistics, we can employ a threshold, · , to designate
the non-zero connections of the adjacency weight, in a way similar
to (2.1), to yield

Wm,n =
I

‡x(m, n), |‡x(m, n)| Ø ·

0, |‡x(m, n)| < ·.
(9.4)

A more sophisticated approach would be to use hypothesis testing via
setting a false alarm rate, whereby

H0: ‡x(m, n) = 0 versus H1: ‡x(m, n) ”= 0. (9.5)

In these scenarios, the empirical covariance is a common choice of test
statistics. Although the density of ‡x(m, n) may have closed-form rep-
resentation, it typically needs numerical integration when calculating
the p-values; however, transformations of ‡x(m, n) can relax this is-
sue to obtain closed-form densities. For example, under the Gaussian
distribution and H0, the weighting

s(m, n) = ‡x(m, n)
Ô

P ≠ 2


1 ≠ ‡2
x(m, n)

would satisfy a student t-distribution of (P ≠ 2) degrees of freedom, and

s(m, n) = tanh≠1(‡x(m, n))
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would then result in a Gaussian distribution with zero mean and 1/(P ≠3)
variance (see Chapter 7.3.1 Kolaczyk, 2009). In those transformed
test statistics, the statistical significance can be easily adjusted to
meet the false alarm rate. However, the limitation of this model is
that by employing individual tests, the number of implementations in
inferring the graph grows as O(N2). This is computational prohibitive
for relatively large graphs; on the other hand, this leads to increasingly
false judgments even with a constant false alarm rate.

A further possible misleading due to the correlation models stems
from the fact that the correlation does not mean the causation. In other
words, the mth and nth vertices can show a strong correlation when
they are both highly influenced by an intermediate vertex, however,
they are not the causation of one another, as illustrated in Example 5.

9.2 Gaussian Graphical Model

To address the issues with the correlation and causation, and to be able
to construct a graph that reflects only direct relationships among its
vertices, one classical method employs the partial correlation, whereby
the correlation of two vertices is calculated by eliminating associations
of other contributing vertices. Under the assumption that vertices
satisfy some mild distributions such as elliptical distributions, the
partial correlation coincides with the conditional correlation (Baba
et al., 2004), and further equals to the conditional independence under
the Gaussian assumption on vertices; this allows the partial correlation
to be explicitly related to the precision matrix. The so established
relationship is crucial in understanding other techniques such as the
GLASSO, graph regression and other generative models.

9.2.1 Partial Correlation Model

In order to simplify the notation, and without loss of generality, we
shall consider vertices n = 0 and m = 1. The set of all other vertices,
except for the mth and the nth vertex, is denoted by V\{m, n} =
{2, 3, . . . , N ≠ 1}. Define the data vectors at each vertex by yn, as in
(4.1), and denote by ŷ0 and ŷ1 the best linear approximations to the
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signal samples y0 and y1, obtained based on the data at other vertices,
y2, y3, . . . , yN≠1. The new data values are then defined as

z0 = y0 ≠ ŷ0

z1 = y1 ≠ ŷ1.

Now, the (empirical) partial correlation between the vertices m = 0
and n = 1 can be defined as

‡z(0, 1) = �z(0, 1)


�z(0, 0)


�z(1, 1)
. (9.6)

In a similar way, all other partial correlations, ‡z(m, n), between pairs
of vertices m and n are calculated. Then, one way of hypothesis testing
is as follows

H0: ‡z(m, n) = 0 versus H1: ‡z(m, n) ”= 0, (9.7)

where ‡z(m, n) is employed as the test statistics. Other choices of test
statistics, such as the Fisher’s transform s(m, n) = tanh≠1(‡z(m, n)),
also obtain an asymptotically Gaussian distribution (Chapter 7.3.2
Kolaczyk, 2009).

9.2.2 Gaussian Markov Random Field

A further assumption which can be imposed on the partial correlation
model is that of the Gaussian distribution, which in many cases is
a common setting as this facilitates closed-form solutions and ease
of analysis. For example, under the Gaussian distribution, the partial
correlation coincides with the conditional correlation (Baba et al., 2004),
or equivalently, conditional independence; this in turn forms the pairwise
Markov property of random fields, which constitutes a Gaussian Markov
random field.

We shall denote the mth and the nth elements of graph signal
samples by yA, and all other elements except for the mth and the nth
element by yB. The covariance of yA is then designated by �AA, and
is of the size 2 ◊ 2. The so obtained block structure of (9.2) becomes

� =
C
�AA �AB

�BA �BB

D

. (9.8)
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The covariance of the corresponding yA conditioned on yB is then easily
obtained as

�A | B = �AA ≠ �AB�≠1
BB�BA, (9.9)

which is also called the Schur complement. On the other hand, to rewrite
the expression in (9.8) with regard to the precision matrix, Q = �≠1,
we can use the following block-wise matrix property

Q = �≠1 =

S

U
�≠1

A | B ≠�≠1
A | B�AB�≠1

BB

≠�≠1
BB�AB�≠1

A | B �≠1
BB�AB�≠1

A | B�AB�≠1
BB

T

V

=
C
QAA QAB

QBA QBB

D

. (9.10)

From (9.10), observe that �A | B = Q≠1
AA if the inverse of QAA exists.

In other words, to obtain the partial correlations in (9.9), it is more
convenient to use the precision matrix than the covariance matrix. Thus,
one feasible way to associate the edge weights is via

Wm,n = ≠ Q(m, n)


Q(m, m)Q(n, n)
, (9.11)

where Q = �≠1 is the empirical precision matrix. Then, the association
of edge weights can be used to infer non-zero elements of Wm,n, which
is also known as the covariance selection problem (Dempster, 1972).
One feasible method is to recursively update the graph by testing the
hypotheses in the form

H0: Wm,n = 0 versus H1: Wm,n ”= 0, (9.12)

where the Wm,n is used as the test statistic. For large-scale graphs,
however, this model also shows limitations which are similar to those of
correlation models in Section 9.1. Although this model can relax the
vagueness regarding the correlation and causation, it has one additional
limitation, in that it requires the number of samples to be larger than
the dimension of covariance to ensure a proper inverse of covariance;
this does not necessarily hold, especially for large-scale graphs, as stated
in Remark 8. The graphical LASSO and linear regression methods may
be used to solve this issue.
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9.2.3 Graphical LASSO and Regression Models

A common way of overcoming the problem of rank deficiency is to
involve a regularization term when estimating the precision matrix.

Given the set of independent and identically distributed samples,
x1, x2, . . . , xP , the log-likelihood of a Gaussian distribution with zero
mean and precision matrix Q is represented as in (4.19)

J =
Pÿ

p=1

3
≠ 1

2xT
p Qxp ≠ P

2 ln(2fi) + 1
2 ln |Q|

4
(9.13)

Ã P ln |Q| ≠
Pÿ

p=1
(xT

p Qxp), (9.14)

where |Q| = det(Q). The maximization of this log-likelihood yields the
attained optimum in the form

Q≠1 = 1
P

Pÿ

p=1
xpxT

p ,

as in (4.25)–(4.26).
However, when P is smaller than the dimension of xp, the termqP

p=1(xpxT
p ) is not full rank, which causes the singularity of Q. One

way of avoiding this issue is to use the l1 norm to promote sparsity in
(9.13), in a similar form to (4.27), to yield

J = P ln |Q| ≠
Pÿ

p=1
(xT

p Qxp) ≠ flÎQÎ1, (9.15)

which is known as a GLASSO problem. As shown in Yuan and Lin
(2007), in this way the correct graph can be inferred with the probability
approaching one, when the parameter fl is chosen to satisfy fl · P æ Œ
and fl ·

Ô
P æ 0, for P æ Œ.

Remark 14: Apart from the l1 norm, other regularization strategies
can also be employed in (9.15). For example, solving (9.15) could result
in negative values, which of course have no meaning when associating
the edge weights. Thus, constraining edge weights to be non-negative
is also a common regularization approach in graph learning (see also
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Section 4.3). For more detail, we refer to Friedman et al. (2008), Banerjee
et al. (2008), and Yuan and Lin (2006).
Graph regression. Another perspective of learning the Gaussian
graphical model (described in Section 4.1 and Example 6) is via a regres-
sion of data observed at each vertex, ym, given the data observations at
other vertices, yn, n œ {0, 1, 2, . . . , m ≠ 1, m + 1, . . . , N ≠ 1} = V\{m}.
The aim of the regression here is to learn a graph that yields the mini-
mum mean square error, given the observed samples. More specifically,
the values —nm, n = V\{m}, that minimize

Jm =
....ym ≠

N≠1ÿ

n=0,n”=m

—nmyn

....
2

2
(9.16)

follow from 3
ym ≠

N≠1ÿ

n=0,n”=m

—nmyn

4
yT

k = 0

or
qN≠1

n=0,n”=m —nm�x(n, k) = �x(m, k), for k, n œ V\{m}. A matrix
solution to this equation is

—m = �≠1
mm�1m,

where �1m is a vector with (N ≠ 1) elements �x(m, k), k = V\{m},
and �mm is an (N ≠ 1) ◊ (N ≠ 1) matrix with elements �x(n, k),
k, n = V\{m}. On the other hand, under the Gaussian assumption, the
conditional mean of ym on yn is given by

Ep(ym | yn){ym} = (�≠1
mm�1m)T XP,m,

where

XP,m =

S

WWWWWWWWWWWWU

y0
y1
...

ym≠1
ym+1

...
yN≠1

T

XXXXXXXXXXXXV

,
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with
yn = [x1(n), x2(n), . . . , xP (n)]. (9.17)

Therefore, to infer Q, given the data observed on a graph, x1, x2,

. . . , xP , we can regress xm for each vertex, m, on the basis of (9.16) as
follows,

xm = —T
mXP,m + ‘m, (9.18)

where ‘m is independent Gaussian noise.
Therefore, the problem of learning Q turns into the regression

problem on —m, for each vertex, while non-zero elements in —m also
indicate the corresponding non-zero elements in Q, namely, the edges
in the graph.

The main advantage of regression-style methods is that the re-
gressions for all vertices can be computed in parallel, which provides
significantly relaxed computation when learning large graphs. However,
additional attention should be paid to the symmetry of the learnt re-
gression coe�cients when dealing with an undirected graph, for example
as in (4.11), more detail can be found in Meinshausen et al. (2006). The
condition of coe�cient sparsity could also be included, which leads to
the LASSO formulation and solution to this problem, as in Section 4.1.

9.2.4 Factor Analysis Model

In Sections 9.1 and 9.2, the Gaussian distribution was assumed and
on the basis of this distribution, most methods have been proposed to
learn the graph edges in a recursive manner, i.e., by learning an edge
per iteration. On the other hand, such methods can be regarded as
a generative process via a basic Gaussian distribution, whereby the
covariance or the precision matrix is nontrivially associated with the
graph edges. It is thus natural to adopt more general and sophisticated
models in graph learning.

One important model in probabilistic generative models is the factor
analysis model, which forms the basis of many important tools, such as
the probabilistic principal component analysis. Therefore, the observed
data on a graph, x, is assumed to be generated via a factor model that
can be represented as

x = Uv + ‘, (9.19)
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where U is a unitary matrix of the graph Laplacian eigenvectors, and v
is a vector of latent variables (or factor loadings) which is Gaussian dis-
tributed with zero mean and a diagonal precision matrix corresponding
to the graph Laplacian eigenvalues �, that is,

v ≥ N (0, �≠1),

where �≠1 is the Moore-Penrose pseudoinverse of �, while ‘ ≥ N (0, –
2I)

is also Gaussian distributed but independent of latent variables v.
On the basis of this factor model, it is easy to obtain the distribution

of the observations, x, as

x ≥ N (0, U�≠1UT + –
2I).

The term (U�≠1UT )≠1 = UT �U uniquely defines the Laplacian ma-
trix, L, of a graph. This allows us to infer the graph structure by learning
L = UT �U from the factor model via maximizing the posterior distri-
bution of v given x, that is

P (v | x) Ã P (x | v)P (v) Ã e
≠ (x≠Uv)T (x≠Uv)

–2 e
≠vT �v

.

The log-likelihood form then follows as Dong et al. (2016)

min
�,U,v

Îx ≠ UvÎ2 + fl · vT �v, (9.20)

where fl is a hyperparameter that balances between the influence of
mean square error Îx ≠ UvÎ2 and the positive definiteness constraint
vT �v. Expression (9.20) can be further rewritten using the notation
y = Uv, as

min
L,y

Îx ≠ yÎ2 + fl · yT Ly. (9.21)

By inspection of (9.21) we see that the term yT Ly measures the
smoothness of signal y on the graph; in other words, (9.21) min-
imises the distance between the observed samples and the generated
signals, whilst imposing the smoothness on the generated signals, as
discussed in Section 4.2. Other regularizations can also be imposed
onto this model, such as that trace(L) is equal to the dimension of the
graph, in order to avoid a trivial all zero optimum and non-positive
values in the o�-diagonal elements of L, and to learn a feasible graph
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(Dong et al., 2016). Finally, (9.21) can be optimized in an alternative
manner, as discussed in Section 4.2 and Algorithm 2, namely, by alter-
natively optimizing one of the two parameters (L or y) while fixing the
other one.

Further improvements following the factor model of learning a
smooth graph include the use of a more flexible smoothness prior when
optimizing L in an alternative optimization, as various constrains on the
L can lead to complicated optimization implementations (Kalofolias,
2016). This is achieved by rewriting the smoothness prior, yT Ly in (9.21),
as yT Ly = 1

2
q

m,n Amn(y(m) ≠ y(n))2 so that the constrains can be
explicitly imposed on the adjacency matrix A, instead of on the Lapla-
cian L. It is also possible to learn graph by selecting the edges from
atoms in a dictionary (called the incidence matrix) (Chepuri et al.,
2017). Although this strategy can explicitly control the sparsity of the
graph, it cannot optimise the edge weights (Mateos et al., 2019).
Example 31: Figures 9.1 and 9.2 show that di�erent graph connections
can exhibit di�erent smoothness features, given the same observed
samples, x, shown in Figure 9.1(a). As also indicated in Figure 9.2,
the observed sample retains the lowest frequency components for the
graph in Figure 9.1(b) and the highest frequency components for the
graph in Figure 9.1(c). This is reflected in a smaller smoothness value,
xT Lx, for the graph in Figure 9.1(b). This exemplifies that, given the
observed graph samples, the smoothness prior is convenient for learning a
graph.

9.3 Di�usion Models

It is important to notice that the smoothness that arises from the factor
model is imposed in a global manner, which is e�ective in learning the
main structure of a graph. However, promoting the global smoothness
can also yield to the overestimation of the details within a graph. To
resolve this issue, we can further assume that the observed graph signals
are generated via a more complex and powerful model, such as the
di�usion model. As shall be discussed in detail in Section 10.6.2, the
polynomial filter is a typical choice for treating the di�usion from a
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Figure 9.1: Smoothness and graph learning. (a) The observed graph signal x =
[0.7, 0.2, 0.6, 1.1≠0.3, ≠1.1, 1.3, ≠0.7]T , with (b)–(c) two types of possible path graph
connections resulting in di�erent smoothness values, xT Lx.

graph data analytics perspective. The benefits arising from learning a
graph based on the di�usion model are mainly three-fold:

• Analytical and computational ease during learning.

• The (weak) stationarity is ensured in the generation system (Ma-
teos et al., 2019).

• Ability to control the local smoothness in the model.

The di�usion model is given by (4.28)

x =
Mÿ

m=0
hmSmv + ‘, (9.22)

where v is white Gaussian noise v ≥ N (0, I), while similar to the
factor model in (9.19), ‘ ≥ N (0, –

2I). From (9.22), recall that S is the
(symmetric) shift operator which can be chosen as e.g., the adjacency
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Figure 9.2: Graph signal spectrum values which correspond to the two types of
graph connections in Figure 9.1. The top panel corresponds to Figure 9.1(b) and
the bottom panel to Figure 9.1(c). The energy is calculated via xT Lx, where small
values indicate a smooth graph.

matrix, or the Laplacian matrix, to name but a few. Here, we continue
to use

S = L

as in Section 4.5. Furthermore, expression (9.22) can be compactly
written in the form of (4.28), as

x =
Mÿ

m=0
hmLmv, (9.23)

where L0 = I and h0 = –
2 retain the same statistics as those in (9.22).

On the basis of (9.23), the covariance of x can be calculated as

� = E{xxT } =
3 Mÿ

m=0
hmLm

4
E{vvT }

3 Mÿ

m=0
hmLm

4T

=
Mÿ

m=0
hmLm

3 Mÿ

m=0
hmLm

4T

= UT
3 Mÿ

m=0
hm�m

42
U, (9.24)



444 Summary of Graph Learning from Data

where we have used the eigendecomposition L = UT �U.

Eigenvector estimation. From (9.24), we can see that the eigenvec-
tors of L are the same as those of the covariance matrix of x. This
means, in a straightforward way, that we can infer the eigenvectors of
L from the empirical covariance of the observed data, x1, x2, . . . , xP .

Eigenvalue estimation. After obtaining the eigenvectors, the remain-
ing task is to estimate the eigenvalues of L. Without any additional
constraints, it is obvious that arbitrary values can be chosen as the
eigenvalues of L, because we can always find a corresponding set of
h0, h1, . . . , hM that satisfies (9.24). Thus, to achieve a unique solution,
we need to employ some prior on the function f(·) (Segarra et al., 2017),
to arrive at

min
L,�

f(L), subject to L = UT �U. (9.25)

For example, when f(L) = ÎLÎ0, the objective function minimises the
number of edges, whereas f(L) = ÎLÎ2 minimises the energy of graph
edges. The number of edges can also be minimized using convex relation
of f(L) = ÎLÎ0 in the form f(L) = ÎLÎ1, as explained in Part II of this
monograph and Section 4.5.

Equation (9.23) assumes that the di�usion process starts from the
same initial status, that of white Gaussian noise. An enhanced di�usion
model has been proposed in Thanou et al. (2017) by assuming that the
signals are generated from multiple heat di�usion processes

x =
Mÿ

m=0
e

≠hmLvm. (9.26)

Here, vm represents the initial state that can also be optimized, and
hm controls the di�usion time (depth). This means that with a small
hm, the kth column of e

≠hmL is localized at the kth vertex. This
model can be solved via a dictionary-learning solver by regarding
[e≠h0L

, e
≠h1L

, . . . , e
≠hM L] as the dictionary D and [v0, v1, . . . , vM ] as

coe�cients V. The objective function can now be formulated as

min
L,X,hm

ÎX ≠ DVÎ2
F + reg(V) + reg(L),

subject to {hm}M
m=0 Æ 0,
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where reg(·) denotes a certain regularization; for more detail, we refer
to Thanou et al. (2017).



10
Graph Neural Networks

An emerging area which considers graphs in conjunction with neural
networks is that of graph neural networks (GNNs). The underpinning
idea is to combine the universal approximation property of neural net-
works and the ability of graphs to capture higher-order information in a
physically meaningful way, thus equipping GNNs with enhanced expres-
sive and modelling power. Work in this direction has been facilitated by
steadily growing computational power and the ever increasing amount of
available data. The beginning of graph neural networks (GNNs) can be
traced back to basic network structures (Gori et al., 2005; Micheli, 2009;
Scarselli et al., 2008) one decade ago, while recent developments have
been centered around graph convolutional networks (GCNs). The GCNs
benefit from their intrinsic graph structure, which allows to account
for complex implicit coupling among data and information aggregation
when processing (or filtering) data at each vertex. This is particularly de-
sirable in deep neural network (DNN) techniques, where the involvement
of graphs provides a balance between the “black-box” (but powerful)
DNNs and the purely mathematical tools such as manifold optimization
and manifold learning. Benefiting from prior information embedded into
a graph structure, GCNs are capable of not only handling irregular data

446
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but also of alleviating the “black-box” nature of DNNs, thus helping
resolve two major open issues with current DNNs.

Recent literature on GCNs (Wu et al., 2019; Zhou et al., 2018)
typically considers the learning aspects, while highlighting two key
properties of CNNs: (i) stationarity (via shift invariance of convolution
operations) and (ii) compositionality (via downsampling or pooling
operations). Taking a sightly di�erent viewpoint, we start from the
graph itself and proceed to illuminate that certain types of graphs
correspond to major trends in GCNs. We also outline the advantages of
treating GCNs in this way, such as the possibility to open avenues for
the design of novel types of GCNs.

We introduce GNNs from the perspective of a di�usion process,
because of the role of di�usion which underpins signal propagation in
graphs. With the ability of graphs to provide intrinsic structures when
aggregating information, this allows us to describe recurrent GNNs as a
kind of di�usion processes of task-oriented models; all in all, an intuitive
way to reveal the underlying mechanisms of GNNs. For example, a
standard GNN “feed-forwards” (aggregates) input information layer-by-
layer towards the output, calculates deviation from the ground-truth,
and then back-propagates to improve the aggregation strategy (weight
update). Such information flow (or message passing) is also found in
the di�usion process, for example, in temperature transfer heat shown
in Example 2. Therefore, the di�usion process can be rephrased as a
“language” of neural nets, even for the basic gradient descent updating
process. A more complex version is addressed in Section 10.3, in the form
of the di�usion process with external sources, which serves to establish
a link with the well-know label propagation method. We show that
label propagation can be basically regarded as a one-layer GNN, which
despite not having weights to be optimized is still powerful enough in
semi-supervised learning. This is shown to naturally extend to multiple
layers of GNNs, whereby the stacked layers perform message passing
(also similar to the di�usion process). We also employ the concept of
system on a graph to explain spectral GCNs, while spatial GCNs are
shown to admit interpretation as a relaxation of spectral GCNs to the
localization in graphs.
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10.1 Basic Graph Elements Related to GCNs

The following properties of graphs are helpful in understanding the
GCNs (for more detail we refer to Section 2.1 of Part I).

• Property 1: When A is binary, i.e., it represents the connection
of vertices (adjacency matrix), the number of walks of a length k,
between two vertices m and n, is equivalent to the value of the
corresponding element amn of the kth power of A, that is, of
Ak. The number of walks between the vertices m and n, that
are of length not higher than k, is given by the corresponding
element of Bk, where Bk = A + A2 + · · · + Ak. Matrix Bk gives
the k-neighborhood of a vertex, which is a set of vertices that are
reachable from this vertex through walks within k steps.

• Property 2: For any signal on graph, x, the quadratic form of
the Laplacian, xT Lx, is of the form

xT Lx = 1
2

N≠1ÿ

m=0

N≠1ÿ

n=0
Amn(x(m) ≠ x(n))2

. (10.1)

This indicates that: (1) the Laplacian matrix, L = D ≠ A, is
positive semi-definite because Amn(x(m) ≠ x(n))2 Ø 0; (2) the
smoothness of graph signal, x, can be quantified via xT Lx, which
ensures that the quadratic form xT Lx is equivalent to the Dirichlet
energy of x, which has been widely used in probabilistic graph
models.

Remark 15: The smoothness of a graph signal, x, implies that the
signal value would not change much from one vertex to another within
the neighborhood of vertex n (assessed by (x(m) ≠ x(n))2). However,
signal values are allowed to change significantly when the two ver-
tices are not connected (indicated by zero values of Amn). There-
fore, the minimization on xT Lx finds the smoothest signal x on the
graph.

Note that the absolute maximum smoothness (minimum of the
smoothness index) is achieved for a signal which is constant over all ver-
tices; such signal is equal to the eigenvector corresponding to the smallest
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eigenvalue, ⁄0 = 0, of the graph Laplacian, L (owing to the Rayleigh
quotient). More importantly, this yields 1T L1 = 1T (D ≠ A)1 = 0, that
is, the smallest eigenvalue is ⁄0 = 0 with the corresponding normalized
eigenvector x = u0 = 1/

Ô
N , where 1 denotes an N -dimensional vector

of unities.

Connection to the Laplacian Operator in Function Analysis

One way of understanding the role of the Laplacian matrix in measuring
signal smoothness is via its continuous time counterpart – the Laplacian
operator in functional analysis. The Laplacian operator over a function
f(r̨) in the Euclidean space is defined as

div(grad(f(r̨))) = Ò(Òf(r̨)) = �f(r̨),

where grad(·) denotes the gradient operator and div(·) is the divergence
operator. For example, in Cartesian coordinates of two dimensions,
r̨ = (x, y), we have

�f(x, y) = ˆ
2
f(x, y)
ˆx2 + ˆ

2
f(x, y)
ˆy2 . (10.2)

Similarly, we can also define the Laplacian operator on the graph,
whereby the di�erent (and di�cult) aspect is the di�erential operator.
Namely, while as in the discrete signal space, the di�erence operation
is defined as Òf(x) = f(x + 1) ≠ f(x), which calculates the di�erence
between f(x + 1) and f(x), the di�erential on a graph is defined for
each edge, that is

Òfmn = f(m) ≠ f(n).

This means that, in general, the di�erential on a graph allows for a
di�erent number of directions at each point (vertex), while for the
path graph, the di�erential Òfmn naturally simplifies into the standard
di�erential in the Euclidean space.
Example 32: To illustrate the role of the graph Laplacian, consider
a graph in Figure 10.1, which is a simplified version of Figure 1(a) of
Part I. Its adjacency matrix and the corresponding graph Laplacian
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Figure 10.1: A simplified version of the default graph considered throughout this
work, as in Figure 1.1(a) in Part I.

matrix are given by

A =

S

WWWWWWU

0 1 1 1 0
1 0 1 0 1
1 1 0 1 1
1 0 1 0 0
0 1 1 0 0

T

XXXXXXV
, L =

S

WWWWWWU

3 ≠1 ≠1 ≠1 0
≠1 3 ≠1 0 ≠1
≠1 ≠1 4 ≠1 ≠1
≠1 0 ≠1 2 0

0 ≠1 ≠1 0 2

T

XXXXXXV
. (10.3)

To calculate the gradient, grad(f), of a signal, f , on this graph

f =

S

WWWWWWU

f(0)
f(1)
f(2)
f(3)
f(4)

T

XXXXXXV
, (10.4)

which represents the di�erential at each edge, we introduce the so called
incidence matrix, K, given by

K =

S

WWWWWWU

e0 e1 e2 e3 e4 e5 e6
0 1 0 1 0 1 0 0
1 ≠1 1 0 1 0 0 0
2 0 0 ≠1 ≠1 0 1 1
3 0 0 0 0 ≠1 ≠1 0
4 0 ≠1 0 0 0 0 ≠1

T

XXXXXXV
. (10.5)
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The gradient on the graph now becomes

grad(f) = KT f =

S

WWWWWWWWWWU

Òf

e0 f(0) ≠ f(1)
e1 f(1) ≠ f(4)
e2 f(0) ≠ f(2)
e3 f(1) ≠ f(2)
e4 f(0) ≠ f(3)
e5 f(2) ≠ f(3)
e6 f(2) ≠ f(4)

T

XXXXXXXXXXV

. (10.6)

Due to the adjoint property of the divergence operator with regard to
inner products, the graph Laplacian for this graph becomes

�f = div(grad(f)) = K(KT f) = (KKT )f

=

S

WWWWWWU

3 ≠1 ≠1 ≠1 0
≠1 3 ≠1 0 ≠1
≠1 ≠1 4 ≠1 ≠1
≠1 0 ≠1 2 0

0 ≠1 ≠1 0 2

T

XXXXXXV

S

WWWWWWU

f(v0)
f(v1)
f(v2)
f(v3)
f(v4)

T

XXXXXXV
. (10.7)

It is now obvious that KKT is equivalent to the graph Laplacian matrix
L in (10.3).

Remark 16: The analysis in (10.4)–(10.7) exemplifies that a graph
e�ectively defines local coordinates with a prior or learnt linkage infor-
mation, and thus in some sense it can then be considered as a discrete
approximation to a manifold. This insight is particularly useful in the
design and interpretation of GNNs.

10.2 Gradient Descent as a Di�usion Process

Consider a physical di�usion process, and in particular the Newton’s
law of cooling, which states that the energy (or heat) loss rate is
proportional to the temperature di�erence between the body (node)
and its surrounding environment. The di�usion process can then be
understood as an iterative process that converges toward the state of
minimum energy, given by xT Lx, from any initial condition. Since the
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gradient of energy is

grad(xT Lx) = ˆ(xT Lx)
ˆxT

= 2Lx,

the iterative discrete-time solution for the di�usion process, at an instant
(t + 1), is given by

xt+1 ≠ xt = ≠–Lxt, (10.8)
or

xt+1 = xt ≠ –Lxt,

where – is a constant. This solution to the di�usion process can also be
formulated as

Òx(n) ¥ ≠–

ÿ

mœVn

(x(n) ≠ x(m)), (10.9)

where Vn is the set of vertices within the neighborhood-one of the
vertex n, while

q
mœVn

(x(n) ≠ x(m)) denotes an aggregate temperature
di�erence between the vertex n and its surrounding vertices.
Remark 17: Equation (10.8) models the change in temperature along
time, starting from an initial state x0. In the following, we will show
that this provides an ideal means for designing recurrent GNNs. For
more detail on Recurrent Neural Networks (RNN), we refer to Mandic
and Chambers (2001) and Mandic and Goh (2009).

The quadratic term, xT Lx, is frequently used in data analytics on
graphs, for example for estimating smoothness. The gradient of xT Lx
is ˆ(xT Lx)/ˆx = 2Lx, so that the di�usion process in (10.8) will find the
exact minimum of this quadratic form. As mentioned in Section 10.1,
the minimum of xT Lx is reached for a constant eigenvector with all
elements equal to 1, which indicates that such a di�usion process, when
left without any external sources, will eventually settle to the same
temperatures for all vertices.

10.3 Label Propagation as a Di�usion Process with
External Sources

The stable state (equilibrium) of a di�usion process without external
sources cannot give us any useful information because in this case the
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data at all the vertices have the same value (i.e., the lowest entropy on
the graph). In Physics, we can alter the stable state by adding some
constant external sources, which ensures that the final temperatures
are not all the same but exhibit some fluctuations governed by their
inherent relationships. This is also the basic idea behind many graph
machine learning approaches, especially in semi-supervised learning
tasks, such as the label propagation given in Algorithm 4.

Algorithm 4. Label Propagation
1: procedure Initialization

2: Initialise a graph by treating each data sample separately, as a single vertex;
3: Connect all vertices in the graph, whereby edge weights are defined by some

similarity measure;
4: Assign the labels from the labeled samples to the corresponding vertices;
5: Randomly assign values to the unlabeled vertices.
6: while Not converged: do
7: Propagate from the labeled to the unlabeled vertices: x Ω Lx.

Û Di�usion process
8: Re-assign the original labels to the labeled vertices, xL.

Û Keep external resources
9: return x

The final state of this modified di�usion process can be easily shown
to be Zhu (2005),

xU = (I ≠ LUU )≠1LULxL, (10.10)

where
L =

C
LLL LLU

LUL LUU

D

, (10.11)

and the subscripts U and L designate respectively the unlabelled and
labelled sets. Note that for a graph shift, instead of L we may also
use A.

The final stable state will now no longer have the same signal values
for all vertices (at least xU ”= xL). This is due to the “external constant”
sources of the labelled samples (Line 8 in Algorithm 4), which ensures
that the di�usion process results in stable states with signals which
are di�erent for each vertex; this also gives the predicted labels for
unlabelled signal samples (or vertices) in the inner structures of the
graph.
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Example 33: To provide a simple illustration of label propagation in
handwritten digit recognition, we used three sets of handwritten digits,
1, 5 and 9, each with ten images from the MNIST database (LeCun
et al., 1998). We adopted the structural similarity (SSIM) metric (Wang
et al., 2004) to measure the similarity between images and to construct
a graph accordingly, as shown in Figure 10.2(a). In this example, we
chose only two labels for each digit type to act as the external sources
in the di�usion process. It needs to be pointed out that without the
external sources, the final state would settle to a constant vector; this
does not provide any informative predictions.

The total of six given labels are annotated in Figure 10.2(c) and the
predicted labels are shown in Figure 10.2(d). By comparing with the
ground truth shown in Figure 10.2(b), we can see that label propagation
achieved adequate prediction accuracy, given a correctly constructed
graph. The level of certainty in the prediction is designated by the
node color in Figure 10.2(d), with the provided labels (ground truth)
in the red color, and the nodes on the intersections of two types of
digits in green colors, indicating the large uncertainty of predictions
in these vertices. Therefore, when regarding label propagation as a
di�usion process, the temperature can be interpreted as the level of
certainty, whereby the external sources (the six given labels) have
the highest temperature (designated with the red color) and the heat
di�usion performs “certainty propagation”. Vertices surrounding the
external sources, as a consequence, would retain relatively high tem-
peratures (we are much more sure about the predictions on these
nodes).

10.4 GNNs of a Recurrent Style

Now that we have shown that di�erent di�usion models can be utilized
to aggregate information across graph vertices, we may employ di�usion
to design neural networks on graphs, as neural networks also rely upon
information aggregation. One such frequently used recurrent GNN was



10.4. GNNs of a Recurrent Style 455

)b()a(

)d()c(

Figure 10.2: Principle of label propagation. We used two labelled images out of ten
available images per digit from the MNIST dataset. Three sets of digits (1, 5 and 9)
are chosen and each set contains ten images. (a) The resulting graph constructed
via the SSIM metric, where two images (nodes) are connected when their SSIM is
larger than a threshold (set to 0.35). (b) The ground truth labels for the 30 images
considered. (c) Only two labels are provided for each set of images, as indicated
by the red color. (d) Predicted labels from the given six (i.e., 2 ◊ 3) labels via
label propagation over the graph Laplacian matrix L. The color bar designates the
certainty of predictions, namely, the red color denotes an almost sure prediction with
probability approaching 1 and green color poor prediction.

proposed by Scarselli et al. (2008), which aggregates information as

xt+1(n) =
ÿ

mœVn

f(xt(n), q(n), xt(m), q(m)), (10.12)

o(n) = „(x(n), q(n)), (10.13)
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where xt(x) is the signal value at the nth vertex at a time instant t,
Vn denotes the neighborhood-one of the vertex n, q(n) is a pre-defined
feature of x(n), q(m) represents the pre-defined features at the neighbor
vertices, and o(n) is the output at the nth vertex. The operators f(·)
and „(·) can be chosen to form neural networks so that they can be
learnt via back-propagation; in other words, the di�usion style model
can be learnt from data samples. In a particular case when q(n) and
q(m) are omitted, and

f(x(n), q(n), x(m), q(m)) = (x(n) ≠ x(m)).

Equation (10.12) turns into the original di�usion process in (10.9).
The aggregation function in (10.12) motivates much recent work on

GNNs and spatial GCNs, however, this variant of recurrent GNNs needs
to undergo the di�usion process until convergence, for every iteration
of back-propagation. Moreover, the mapping f(·) in (10.12) needs to be
carefully designed to be a contraction mapping to ensure convergence
(Mandic, 2007). More recent e�orts to improve this model include the
gated recurrent GNN (Li et al., 2015) that employs a gated unit as f(·)
to ensure convergence within a fixed number of steps, while stochastic
steady-state recurrent GNNs (Dai et al., 2018) perform update in (10.12)
in a stochastic manner.

Another approach which incorporates both spatial convolutions and
temporal di�usions, is the di�usion convolution neural network (DCNN)
(Atwood and Towsley, 2016), which can be formulated as

hl = „(wl § Llx), (10.14)

where hl is the hidden state of the lth layer, wl are convolution kernels
that are to be learnt, and Ll is the power series up to l of a certain
probability transition matrix (in this case graph Laplacian L) which is
similar to Line 7 in Algorithm 4; recall that § denotes the element-wise
product and „ the activation function. It should be pointed out that
the model in (10.14) implies that hl does not depend on the previous
layer (state) hl≠1, and that the dimensions of each layer need to be the
same; this limits the number of degrees of freedom in the design. The
overall output of this GCN is a composition of all layers {hl}L

l=1, so
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that (10.14) can be interpreted as a set of di�usion processes of di�erent
depths (by regarding l as time instant t).

Another way of understanding the operation in (10.14) is that each
di�usion step, Llx, aggregates (to a certain degree) the heat (or general
features and labels). This is a kind of message passing and aggregation
that equips the network with the ability to extract statically salient
features, which belong to spatial GCNs, introduced below.
Remark 18: Almost all approaches to recurrent GNNs aim to find
an e�cient and stable di�usion strategy to propagate and aggregate
the labels or information at each vertex, so as to facilitate reliable and
robust predictions at the final stable stage of the GNNs.

10.5 Spatial GCNs via Localization of Graphs

It is important to note that while CNNs have been an enabling tech-
nology for modern machine learning applications, they also su�er from
the limitations inherited from the underlying assumption of a regular
time/space grid sampling, such as in images and videos. The e�ort to
extend CNNs to GCNs that are able to operate on data acquired on
irregular domains therefore needs to accommodate both the convolution
(to learn local stationary features) and the pooling (to compose multi-
scale patterns) operators. Our main focus is on ways to accommodate
the data on irregular domains, while the generalization of pooling is
naturally related to the downsampling on the graph (see Part II and
Bacciu and Di Sotto, 2019; Ioannidis et al., 2019a; Sakiyama et al.,
2019; Tanaka and Eldar, 2019; Zhang et al., 2019a). The key di�culty
in defining the convolution on a graph is the absence of a rigorous
translation (shift) operator. To this end, the basic idea behind spatial
GCNs is the information aggregation principle, which is very similar
(sometimes even intertwined with) to the di�usion GNNs in Section
10.4. Instead of waiting for a stable state (along the time instants) of
recurrent GNNs, spatial GCNs directly aggregate information by the
stacked layers, which is also called message passing. The initial work in
this area was by Micheli (2009), the so called neural network for graphs
(NN4G). A more general model is the message passing neural networks
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(MPNNs) (Gilmer et al., 2017), which is given by

x
l+1(n) = „

3
x

l(n),
ÿ

mœVn

f(xl(n), x
l(m), enm)

4
, (10.15)

where x
l(n) represents the data value at the nth vertex of the lth layer,

enm denotes the edge between the nth and the mth vertex, while f(·) is
the message passing function and „(·) denotes the activation (or vertex
updating) function. The model in (10.15) caters for many GCNs, such
as those in Micheli (2009) and Kipf and Welling (2016a) which all have
di�erent forms of functions f(·) and „(·). This model also involves the
basic steps for processing graph signals in the spatial domain, i.e., by
aggregating the previous messages and passing to the next layer. Bacciu
et al. further extended this idea to a probabilistic framework Bacciu
et al. (2018), which enables a probabilistic explanation on each state of
each layer.

Furthermore, instead of looking for all neighbors of the central
vertex in (10.14), the GraphSAGE approach proposes to sample several
neighbors around every vertex (Hamilton et al., 2017), as follows

x
l+1(n) = „(Wl · concat{x

l(n), f{x
l(m), m œ ÂVn}}), (10.16)

where concat{·, ·} denotes the concatenation and f{·} the aggregation
function, Wl is the matrix of learnable parameters, and ÂVn denotes a
randomly chosen neighbor of the nth vertex. This strategy allows for
a mini-batch operation on graphs, which is extremely useful for large
graphs.

A further possible improvement is to learn the weights while choos-
ing the neighboring vertices; this includes the graph attention network
(GAT) (Veli�koviÊ et al., 2017), and the mixture model network (MoNet)
(Monti et al., 2017). Within GATs, an attention weight, –n,m, is added
to the parameters in (10.15), which allows us to assign di�erent im-
portance levels to vertices, even within the same neighborhood. The
attention weight can be further learnt from an additional convolution
sub-network, as proposed in Zhang et al. (2018a). On the other hand,
the MoNet defines the weights of neighboring edges as a consequence of
local coordinates, which has an intrinsic link with the manifolds. More
specifically, it defines the importance of the edge connecting the nth
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and mth vertex as a probability, p, over some local coordinates, u(m, n),
which reflects the di�erence (or distance) between the nth and mth
vertex. Then, the nth vertex can be aggregated via a specially defined
convolution, given by

(x ú g)(n) =
Jÿ

j=1
gj

ÿ

mœVn

p(u(m, n))x(m), (10.17)

where gj is the jth index (element) of the convolution kernel, g. In
Monti et al. (2017), the probability, p(u(m, n)), was chosen as a Gaussian
mixture model, which has J clusters to cater for the size of convolution
kernel. It has also been shown that the framework of (10.17) accounts
for various geometric deep neural networks, through a choice of di�erent
local coordinates and weight functions.

10.6 Spectral GCNs via Graph Fourier Transform

As shown in Section 10.5, message passing via the convolution operation
plays a crucial role in spatial GCNs. Here, we focus on the methods
that operate in a transfer domain and benefit from the mathematically
well-defined convolution in the graph spectral domain to yield a class
of spectral GCNs.

10.6.1 Graph Fourier Transform

Due to the positive semi-definiteness of L, there are N (the num-
ber of vertices) real-valued eigenvalues (⁄0 = 0 Æ ⁄1 < ⁄2 < · · · <

⁄N≠1), which correspond to N distinct orthogonal eigenvectors ([u0, u1,

. . . , uN≠1]). As mentioned in Section 10.1, the quadratic form, xT Lx,
measures the smoothness of the data, x, on a graph. Further, when x
represents one of the eigenvectors, uj , the term xT Lx then measures the
smoothness of the eigenvectors, uT

j Luj = ⁄j . The matrix of eigenvectors,
U =[u0, u1, . . . , uN ], represents an orthogonal transform basis, which is
similar to principal component analysis (PCA), while benefiting from a
physically more important and beneficial property in practice because
the graph Laplacian bases indicate the smoothness of eigenvectors.
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Remark 19: Through multiplication of the data, x, by the eigenmatrix,
Ux, the original data x are decomposed into di�erent constituent
components, which vary from the most smooth to the most non-smooth.
This is exactly the principle of the Fourier transform, which transforms
a signal to di�erent frequency components (bases). In this case, ⁄j has
the physical meaning of (squared) frequency, as shown in Section 3.5.2
of Part II. In particular, when the graph structure is a path graph, the
original Fourier transform is obtained.

Based on the graph Fourier transform, covered in detail in Part II
of this monograph, we can now define the graph convolution operator
which states that the convolution in the spatial (vertex) domain is
equal to the multiplication in the spectral domain. This bypasses the
requirement for translation (or shift operator) to define convolution
in the vertex domain, whilst maintaining the concept of “convolution”
over graph signals. In this way, the graph convolution is given by

UT (x ú g) = (UT x) § (UT g), (10.18)

where x and g are two vectors whose elements are the data values at
vertices n œ V. Recall that U in (10.18) is the Fourier basis composed
by the eigenvectors of L and § denotes the Hadamard (element-wise)
product. It is worth mentioning that the matrix U is a graph counterpart
of the frequency shift operator in the continuous time Fourier transform.

10.6.2 Graph Spectral Filtering as Multiple Di�usion Processes

Upon inspection of the di�usion process of the cooling law in Section 10.3,
we can see that it actually aggregates the data values at the connected
vertices to process the current vertex. Consider now a polynomial filter
of the di�usion process, given by

x Ω Bkx = (A + A2 + · · · + Ak)x, (10.19)

where k neighboring vertex data values are aggregated to produce the
current vertex data sample, according to the Property 1 of Section 10.1.
It can be proved that the k-neighboring property also holds when Bk is
given by the powers of the Laplacian, Lk (Lemma 5.4, Hammond et al.,
2011), as we are still using the k-neighbor information when aggregating,
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that is
x Ω (L + L2 + · · · + Lk)x. (10.20)

Upon rewriting (10.20) in the graph spectral domain, we have

x Ω U(� + �2 + · · · + �k)UT x, (10.21)

or equivalently
X Ω (� + �2 + · · · + �k)X, (10.22)

where X is the spectral representation of x, through X = UT x, and �
a diagonal matrix of which the elements are the ordered eigenvalues
of L. By combining (10.18) and (10.22), the convolution operation on
the graph can be chosen as

UT g = poly(�) = � + �2 + · · · + �k
. (10.23)

We should point out that although there are many choices for the
convolutional filter, g, we typically choose the polynomial kernel as
poly(�) = � + �2 + · · · + �k, which ensures the localization in the
vertex domain within k-neighbors.

10.6.3 Graph Spectral Filtering via Neural Networks

Given the importance of convolution in the modelling of data propaga-
tion on graphs, and the computational di�culties in its evaluation, it
is natural to employ neural networks to implement the function g in
(10.23), per layer. In this way we also take advantages of the spatial
convolution operations and the universal approximation property of
neural networks. This forms the basis of various spectral GCN methods.

The spectral GCN was proposed by Bruna et al. (2013), and is based
on a simple spectral model given by

xl+1
j = „

3
U

clÿ

i=1
�l

i,jUT xl
i

4
j = 1, 2, . . . , cl+1, (10.24)

where l represents the index of each layer, cl is the number of filters
(channels) of the lth layer, �l

i,j is a diagonal matrix which contains
the set of learnt parameters of the lth layer, and „(·) is the activation
function of neurons. In (10.24), the summation ensures the aggregation
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of features filtered by di�erent convolutional kernels, �l
i,j , which is

similar to a linear combination across kernels in CNNs. Although it
achieves graph convolution through neural networks, this methodology
has two main limitations: (i) the localization in the vertex domain
cannot be ensured by �l

i,j , although it is a key to the success of
convolutional neural networks in extracting local stationary features;
(ii) computational burden arising from the O(N2) multiplications of
U and UT , and the eigendecomposition of L to obtain U may be
prohibitive for large graphs.

A possible way of mitigating these issues is to employ a polynomial
form similar to that of (10.22), as mentioned in Section 10.6.2. This both
relieves the first issue of the localization, and helps to control a balance
between the localization in the vertex domain and the localization in
the spectral domain (see Part II of this monograph). More specifically,
to further improve the localization in the spatial domain in order to
extract local patterns, we promote smoothness in the spectral domain
through filtering by poly(�), whereby the term poly(�) is designed
with a set of learnable parameters � = {◊i}k

i=1, in the form

poly�(�) = ◊1� + ◊2�2 + · · · + ◊k�k
. (10.25)

In this way, the update rule of (10.21) can now be rewritten as

x Ω poly�(L)x = Upoly�(�)UT x. (10.26)

Notice that in (10.26), the multiplication by U is not necessary at
every layer, but the powers of L are needed and are computational
demanding. On the basis of (10.26), De�errard et al. (2016) further
proposed the Chebyshev graph neural network, which employs the
Chebyshev polynomial to ease the computation burden of poly�(�), in
the form

poly�(�) =
kÿ

i=1
◊iTi( Â�), (10.27)

where Â� = 2�/⁄max ≠ IN , while Ti( Â�) is the Chebyshev polynomial that
has an easy-to-compute recurrent form Ti( Â�) = 2 Â�Ti≠1( Â�) ≠ Ti≠2( Â�)
(T0( Â�) = I, and T1( Â�) = Â�). With this Chebyshev polynomial, we are
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able to elegantly avoid the computation of the powers of L, through

x Ω poly�(L)x =
kÿ

i=1
◊iTi(ÂL)x, (10.28)

where ÂL = 2L/⁄max ≠ IN . This framework significantly reduces the
computational complexity from O(N2) to O(kN), and has been widely
used in various graph learning tasks. Recent work Kipf and Welling
(2016a) further simplifies (10.28) by only employing the first-order
Chebyshev polynomial (k = 1), which achieves superior performances in
semi-supervised learning. The authors claimed that it is unnecessary to
employ a k-order format because the first-order Chebyshev polynomial
is su�cient to mitigate overfitting, while the localization of k-neighbors
can be achieved by stacking layers of neural networks.

Despite mathematical elegance and physical intuition, spectral GCNs
have been mainly limited to fixed network structures during both
training and testing. More specifically, when employing spectral GCNs,
the graph connections should be ascertained in advance because even
a slight change in a graph connection would lead to a totally di�erent
eigenbasis. This, in turn, means that the whole graph needs to be
initialized before training, which implies that spectral GCNs cannot
be trained in a mini-batch manner, as the trained model is domain
dependent.
Example 34: To illustrate an implementation of one typical spectral
GCN (Kipf and Welling, 2016a) in semi-supervised learning, we em-
ployed the Cora dataset (Motl and Schulte, 2015) that contains 2708
machine learning related publications with seven classes (case based, ge-
netic algorithms, neural networks, probabilistic methods, reinforcement
learning, rule learning and theory). Each publication has a feature vector
that indicates whether an article includes any unique selected keywords.
Furthermore, the graph is constructed via its citation relationships.

For the GCN method, we employed a Pytorch implementation
of the work in Kipf and Welling (2016a) which is available at https:
//github.com/tkipf/pygcn. The basic structure of the GCN network is
illustrated in Figure 10.3, and its pseudo-code is provided in Algorithm 5.
In this example, the number of hidden units was set to 256. We used
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Figure 10.3: The structure of the GCN proposed in Kipf and Welling (2016a) for
semi-supervised learning.

Algorithm 5. Training Process of a Typical GCN (Kipf and Welling,
2016a)

1: Input: Node features, X0 œ RN◊P , adjacency matrix, A œ RN◊N ;
2: while Not converged: do
3: Layer 1: X1 = GCO1(X0, A)
4: Output: X2 = GCO2(X1, A)
5: Loss calculation on X2 and back-propagation for optimization Û

One iteration of GCN training
6: Output: The GCN with optimal W for each layer
7: procedure GCO

l(X, A) Û Graph convolution operation for the
lth layer

8: Renormalization trick: Ã = I + D≠ 1
2 AD≠ 1

2 Û First-order of
Chebyshev polynomials of (10.28)

9: Graph convolution: Y = Ã · X · Wl
Û Wl are learnable

parameters in the layer
10: Non-linearity: Z = act(Y) Û Examples of activation functions

act are sigmoid and ReLU functions
11: Return: Z

di�erent ratios of data for training and plotted the test accuracy in
classifying those publications into the seven classes in Figure 10.4.
Observe that with only 10% of the available samples, a simple GCN
with one hidden layer can achieve >80% classification accuracy. It is
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Figure 10.4: Portions of data used for training versus the test accuracy on Cora
dataset (Motl and Schulte, 2015). We considered a simple implementation of one
typical GCN (Kipf and Welling, 2016a) for semi-supervised learning. In this example,
we used one hidden layer with 256 neurons. The dropout rate was set to 0.5 and
learning rate to 0.01.

possible to further improve the test accuracy by extending the number of
hidden units or increasing network depth. This simple example, however,
highlights the powerful learning ability of GCNs on structured data.

10.7 Link Prediction via Graph Neural Nets

Oftentimes, the dynamics of the underpinning problem at hand dictate
that it is necessary to establish additional connections in a graph, in
addition to the already existing edges. This is achieved through so
called link prediction, which can be used in both graph completion
(interpolation) and graph extension (expansion) (Liben-Nowell and
Kleinberg, 2007). A direct way to perform link prediction would be to
apply some heuristic similarity method to the vertices and sub-graphs,
in order to estimate missing links between the vertices, as is the case
with the PageRank method introduced in Section 6.5, SimRank (Jeh
and Widom, 2002) and SEAL (Zhang and Chen, 2018) approaches.
Alternatively, learning strategies may be employed to infer such links
automatically in some “well-behaved” embedded spaces of graphs; this
is highly related to the field of graph representation learning, that is,
learning a representative latent space given an existing graph.



466 Graph Neural Networks

Remark 20: The spectrum of a graph, elaborated in detail in Part I
and Part II of this monograph, is a simple yet e�ective candidate for an
embedding space, since it reflects the smoothness (frequency) of data on
a graph. In this way, spectral clusters can be utilized to train a classifier
to predict links (Tang and Liu, 2011).

More advanced latent space methodologies for link prediction include
Deepwalk (Perozzi et al., 2014), Note2vec (Grover and Leskovec, 2016)
and Line (Tang et al., 2015), all of which learn meaningful and continu-
ous low-dimensional latent spaces by preserving (encoding) neighboring
information at the vertices. For more detail, we refer to the recent
reviews in Wu et al. (2019), Zhang et al. (2018b), and Chami et al.
(2020).

More recently, owing to their ability to represent probabilistic gen-
erative models, GCNs have also been applied to link prediction tasks,
owing to their ability to implicitly process local information in graphs.
Within GCNs, two types of generative models are commonly used,
the graph variational auto-encoder (VAE) and the graph generative
adversarial model (GAN) (Bojchevski et al., 2018; De Cao and Kipf,
2018; Wang et al., 2017). Standard autoregressive models have also
been considered to progressively generate graphs (Li et al., 2018; You
et al., 2018). We here focus on VAE-based methods because they are
designed to straightforwardly learn representations for link prediction,
while GAN related methods are motivated by graph generation. We
should also point out that the VAE- and GAN-based approaches are not
independent, as VAE-based approaches take advantage of additional
adversarial modules to enhance learning capacity (Pan et al., 2018; Yu
et al., 2018).

The graph VAE (Kipf and Welling, 2016b) employs the VAE frame-
work proposed in Kingma and Welling (2013), with the underpinning
idea similar to the probabilistic models covered in Section 9, whereby
a signal, x (or the graph in the case of graph VAEs), is generated by
Gaussian random samples, v. However, di�erent from the linear model
approaches (Section 9), the VAE employs a neural net (decoder) as a
non-linear way of graph generation. To avoid trivial generation from
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random noise governed by the distribution p(x | v), we need to find a rea-
sonable set of random samples, v, that is likely to generate meaningful
graph signals, x. This resembles an encoder structure, governed by the
distribution q(v | x), which can be trained by minimizing the distance
between q(v | x) to the true posterior1

p(v | x). We refer to Doersch
(2016) for a detailed tutorial on the VAE. By using the Kullback-Leibler
(KL) divergence as the distance metric in the minimization, the VAE
arrives at the following relationship

log p(x) ≠ KL(q(v | x)Îp(v | x)) = Eq(v | x)[log p(x | v)]
≠ KL(q(v | x)Îp(v)). (10.29)

Observe that by maximizing the right-hand side of (10.29), we are
e�ectively maximizing the log-likelihood of p(x), whilst at the same
time minimizing the distance between the true posterior, p(v | x), and
the assumed one, q(v | x).
Remark 21: The right-hand side of (10.29) is called the evidence lower
bound (ELBO) in Bayesian variational inference; more importantly, it is
tractable and yields clear and physically meaningful structures, whereby
q(v | x) is an encoder and p(x | v) the corresponding decoder, with
Eq(v | x)[log p(x | v)] as the reconstruction loss, while KL(q(v | x)Îp(v))
regularises the feasible set of v on some well-behaved manifolds in the
latent space.

A direct extension of the framework in (10.29) to link prediction
would be to estimate the missing graph connections using the VAE.
The initial attempt, called the variational graph auto-encoder (VGAE)
(Kipf and Welling, 2016b), models the connectivity (adjacency matrix)
through the encoder, by q(v | A, x), whilst the decoder remains the stan-
dard neural network used to reconstruct the connectivity. In this way, the
encoder in the VGAE can be implemented as a GCN, while the decoder
may be simplified to only a product operation p(A | v) = sigmoid(vvT ),
where the sigmoid function is used to satisfy the probability constraint.

1The reason we do not directly use p(v | x) is due to the fact that the posterior
is intractable when modelling the likelihood p(x | v) through neural nets. Thus, the
variational method employs another distribution, q(v | x), and minimises its distance
to p(v | x) by means of some tractable formats (i.e., the evidence lower bound, or
ELBO for short).
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Figure 10.5: Principle of the use of VGAE in link prediction. The training process
of the VGAE is based on the provided training edges and node features, whilst the
test edges are not connected. Di�erent from the standard auto-encoder, the encoder
within the VGAE yields the estimated mean and covariance values of Gaussian
distributions (µ1, µ2, . . . , µ6 and ‡1, ‡2, . . . , ‡6), while the input to the decoder
is randomly drawn from the corresponding Gaussian distributions. Being a graph
variance of (10.29), the loss consists of two parts: The term KL(q(v | A, x)Îp(v))
of Loss 1 which reflects how well the output Gaussian approaches the standard
Gaussian distribution, p(v) (zero mean and identity covariance), while the term
Eq(v|A,x)[log p(A | v)] of Loss 2 corresponds to the quality of reconstruction of the
adjacency matrix, A.

Figure 10.5 provides a closer insight into the VGAE, with the corre-
sponding pseudo-code given in Algorithm 6. To enable the use of a GCN
also in the decoder and to comply with graph theory, work in Grover
et al. (2019) proposes to employ an intermediate and learnable adjacency
matrix within the decoder. Other improvements include regularizing
VGAE through semantic validity (Ma et al., 2018), use of rich models
(such as mixture models) as a prior, p(v) (Hasanzadeh et al., 2019), and
an asynchronous message passing scheme for directed acyclic graphs
(Zhang et al., 2019b).
Remark 22: The VGAE di�ers from the standard graph auto-encoder
(GAE) in the latent space, which arises from the use of variational
inference, in that the representation (embedding) of each graph node is
a Gaussian distribution described by the learnt mean and covariance.
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A potential problem with the standard GAE is that its reconstruction
loss enforces the training of the GAE towards recovering an incomplete
training adjacency matrix, whereby the test and validation edges are
masked out. Therefore, if a perfect reconstruction was achieved in
training, in the test stage, the GAE would only recover the training edges,
whilst ignoring the test and validation edges. The way of relieving this
issue by the VGAE rests upon its usage of noise and uncertainty inferred
through the learning process. However, this also adds disturbance and
poses di�culties to the operation of the decoder during reconstruction, as
this increases the reconstruction loss in an implicit adversarial way, but
forces the VGAE to learn robust and meaningful graph representations.

Most recently, a framework named RCF-GAN has been proposed
to seamlessly combine the benefits of the auto-encoder and adversarial
learning; this is achieved via a reciprocal requirement in the latent space,
while to enhance robustness, characteristic functions are employed in
design of the losses (Li et al., 2020).
Remark 23: By virtue of the RCF-GAN, a meaningful representa-
tion can be learnt in the embedded space; this means that the links
can be directly predicted by the embedded features, instead of being
reconstructed by the decoder as with the VGAE.

The application of the RCF-GAN in graph link prediction di�ers
from the VGAE in two main aspects: (1) the decoder no longer recon-
structs the adjacency matrix but yields the node features, in order to
satisfy the reciprocal requirement of the RCF-GAN; (2) the reconstruc-
tion loss in the RCF-GAN is based on the node features, and operates
directly in the embedded space, as opposed to that based on the adja-
cency matrix in the data domain of the VGAE. The so learnt embedded
features are therefore immediately graph representations and hence
generalise well, thus equipping the link prediction via the RCF-GAN
with the ability to e�ectively avoid overfitting of the training edges.

The following example demonstrates that although the test connec-
tions were not provided in the training stage, the VGAE and RCF-GAN
were still able to successfully recover the missing links through the inner
product (decoder) of the trained graph representations.
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Example 35: We employed two well-known datasets, Cora and Citeseer
(Sen et al., 2008) on a graph link prediction task. For a fair comparison,
the split of datasets into training, validation and test sets was exactly
the same as that in the VGAE (Kipf and Welling, 2016b), that is, 85%
for training, 5% for validation and 10% for testing. For the encoder
of the RCF-GAN, we adopted the same basic GCN as that adopted
in the VGAE. The dimensions of the encoder for both the RCF-GAN
and the VGAE were set to {mnode, mlayer, 128}, where mnode denotes
the dimension of node features and mlayer represents the dimension of
the middle layer. In the experiments, mlayer assumed the values from
{256, 512, 1024, 2048}. The VGAE was also run with di�erent mlayer,
for a fair comparison with the available VGAE implementation (Kipf
and Welling, 2016b). For the generator of the RCF-GAN, we used a
simple 3-layer fully connected neural net with dimensions {128, mlayer,
mnode}. We repeatedly ran the training and testing process 10 times,
with both models trained over 300 epochs. Performance was evaluated
through the mean values of the area under the ROC curve (AUC) and
average precision (AP) metrics, with the results given in Figure 10.6.

Observe from Figure 10.6 that for all mlayer the RCF-GAN in
link prediction consistently outperformed the VGAE and the spectral
clustering methods, with a significant margin. More specifically, the
VGAE achieved its best performance at approximately mlayer = 512,
with the obtained AUC (AP) of 0.910 (0.929) for Cora and 0.904 (0.921)
for Citeseer. Further increasing mlayer may lead to overfitting of the
VGAE, thus decreasing its performances in link prediction. However,
with the increase in network sizes, the performances of the RCF-GAN
improved correspondingly, and the AUC (AP) scores reached 0.936
(0.941) for Cora and 0.944 (0.946) for Citeseer. This may be due to the
fact that the RCF-GAN does not directly perform the reconstruction
of the adjacency matrix but learns a semantic embedded space for
link prediction. This improvement also validates the e�ectiveness and
e�ciency of the learnt embedded space within the RCF-GAN.
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(a) Cora

(b) Citeseer

Figure 10.6: The AUC and AP scores for graph link prediction using the RCF-GAN
and VGAE, with mlayer ranging from 256 to 2048. The solid lines show the AUC
and AP metrics of the RCF-GAN in testing, whereas the dashed lines designate the
results for the standard VGAE. Since spectral clustering based graph link prediction
(Tang and Liu, 2011) is a typical baseline for using GCNs, we also plot the spectral
clustering results from Kipf and Welling (2016b) in dotted lines.
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Algorithm 6. Training Process of VGAE Kipf and Welling (2016b)
1: Input: Node features, X0 œ RN◊P , (incomplete) training adjacency

matrix, A œ RN◊N ;
2: while Not converged: do
3: Forward process of the encoder:
4: Layer 1: X1 = GCO1(X0, A)
5: Layer 2: U = GCO2(X1, A) Û Output Gaussian mean vector of

each node
6: Layer 3: C = GCO3(X1, A) Û Output Gaussian diagonal

covariance vector of each node
7: Forward process of the decoder:
8: For each node, n, draw one sample, vn, from N (un, cn), where

un and vn are the nth rows of U and C
9: Inner product operation: Â = sigmoid(VVT ), where vn is the

nth row of V

10: Loss calculation: 1
N

Nÿ

n=1
KL(N (un, cn)ÎN (0, I))+BCE(Â, A)

Û BCE denotes the binary cross entropy loss
11: Back-propagation for optimization Û One iteration of

training the VGAE
12: Output: Optimal embedding U of nodes
13: procedure GCO

l(X, A) Û Graph convolution operation for the
lth layer

14: Renormalization trick: Ã = I + D≠ 1
2 AD≠ 1

2 Û First-order of
Chebyshev polynomials of (10.28)

15: Graph convolution: Y = Ã · X · Wl
Û Wl is learnable

parameters in the layer
16: Non-linearity: Z = act(Y) Û Examples of activation functions

act can be sigmoid and ReLU functions
17: Return: Z



11
Tensor Representation of
Lattice-Structured Graphs

It is often desirable to generalize graphs in order to account directly for
higher-order and higher-dimensional relationships between data sources
(Cooper and Dutle, 2012; Saito et al., 2018; Zhou et al., 2007). One
such way is via the hypergraph approach, which allows the edges to link
more than two vertices (Berge, 1984). Another possibility is through a
multi-layer network of graphs, whereby graph vertices reside on a high
dimensional regular lattice structure which results from the Cartesian
product of several one-dimensional path graphs (for more detail, see
Part I). We next show that tensors (multidimensional data arrays) are
perfectly suited to model the latter approach. It is further shown that
tensors can be considered as a special class of graph signals, which in
turn allows the associated adjacency matrices to exhibit a physically
meaningful structured form, referred to as Kronecker summable. By
virtue of the underlying multilinear tensor algebra, this e�ectively
reduces the number of parameters required to model the entire graph
connectivity structure (Bacciu and Mandic, 2020).

473
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11.1 Tensorization of Graph Signals in High-Dimensional Spaces

A tensor of order M is an M -way data array, denoted by X œ RI1◊···◊IM .
For example, a vector x œ RI is an order-1 tensor, a matrix X œ RI1◊I2

is an order-2 tensor, while a 3-way array X œ RI1◊I2◊I3 is an order-3
tensor. The mth dimension of an order-M tensor, X œ RI1◊···◊IM , is
referred to as the mth mode which is of size Im entries.

To establish a relationship between graph signals and tensors, we
begin by considering an N -vertex graph, denoted by G = {V, E}. With
each vertex on the graph we can associate a variable (signal), denoted
by x(n) œ R, which maps a vertex, n œ V, to a real, that is, x: V ‘æ R.
In other words, each vertex represents a scalar-valued field in a single-
dimensional coordinate system. When considering all N vertices in V,
we can form the vector x œ RN which defines the mapping x: V ‘æ RN .

On the other hand, if a graph resides in an M -dimensional space,
then each vertex, n œ V, has a one-to-one correspondence with a
unique coordinate vector in this space, denoted by (i1, . . . , iM ) œ NM ,
where im œ N is the coordinate associated with the mth axis. In other
words, there exists a unique mapping n ‘æ (i1, . . . , iM ). In this way,
the graph vertex signal can be viewed as a field in an M -dimensional
coordinate system, that is, each vertex can be defined equivalently as
x(n) © x(i1, . . . , iM ) œ R, that is, it induces the mapping x: NM ‘æ R.

When discrete points in the field, x: NM ‘æ R, are sampled using a
regular lattice of dimensions I1 ◊ · · · ◊ IM , thereby sampling a total of

MŸ

m=1
Im © N

discrete points, the collection of samples naturally forms the tensor
X œ RI1◊···◊IM , with its (i1, . . . , iM )th entry defined as

[X ]i1...iM = x(i1, . . . , iM ), im œ N, m = 1, 2, . . . , M. (11.1)

Figure 11.1 illustrates a collection of discrete points from a field in a
3-dimensional coordinate system, which together form an order-3 tensor.
This procedure is referred to as tensorization.
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Figure 11.1: Tensorization of discrete samples from a field x : N3 ‘æ R.

Remark 24: Real-world examples of a field in M -dimensional coordi-
nates include:

• Netflix ratings in the user ◊ movie space (M = 2);

• Temperature measurements in the longitude ◊ latitude ◊ altitude
space (M = 3);

• Video pixels in the time ◊ column ◊ row ◊ RGB space (M = 4);

• EEG signals in the time ◊ frequency ◊ channel ◊ subject ◊ trial
space (M = 5).

11.2 Tensor Decomposition

If the underlying field, x: NM ‘æ R, is defined as a multilinear map of
the form

x: N ◊ · · · ◊ N¸ ˚˙ ˝
M times

‘æ R (11.2)

then it is said to be linearly separable, and therefore admits the following
decomposition

x(i1, . . . , iM ) =
MŸ

m=1
xm(im). (11.3)
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Figure 11.2: Rank-1 CPD of an order-3 tensor.

In other words, the value of x(i1, . . . , iM ) is given by the product
of M independent single-dimensional functions, xm: N ‘æ R, each of
which is associated with the mth coordinate axis of the underlying
M -dimensional coordinate system. In this way, a tensor, X œ RI1◊···◊IM ,
which is sampled from a linearly separable field of the kind in (11.3)
admits the following rank-1 canonical polyadic decomposition (CPD)

X = x1 ¶ · · · ¶ xM (11.4)

with the symbol ¶ denoting the outer product operator, and xm œ RIm

being a parameter vector associated with the mth coordinate axis.
Remark 25: The property in (11.4) is referred to as the Kronecker sep-
arability condition, which is fundamental to most tensor decompositions
and learning algorithms.

With regard to the linear separability property in (11.3), the ith
entry of xm is given by [xm]i = xm(i). Figure 11.2 shows the rank-1
CPD of an order-3 tensor.

Kronecker separable tensors admit a vector representation (vec-
torization), denoted by x = vec(X ) œ RN , which can be expressed
as

x = xM ¢ · · · ¢ x1 (11.5)

and is a direct consequence of (11.4), where the symbol ¢ denotes the
Kronecker product operator (see Part I).
Example 36: Consider the data matrix, X œ RI◊J , which contains the
Netflix ratings assigned by I users to J movies, whereby the (i, j)th
entry designates the rating assigned by the ith user to the jth movie,
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Figure 11.3: Rank-1 CPD of the Netflix rating data matrix.

x(i, j) œ R. The graph representation of this dataset consists of (IJ)
vertices residing in a two-dimensional space (user ◊ movie). Owing
to the lattice-like structure of the graph, we can employ its inherent
order-2 tensor representation, whereby the data can be approximated
using the following rank-1 CPD

X ¥ x1 ¶ x2 © x1xT
2 (11.6)

with x1 œ RI being the factor associated with the user axis, and
x2 œ RJ the factor associated with the movie axis. Note that for order-2
tensors, the CPD is equivalent to the singular value decomposition
(SVD). Figure 11.3 illustrates the tensor decomposition of the Netflix
rating data matrix.

The factorization of X assumes that the rating assigned by the ith
user to the jth movie can be approximated as

x(i, j) ¥ x1(i)x2(j) (11.7)

where x1(i) © [x1]i and x2(j) © [x2]j . In other words, the rating, x(i, j),
can be approximated by a rating assigned by the ith user to all movies,
x1(i), multiplied by a rating assigned to the jth movie by all users,
x2(j).

The so achieved parameter reduction becomes evident, since we
have reduced a fully connected (IJ) parameter model to an (I + J)
parameter model. This parameter reduction is most pronounced for
higher-order tensors, e.g., an order-N tensor model with

rN
n=1 In pa-

rameters (exponential) reduces to a
qN

n=1 In parameter (linear) model.



478 Tensor Representation of Lattice-Structured Graphs

11.3 Connectivity of a Tensor

We next show that the tensor structure inherent to X œ RI1◊···◊IM

can be modelled naturally as a graph. This is achieved by exploiting
the well-known property of lattice-structured graphs which can be
decomposed into constituent single-dimensional path graphs.

Building upon the Cartesian product of two disjoint path graphs,
as considered in Part I of this monograph, the Cartesian product of
M disjoint Im-vertex path graphs, Gm = (Vm, Em) for m = 1, . . . , M ,
yields a graph with an M -dimensional regular lattice structure, denoted
by G = GM⇤ · · · ⇤G1 = (V, B), with the symbol ⇤ denoting the graph
Cartesian product. In this way, the resulting vertex set takes the form
V = VM ◊· · ·◊V1, and the resulting graph contains a total of

rM
m=1 Im ©

N vertices.
If the adjacency matrix of the mth path graph, Gm, is denoted by

Am œ RIm◊Im , then the adjacency matrix of the resulting
M -dimensional regular lattice graph, G, is given by

A = (AM ü · · · ü A1) œ RN◊N (11.8)

where the symbol ü denotes the Kronecker sum operator (we refer to
Part I). Such an adjacency matrix is said to be Kronecker summable.
Remark 26: The adjacency matrix, A, when interpreted through the
underlying tensor, describes the connectivity between the entries of
vectorization of a tensor, x œ RN , while Am œ RIm◊Im describes the
connectivity between entries along the mth mode. Under this model,
the entries of the tensor are only connected to neighboring entries which
reside in the same fiber.

For illustration purposes, Figure 11.4 shows the Cartesian product
of three disjoint path graphs, which results in a graph with a three-
dimensional lattice structure. This graph would naturally represent
the connectivity between the entries of an order-3 tensor, X œ R2◊3◊2.
Next, consider the order-2 tensor, X œ RI1◊I2 , with entries sampled
from the field, x: N2 ‘æ R, using a 2-dimensional regular lattice as
illustrated in Figure 11.5.
Example 37: Consider a field on a two-dimensional coordinate system,
denoted by x: N2 ‘æ R, and illustrated in Figure 11.6. If the scalar field
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Figure 11.4: Cartesian product of 3 path graphs.

Figure 11.5: Order-2 tensor, X œ RI1◊I2 , sampled from x: N2 ‘æ R.

Figure 11.6: An example of a field, x: N2 ‘æ R.

is linearly separable, that is, x(t1, t2) = x1(t1)x2(t2), then the sampled
tensor, X, is Kronecker separable, and can therefore be expressed as

X = x1 ¶ x2 ≈∆ vec(X) = x2 ¢ x1 (11.9)

through x1 œ RI1 and x2 œ RI2 as data on path graphs sampled
respectively from the single-dimensional fields, x1: N ‘æ R and x2: N ‘æ
R, as illustrated in Figures 11.7–11.8.

11.4 DFT of a Tensor

We have shown in expression (11.8) above that tensors can be consid-
ered as a special class of graphs which exhibit a Kronecker summable
adjacency matrix. In that case, the DFT of a tensor can be naturally
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Figure 11.7: Path graph signal, x1 œ RI1 , sampled from x1: N ‘æ R.

Figure 11.8: Path graph signal, x2 œ RI2 , sampled from x2: N ‘æ R.

obtained from the graph Fourier transform (GFT), which was intro-
duced in Part II of this monograph. In this way, the GFT of a graph
with a lattice structure can be performed by evaluating the eigenvalue
decomposition of the adjacency matrix A, given by

A = U�U≠1 (11.10)

where U œ RN◊N and � œ RN◊N denote respectively the matrices of
eigenvectors and eigenvalues of A.

Owing to the Kronecker sum structure of A in (11.8), the eigenvector
and eigenvalue matrices of GFT exhibit the following structure

U = (UM ¢ · · · ¢ U1) (11.11)
� = (�M ü · · · ü �1) (11.12)

where Um œ RIm◊Im and � œ RIm◊Im respectively denote the matrices
of eigenvectors and eigenvalues of the mth path graph adjacency matrix,
Am, obtained through

Am = Um�mU≠1
m . (11.13)

Therefore, the eigenvectors of A are said to be Kronecker separable,
while the eigenvalues are Kronecker summable.
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11.5 Unstructured Graphs

Consider an N -vertex graph, G, with vertex signals sampled from the
field, x: RM ‘æ R, using a regular lattice, which together form the
order-M tensor, X œ RI1◊···◊IM , with

rM
m=1 Im © N .

Similarly, consider a K-vertex graph, G̃, with vertex signals also
sampled from the same field, x: RM ‘æ R, but using instead an un-
structured sampling scheme. In this way, the unstructured graph can
be defined as a subset of a lattice-structured graph, i.e., G̃ µ G.

The vertex signals of G̃, denoted by the vector x̃ œ RK , can therefore
be defined as

x̃ = �vec(X ) (11.14)

where � œ RK◊N is a sampling matrix, with entries defined as

[�]kn =

Y
]

[
1, if x̃(k) © x(n),
0, otherwise

(11.15)

with x̃(k) œ R and x(n) œ R denoting respectively the kth vertex of G̃
and the nth vertex of G.

Although the lattice-structured graph, G, exhibits a Kronecker sep-
arable signal vector and a Kronecker summable adjacency matrix, the
associated unstructured graph, G̃, does not have such properties because,
in general, � is not separable. This can be seen from the relationship
between the adjacency matrices of G̃ and G, which is given by

Ã = �A�T = �(AM ü · · · ü A1)�T
. (11.16)

Notice that the last term above cannot be decomposed further if � is
not separable. A direct consequence of the result in (11.16) is that the
GFT bases of G̃ (eigenvalue decomposition of Ã) do not exhibit the
Kronecker summability either.
Example 38: Referring back to Example 37, the graph signal resulting
from an irregular sampling of the field x: R2 ‘æ R is not Kronecker
separable as it cannot be represented as a Cartesian product of two
path graphs (as in Figures 11.5–11.8), as illustrated in Figure 11.9.



482 Tensor Representation of Lattice-Structured Graphs

Figure 11.9: Unstructured graph, x̃ œ RK , sampled from x: N2 ‘æ R.

11.6 Tensor Representation of Multi-Relational Graphs

The rapidly growing prominence of multi-relational network data in areas
as diverse as social network modeling, the semantic web, bioinformatics
and artificial intelligence, has brought to light the increasing importance
of Data Analytics on domains where the entities are interconnected by
multiple relations. To put this into context of graphs, while traditional
graph models only account for a single relation type, designated by
the adjacency matrix, A œ RN◊N , a multi-relational N -vertex graph
may exhibit a large number, say M , of distinct relation types between
vertices. In this case, a multi-relational graph would be defined by
M adjacency matrices, Am œ RN◊N for m = 1, . . . , M ; one for each
relation type.

While it is possible to model this situation through a short and
wide N ◊ MN dimensional matrix, this would both involve numerical
di�culties and obscure physical relevance. To this end, to model such
a multi-relational graph in a parsimonious and compact manner, we
may construct a three-way tensor, A œ RN◊N◊M , whereby its mth
frontal slice is given by Am. In this way, the first two modes define the
entity domain, while the third mode represents the relation domain,
as illustrated in Figure 11.10. The tensor entry [A]ijk = 1 therefore
designates the existence of a relation between the ith and jth entities
within the kth relation type; otherwise, for non-existing and unknown
relations, the entry is set to zero.

The work in Lin et al. (2008, 2009), Tang et al. (2009), Nickel et al.
(2011), Papalexakis et al. (2013), Gauvin et al. (2014), Verma and
Bharadwaj (2017a), Verma and Bharadwaj (2017b), and Katsimpras
and Paliouras (2020) employs such tensor model to learn an inherent
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Figure 11.10: Construction of a multi-relational adjacency tensor, A œ RN◊N◊M ,
where En denotes the nth entity and Rm the mth relation type.

structure from multi-relational data. The following rank-L factorization
was employed, known as the RESCAL decomposition (Nickel et al.,
2011), whereby each frontal slice of A is factorized as

Am = URmUT
, m = 1, . . . , M (11.17)

where U œ RN◊L is a factor matrix which maps the N -dimensional
entity space to an L-dimensional latent component space, and Rm œ
RL◊L models the interactions of latent components within the mth
relation type. Alternatively, this can be expressed in terms of the
factorization of the tensor A, in the form

A = R ◊1 U ◊2 U (11.18)

where the symbol ◊n denotes the mode-n product, and R œ RL◊L◊M is
the latent core tensor with Rm being its mth frontal slice, as illustrated
in Figure 11.11. Such a factorization allows for link-based clustering,
whereby the entities E1, . . . , EN are clustered according to the informa-
tion in U only. In doing so, the similarity between entities is computed
based on their similarity across multiple relations.
Example 39: Social networks play an important role in the functionality
of an organization and it is therefore of considerable interest to analyze
the properties of such networks. The adoption of social networking
services within organizations can largely facilitate the interaction and
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Figure 11.11: Factorization of a multi-relational adjacency tensor, A œ RN◊N◊M

as in (11.17).

collaboration between employees. For example, a social network could
reveal information about the characteristics of an employee which could
then be used to improve e�ciency and influence team structuring.

As shown in Figure 6.8 and Example 26, a social network can
be modelled as a graph, whereby each vertex represents an individual
(employee) and each edge designates the existence of a social relationship
between two individuals. While a conventional graph can model social
networks involving one type of relationship, multi-relational graphs
allow for the modelling of multiple (and di�erent) types of relationships.
Figure 11.12 illustrates a multi-relational social network involving three
employees (vertices) who communicate via email (blue edge), LinkedIn
(green edge) and Skype (orange edge). Observe that social relationships
may be directed, e.g., employee A sends emails (blue edge) to employee B
but not vice versa. If the adjacency matrix associated with the mth
relationship type is given by Am œ R3◊3 for m = 1, 2, 3, 4, then the
adjacency tensor, A œ R3◊3◊4, can be constructed to model the entire
social network. Once the latent components (factor) matrix, U œ R3◊L,
is inferred from A using the factorization in (11.17), it is possible
to apply feature-based clustering to obtain the inherent community
structure in such multi-relational network. The output of this step would
be a set of K disjoint communities (sub-graphs), {V1, . . . , VK}.

11.7 Multi-Graph Tensor Networks

After exploring the inherent links between graphs and tensors, in Sec-
tion 11.6, and between graphs and neural networks, in Section 10, it is
natural to further explore the possibilities enabled by a joint considera-
tion of these three domains. One such general approach is referred to
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Figure 11.12: Social network modelled as a multi-relational graph. (a) Graph
representation of the social network. (b) Adjacency tensor, A œ R3◊3◊4, associated
with the social network in (a).

as the Multi-Graph Tensor Network (MGTN) model (Xu et al., 2020),
which aims to fully exploit the virtues of both graphs and tensors in a
deep learning setting. For a joint account between tensors and neural
networks, we refer to Calvi et al. (2019) and Bacciu and Mandic (2020).
In this way, the MGTN framework is capable of:

• Handling irregular data that reside on multiple graph domains;

• Leveraging on the compression and structure-preserving properties
of tensor networks, to enhance the expressive power of NNs, at a
reduced parameter complexity.

The MGTN generalises the Recurrent Graph Tensor Network
(RGTN) model, introduced in Xu and Mandic (2020), which enables
deep modelling on irregular domains and was developed with the aim
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to model time-series problems related to sequential data, and was only
defined for a single graph domain. To make this concept suitable for
applications beyond time-series and in a Big Data setting, the MGTN op-
erates in a multi-modal data setting defined on multiple graph domains
and thus not limited to time-series.

More precisely, the time-based multi-linear graph filter, R, which
underpins the RGTN in Xu and Mandic (2020), employs a time-graph
adjacency matrix that reflects the temporal flow of information. On the
other hand, for a given weighted graph adjacency matrix, A œ RI1◊I1 ,
the MGTN approach constructs a multi-linear graph filter in the tensor
domain, F œ RJ1◊I1◊J1◊I1 , given by

F = ten(I + (A ¢ P)) (11.19)

where the propagation matrix, P œ RJ1◊J1 , models the flow of informa-
tion between neighboring vertices (as opposed to successive time-steps
in the RGTN case) and the operator ten(·) represents a suitable ten-
sorization, as, for example, that in Figure 11.1. This allows us to adapt
the multi-linear graph filter, F , to any given graph domain of any data
modality.

Consider a general multi-graph learning problem where the input
is an order-(M + 1) tensor, X œ RJ0◊I1◊I2◊···◊IM , with J0 features
indexed along M physical modes {I1, I2, . . . , IM }, such that a graph,
G(m), is associated with each of the Im modes, m = 1, . . . , M . For this
problem, we can define:

1. A = {A(1)
, A(2)

, . . . , A(M)}, a set of adjacency matrices, A(m) œ
RIm◊Im , constructed from the corresponding graphs G(m).

2. W = {W(1)
, W(2)

, . . . , W(M)}, a set of weight matrices, W(m) œ
RJm◊Jm≠1 , used for feature transforms, where Jm, for m = 1, . . . , M ,
controls the number of feature maps at every mode m.

3. P = {P(1)
, P(2)

, . . . , P(M)}, a set of propagation matrices, P(m) œ
RJm◊Jm , modelling the propagation of information over the neigh-
bors of the graph G(m).
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The general Multi-Graph Tensor Network (gMGTN) layer is charac-
terized by the forward pass

Y = „(F (M) ◊1,M+1
3,4 W(M) ◊1

2 · · · ◊1
2 F (2) ◊1,3

3,4 W(2)

◊1
2 F (1) ◊1,2

3,4 W(1) ◊1
2 X ) (11.20)

where „(·) is an optional non-linear activation function and F (m) =
ten(I + (A(m) ¢ P(m))). The so defined forward pass generates a fea-
ture map, Y œ RJM ◊I1◊···◊IM , from the input tensor, X , through a
series of multi-linear graph filter and weight matrix contractions, which
essentially iterates the graph filtering operation across all M graph
domains.

Since the gMGTN learns a propagation matrix, P(m), and a weight
matrix, W(m), for each of the M graphs, when J1 = J2 = · · · = JM = J ,
this results in a parameter complexity of O(MJ

2), which is linear in the
number of graphs, M , but quadratic in the size of feature maps, J , so
that the computation quickly becomes intractable for high dimensional
multi-graph problems.

The computational bottleneck can be resolved by approximating
P(m) ¥ I for m = 1, . . . , M , and by using a single weight matrix,
W(x) œ RJ1◊J0 , for all of the graph domains, where J1 controls the
number of hidden units (feature maps).

The resulting fast MGTN (fMGTN) is shown in Figure 11.13, and
exhibits the following reduced forward pass

Y = „(F(M) ◊M+1
2 · · · ◊4

2 F(2) ◊3
2 F(1) ◊2

2 W(1) ◊1
2 X ) (11.21)

where F(m) = (I + A(m)) is a standard graph shift filter. As the fMGTN
does not have to learn P(m) or W(m), the parameter complexity of the
forward pass is reduced from O(MJ

2) to O(J2) but at the cost of lower
expressive power. After extracting the feature map, Y œ RJ1◊I1◊···◊IM ,
it is customary to flatten the extracted features into a vector, in order
to pass them through dense neural network layers to generate the
fMGTN output. To further reduce parameter complexity, the weight
matrices of the dense layers can be tensorized and represented in some
compressed tensor format, as discussed in Novikov et al. (2015), Cichocki
et al. (2016, 2017), Calvi et al. (2019). This not only further reduces
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Figure 11.13: Illustration on the structure of a fast multi-graph tensor network.
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Figure 11.14: Tensor network representation of the fast Multi-Graph Tensor Net-
work (fMGTN) used in Example 40 and shown in Figure 11.13. The section encircled
in dotted line denotes the multi-graph filtering operation for M = 2 as in (11.21).
The yellow region designates a tensorized dense layer weight matrix, represented
in the Tensor-Train format (TTD). The input data used for the experiment is an
order-3 tensor of FOREX data, with J0 pricing features, I1 past time-steps, and
I2 currencies. Note that as input data modes, this MGTN employs a time-domain
graph filter of dimension I1 and a currency-domain graph filter of dimension I2.

the number of parameters, but also maintains compatibility with the
inherent multi-modal nature of the problem.
Example 40: We considered the task of Foreign Exchange (FOREX)
algorithmic trading in order to illustrate the possibilities enabled by
the MGTN framework. A conceptual application of the combination
of graphs, tensors and neural networks in this scenario is shown in
Figure 11.14.

The MGTN setting is general enough to be applicable in a range
of other domains, including social networks, communication networks,
and cognitive neuroscience.



12
Metro Tra�c Modeling Through Graphs

With the rapid development of many economies, an increasing propor-
tion of the world’s population moving to cities, urban tra�c congestion
is becoming a serious issue. For example, underground tra�c networks
routinely undergo general maintenance, frequently exhibit signal failures
and train derailments, and may even occasionally experience emergency
measures because of various accidents. Such events ultimately require
the closure of at least one station which may severely impact the service
across the entire network. The economic costs of these transport delays
to central London business are estimated to be £1.2 billion per year.
Hence, appropriate and physically meaningful tools to understand, quan-
tify, and plan for the resilience of these tra�c networks to disruptions
are much needed.

In this section, we demonstrate how the concept of vertex centrality
of an adjacency matrix (for more detail, see Part I of this monograph)
may be employed to identify those stations in the London underground
network which have the greatest influence on the functionality of the
tra�c, and proceed, in an innovative way, to assess the impact of
a station closure on service levels across the city. Such underground
network vulnerability analysis o�ers the opportunity to analyze, optimize

490
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and enhance the connectivity of the London underground network in a
mathematically tractable and physically meaningful manner.

12.1 Tra�c Centrality as a Graph-Theoretic Measure

The underground network can be modelled as an undirected N -vertex
graph, denoted by G = {V, E}, with V as the set of N vertices (stations)
and E the set of edges (underground lines) connecting the vertices (sta-
tions) (Dees et al., 2019). The connectivity of the network is encoded
within the (undirected) adjacency matrix, A œ RN◊N . Figure 12.1 illus-
trates the proposed graph model of the London underground network,
with each vertex representing a station, and each edge designating the
underground line connecting two adjacent stations. Notice that stan-
dard data analytics domains are ill-equipped to deal with this class of
problems.

Figure 12.1: Graph model of the London underground network in Zones 1–3.
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Figure 12.2: Betweenness centrality, designated by magenta-colored bars, of the
London underground network in Zones 1–3. The largest betweenness centrality is
observed for the following stations: Green Park, Earl’s Court, Baker Street, Waterloo
and Westminster.

We employ the following metrics to characterize the topology of the
network and model its vulnerability.

• Betweenness centrality, which reflects the extent to which a given
vertex lies in between pairs or groups of other vertices of the
graph, and is given by

Bn =
ÿ

k,mœV

‡(k, m | n)
‡(k, m) (12.1)

where ‡(k, m) denotes the number of shortest paths between
vertices k and m, and ‡(k, m | n) the number of those paths
passing through vertex n (Freeman, 1977). In terms of the actual
metro tra�c, this can also be interpreted as the extent to which a
vertex is an intermediate in the communication over the network.
Figure 12.2 shows that, as expected, the stations at the center
of the city exhibit the largest betweenness centrality, and their
disconnection would therefore severely impact the communication
over the underground network.
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Figure 12.3: Closeness vitality, designated in magenta bars, of the London under-
ground network in Zones 1–3.

• Closeness vitality, which represents the change in the sum of
distances between all vertex pairs after excluding the nth vertex
(Brandes, 2005). Figure 12.3 shows that the stations located in
the more remote areas of Zones 2–3 exhibit the largest closeness
vitality measure. This is because their removal from the network
would disconnect the stations located at the boundaries from the
rest of the network.

12.2 Modeling Commuter Population from Net Passenger Flow

In this section, we employ graph theory to analyze the net passenger
flow at all stations of the London underground network. In particular,
we demonstrate that it is possible to infer the resident population
surrounding each station based on the net passenger flow during the
morning rush hour alone (Dees et al., 2019).

To derive the corresponding graph model, we employed the Fick
law of di�usion (closely related to Newton’s law of cooling discussed in
Section 10.2 and Laplacian di�usion maps described in Part I) which
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relates the di�usive flux to the concentration of a given vector field,
under a steady state assumption. This model asserts that the flux
flows from regions of high concentration (population) to regions of low
concentration (population), with a magnitude that is proportional to
the concentration gradient. Mathematically, the Fick law is given by

q = ≠kÒ„ (12.2)

where

• q is the flux which measures the amount of substance per unit
area per unit time (mol m≠2 s≠1);

• k is the coe�cient of di�usivity, with its value equal to area per
unit time (m2 s≠1);

• „ represents the concentration (mol m≠3).

In this way, we can model the passenger flows in the London underground
network as a di�usion process, whereby during the morning rush hour
the population mainly flows from concentrated residential areas to
sparsely populated business districts. Therefore, the variables in our
model are:

• q œ RN , the net passenger flow vector, where the ith entry
represents the net passenger flow at the ith station during the
morning rush hour, that is

q(i) = (passengers exiting station i)
≠ (passengers entering station i) (12.3)

with its value equal to “passengers per station per unit time”;

• k = 1, the coe�cient of di�usivity, with its dimension equal to
“stations per unit time”;

• „ œ RN , the resident population in the area surrounding the
station.
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This model therefore suggests that, in the morning, the net passenger
flow at the ith station, q(i), is proportional to the population di�erence
between the areas surrounding a station i and the adjacent stations j,
that is

q(i) = ≠k

ÿ

j

Aij(„(i) ≠ „(j))

= ≠k

3
„(i)

ÿ

j

Aij ≠
ÿ

j

Aij„(j)
4

= ≠k

3
„(i)Dii ≠

ÿ

j

Aij„(j)
4

= ≠k

ÿ

j

(”ijDii ≠ Aij)„(j) = ≠k

ÿ

j

Lij„(j). (12.4)

When considering N stations together, the above model assumes the
matrix form

q = ≠kL„ (12.5)

where L = (D ≠ A) œ RN◊N is the Laplacian matrix of the graph
model (see Part I of this monograph). For clarity, Figure 12.4 illustrates
a signal within this di�usion model on a 2-vertex path graph obeying
the Fick law.

The data for the average daily net flow of passengers during the
morning rush hour at each station in 2016 was obtained from Transport

Figure 12.4: Towards a graph representation of the London underground network.
A simplified path graph with two stations surrounded by the respective populations,
„(1) and „(2), exhibits the corresponding net fluxes, q(1) and q(2). Intuitively, stations
surrounded by large populations experience net in-flows of passengers, whereas
stations surrounded by low populations experience net out-flows of passengers.
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Table 12.1: Daily average passenger flows during the morning rush hour per
transportation Zone in London

Zone Entries Exits Net Outflow

1 455,704 844,123 388,419
2 343,145 264,732 ≠78,413
3 275,965 104,414 ≠171,551
4–10 206,408 72,152 ≠134,256
Total 1,281,222 1,285,421 4,199

for London (TFL) (Transport for London, n.d.), and is plotted as a
signal on the graph model of the London underground in Figure 12.5.
For illustration purposes, Table 12.1 shows the daily average net flow
of passengers per transportation zone. As expected, Zone 1 is the only
zone to exhibit a net outflow of passengers, while Zones 2–10 show a net
inflow of passengers. In particular, Zone 3 exhibits the largest inflow. In
an ideal scenario, the total net outflow across Zones 1–10 should sum
up to 0, however, the residual net outflow is attributed to passengers
entering the underground network through other transport services not
considered in our model, for example, rail services.

Moreover, Table 12.2 shows the average net flow of passengers for the
top 5 stations with the greater net inflow and outflow. The stations with
the greatest net outflow of passengers are located within the financial
(Bank, Canary Wharf, Green Park) and commercial (Oxford Circus,
Holborn) districts. In contrast, the greatest net inflow of passengers
is attributed to the contribution from the railway stations located in
residential areas.

To obtain an estimate of the resident population surrounding each
station, we can simply rearrange the passenger flow in (12.5) to obtain

„̂ = ≠1
k

L+q (12.6)

where the symbol (·)+ denotes the matrix pseudo-inverse operator. How-
ever, notice that the population vector can only be estimated up to a
constant, hence the vector „̂ actually quantifies the relative population
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Table 12.2: Stations in the London underground system with greatest net passenger
outflow and inflow during the morning rush hour

Zone Entries Exits Net Outflow

Bank 17,577 69,972 52,395
Canary Wharf 8,850 56,256 47,406
Oxford Circus 3,005 44,891 41,886
Green Park 2,370 30,620 28,250
Holborn 1,599 25,294 23,695
Finsbury Park 20,773 8,070 ≠12,703
Canada Water 31,815 14,862 ≠16,953
Brixton 24,750 4,369 ≠20,381
Stratford 43,473 22,360 ≠21,113
Waterloo 61,129 22,861 ≠38,268

Figure 12.5: Net passenger outflow during the morning rush hour within Zones 1–3
of the London underground network. The magenta bars designate a net outflow of
passengers while the cyan bars designate a net inflow of passengers. Stations located
within business districts exhibit the greatest net outflow of passengers, while stations
located in residential areas, toward the boundaries of Zones 2–3, exhibit the largest
net inflow of passengers.
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Figure 12.6: Population distribution implied by our graph model in (12.6), calcu-
lated from the net passenger outflow during the morning rush hour within Zones 1–3
of London underground system. As expected, business districts exhibit the lowest
population density, while residential areas (Zones 2–3) exhibit the highest commuter
population density.

between stations, whereby the station with the lowest estimated sur-
rounding population takes the value of 0. The so estimated resident
population surrounding each station, based on the morning net passen-
ger flow, is displayed in Figure 12.6 as a signal on a graph. Observe
that these estimates are reasonable and physically meaningful since
most of the resident population in London is concentrated toward the
more remote areas of Zones 2–3, while business districts at the center
of Zone 1 are sparsely populated in the evening.
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Portfolio Cuts

Investment returns naturally reside on irregular domains, however, stan-
dard multivariate portfolio optimization methods are agnostic to data
structure. To this end, we investigate ways for the domain knowledge
to be meaningfully incorporated into the analysis, by means of portfolio
cuts. Such a graph-theoretic portfolio partitioning technique would allow
the investor to devise robust and tractable asset allocation schemes,
by virtue of a rigorous graph framework for considering smaller, com-
putationally feasible, and economically meaningful clusters of assets,
based on graph cuts. In turn, this makes it possible to fully utilize the
covariance matrix of asset returns for constructing the portfolio, even
without the requirement for its inversion.

Modern portfolio theory suggests an optimal strategy for minimizing
the investment risk, which is based on the second-order moments of
asset returns (Markowitz, 1952). The solution to this optimization task
is referred to as the minimum-variance (MV) portfolio. Consider the
vector, r(t) œ RN , which contains the returns of N assets at a time t,
the ith entry of which is given by

rt(i) = pt(i) ≠ pt≠1(i)
pt≠1(i) (13.1)
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where pt(i) denotes the value of the ith asset at a time t. The MV
portfolio asserts that the optimal vector of asset holdings, w œ RN , is
obtained through the following optimization problem

minw wT �w, subject to wT 1 = 1 (13.2)

where � = cov{r} œ RN◊N is the covariance matrix of returns, 1 =
[1, . . . , 1]T , and the constraint, wT 1 = 1, enforces full investment of the
capital. The optimal portfolio holdings (using the method of Lagrange
multipliers) then become

w = �≠11
1T �≠11 . (13.3)

It is important to highlight that the matrix inversion of � required in
(13.3) may lead to significant errors for ill-conditioned matrices. These
instability concerns have received substantial attention in recent years
(Kolm et al., 2014), and alternative procedures have been proposed to
promote robustness by either incorporating additional portfolio con-
straints (Clarke et al., 2002), introducing Bayesian priors (Black and
Litterman, 1992) or improving the numerical stability of covariance
matrix inversion (Ledoit and Wolf, 2003). A more recent approach has
been to model assets using market graphs (Boginski et al., 2003), that
is, based on graph-theoretic techniques. Intuitively, a universe of assets
can be naturally modelled as a network of vertices on a graph, whereby
an edge between two vertices (assets) designates both the existence of
a link and the degree of similarity between assets (Simon, 1991).
Remark 27: A graph-theoretic perspective o�ers an interpretable ex-
planation for the underperformance of minimum-variance optimization
(MVO) techniques in practice. Namely, since the covariance matrix �
is dense, standard multivariate models implicitly assume full connec-
tivity of the graph, and are therefore not adequate to account for the
structure inherent to real-world markets (Calkin and Lopez de Prado,
2014a,b, 2016). Moreover, it can be shown that the optimal holdings
under the MVO framework are inversely proportional to the vertex cen-
trality, thereby suggesting over-investing in assets with low centrality
(Li et al., 2019; Peralta and Zareei, 2016).
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Intuitively, it would be highly desirable to remove unnecessary graph
edges in order to more appropriately model the underlying structure
between assets (graph vertices); this can be achieved through vertex
clustering of the market graph (Boginski et al., 2003). Various portfolio
diversification frameworks employ this technique to allocate capital
within and across clusters of assets at multiple hierarchical levels. For
instance, the hierarchical risk parity scheme (Calkin and Lopez de
Prado, 2016) employs an inverse-variance weighting allocation which is
based on the number of assets within each asset cluster. Similarly, the
hierarchical clustering based asset allocation in Ra�not (2017) finds a
diversified weighting by distributing capital equally among each of the
cluster hierarchies.

Despite mathematical elegance and physical intuition, direct vertex
clustering is an NP hard problem. Consequently, existing graph-theoretic
portfolio constructions employ combinatorial optimization formulations
(Boginski et al., 2003, 2005, 2006, 2014; Gunawardena et al., 2012,
Kalyagin et al., 2014), which become computationally intractable for
large graph systems. To alleviate this issue, we employ the minimum cut
vertex clustering method to the graph of portfolio assets, to introduce
the concept of portfolio cut (Scalzo et al., 2020). In this way, smaller
graph partitions (cuts) can be evaluated quasi-optimally, using algebraic
methods, and in an e�cient and rigorous manner.

13.1 Structure of Market Graph

A universe of N assets can be represented as a set of vertices on a market
graph (Boginski et al., 2003), whereby the edge weight, Wmn, between
vertices m and n is defined as the absolute correlation coe�cient, |flmn|,
of their respective returns of assets m and n, that is

Wmn = |‡mn|
Ô

‡mm‡nn
= |flmn| (13.4)

where ‡mn = cov{rt(m), rt(n)} is the covariance of returns between the
assets m and n. In this way, we have Wmn = 0 if the assets m and n

are statistically independent (not connected), and Wmn > 0 if they are
statistically dependent (connected on a graph). Note that the resulting
weight matrix is symmetric, WT = W.
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13.2 Minimum Cut Based Vertex Clustering

Vertex clustering aims to group together vertices from the asset universe,
V, into multiple disjoint clusters, Vi. For a market graph, assets which
are grouped into a cluster, Vi, are expected to exhibit a larger degree
of mutual within-cluster statistical dependency than with the assets
in other clusters, Vj , j ”= i. The most popular classical graph cut
methods are based on finding the minimum set of edges whose removal
would disconnect a graph in some “optimal” sense; this is referred
to as minimum cut based clustering (Schae�er, 2007) (see Part I of
this monograph for a comprehensive review of the minimum graph cut
problem and other graph spectral clustering methods).

Consider an N -vertex market graph, G = {V, E}, which is grouped
into K = 2 disjoint subsets of vertices, V1 µ V and V2 µ V, with
V1 fi V2 = V and V1 fl V2 = ÿ. A cut of this graph, for the given clusters,
V1 and V2, is equal to a sum of all weights that correspond to the edges
which connect the vertices between the subsets, V1 and V2, that is

Cut(V1, V2) =
ÿ

mœV1

ÿ

nœV2

Wmn. (13.5)

A cut which exhibits the minimum value of the sum of weights between
the disjoint subsets, V1 and V2, considering all possible divisions of the
set of vertices, V, is referred to as the minimum cut.

Finding the minimum cut in (13.5) is a relatively easy problem and
can be solved e�ciently (Stoer and Wagner, 1997). However, in practice,
this minimum cut formation in (13.5) often leads to unsatisfactory
performance (Von Luxburg, 2007). For example, assume that all the
weights are positive and that we allow an empty set as a cluster; upon
taking one cluster as an empty set and another cluster as a whole
graph, that would yield the minimum cut, which is 0. This result is
not a reasonable partition we desire. To overcome this problem, we
may “balance” the sizes of cluster and cut, i.e., each cluster should
be reasonably large, while at the same time the cut itself should be
minimized. Instead of using (13.5), two balanced cuts are often used,
Ratio Cut (Hagen and Kahng, 1992) and Normalized Cut (Shi and Malik,
2000), where a balancing term is incorporated into the cut in (13.5).
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Within graph cuts, a number of optimization approaches may be
employed to enforce some desired properties on graph clusters:

(i) Ratio cut. The value of Cut(V1, V2) is normalized by an additional
term to enforce the subsets, V1 and V2, to be simultaneously as
large as possible. The ratio cut formulation is given by Hagen and
Kahng (1992)

CutR(V1, V2) =
1 1

N1
+ 1

N2

2 ÿ

mœV1

ÿ

nœV2

Wmn (13.6)

where N1 and N2 are the respective numbers of vertices in the
sets V1 and V2. Since N1 + N2 = N , the term 1

N1
+ 1

N2
reaches its

minimum for N1 = N2 = N
2 .

(ii) Volume normalized cut. Since the vertex weights are involved
when designing the size of subsets V1 and V2, then by defining the
volumes of these sets as V1 =

q
nœV1 Dnn and V2 =

q
nœV2 Dnn,

we arrive at the volume normalized cut (Shi and Malik, 2000) (see
also Part I)

CutN(V1, V2) =
1 1

V1
+ 1

V2

2 ÿ

mœV1

ÿ

nœV2

Wmn. (13.7)

Since V1 + V2 = V , the term 1
V1

+ 1
V2

reaches its minimum for
V1 = V2 = V

2 . Notice that vertices with a higher degree, Dnn,
are considered as structurally more important than those with
lower degrees. In turn, for market graphs, assets with a higher
average statistical dependence to other assets are considered as
more central.

Remark 28: It is important to note that clustering results based on
the two above graph cut forms are di�erent. While the ratio cut in
(i) favors the clustering into subsets with (almost) equal number of
vertices, the volume normalized cut in (ii) favors subsets with (almost)
equal volumes, that is, subgraphs with vertices exhibiting (almost) equal
average statistical dependence to the other vertices.

Remark 29: Although the optimization algorithm for the cut in (13.5)
is simple, by introducing the balancing terms into this cut, the task
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of finding the minimum of the objective functions in (13.6) and (13.7)
becomes NP hard (Von Luxburg, 2007; Wagner and Wagner, 1993).
However, if we relax the problem from a discrete valued to a real valued
one, then this boils down to the eigenproblem of graph Laplacian, which
is considered next.

13.3 Spectral Bisection Based Minimum Cut

To overcome the computational burden of finding the ratio cut, we may
opt for an approximative spectral solution which clusters vertices using
the eigenvectors of the graph Laplacian, L. The algorithm employs the
second (Fiedler, 1973) eigenvector of the graph Laplacian, u2 œ RN , to
yield quasi-optimal vertex clustering on a graph. Despite its simplicity,
the algorithm is typically accurate and gives a good approximation to
the minimum cut (Ng et al., 2002; Spielman and Teng, 2007).

To relate the problem of the minimum cut in (13.6) and (13.7) to
that of eigenanalysis of graph Laplacian, we employ an indicator vector,
denoted by x œ RN (StankoviÊ et al., 2019a), for which the elements
take sub-graph-wise constant values within each disjoint subset (cluster)
of vertices, with these constants taking di�erent values for di�erent
clusters of vertices. In other words, the elements of x uniquely reflect
the assumed cut of the graph into disjoint subsets V1, V2 µ V.

For a general graph, we consider two possible solutions for the
indicator vector, x, that satisfy the subset-wise constant form:

(i) Ratio cut. It can be shown that if the indicator vector is defined
as (see Part I of this monograph)

x(n) =

Y
__]

__[

1
N1

, for n œ V1,

≠ 1
N2

, for n œ V2,

(13.8)

then the ratio cut, CutR(V1, V2) in (13.6), is equal to the Rayleigh
quotient of L and x, that is

CutR(V1, V2) = xT Lx
xT x . (13.9)
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Therefore, the indicator vector, x, which minimizes the ratio cut
also minimizes (13.9). From the indicator vector, we see

ÿ

nœV

x(n) =
ÿ

nœV1

x(n) +
ÿ

nœV 2
x(n) = N1 ◊ 1

N1
≠ N2 ◊ 1

N2
= 0.

(13.10)

In other words, we can say that the vector x is orthogonal to 1.
Moreover, we can see that the objective function in (13.9) is
invariant of the scale of x. From this discussion, we can relax the
problem of the objective function in (13.6) through the constraints,
as

minx xT Lx, subject to xT x = 1, and xT 1 = 0. (13.11)

Given that the considered graph is undirected and therefore L is
symmetric, the first eigenvector of the graph Laplacian is constant
(proportional to vector 1, u0 = 1/

Ô
N) and the associated first

eigenvalue is ⁄0 = 0. Therefore, by the Rayleigh–Ritz theorem,
the solution to the objective function in (13.11) is given by the
second eigenvector of the graph Laplacian, L, obtained as

Lx = ⁄1x, (13.12)

with the second eigenvalue, ⁄k = ⁄1.

(ii) Volume normalized cut. Similarly, by defining x as

x(n) =

Y
__]

__[

1
V1

, for n œ V1,

≠ 1
V2

, for n œ V2,

(13.13)

the volume normalized cut, CutN(V1, V2) in (13.7), takes the form
of a generalized Rayleigh quotient of L, given by (see again Part I)

CutN(V1, V2) = xT Lx
xT Dx . (13.14)
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Similarly to the ratio cut, we see from the indicator vector that
ÿ

nœV

d(n)x(n) =
ÿ

nœV1

d(n)x(n) +
ÿ

nœV 2
d(n)x(n)

=
ÿ

nœV1

d(n) ◊ 1
V1

≠
ÿ

nœV2

d(n) ◊ 1
V2

= V1 ◊ 1
V1

≠ V2 ◊ 1
V2

= 0, (13.15)

which yields (Dx)T 1 = 0. Also, the objective function is invariant
to the scale of x. Therefore, we can formulate the optimization
problem from the objective function (13.14) as

minx xT Lx, subject to xT Dx = 1, and (Dx)T 1 = 0.

(13.16)
The solution is given by the second generalized eigenvector of the
generalized eigenproblem of the graph Laplacian as

Lx = ⁄1Dx, (13.17)

since D≠1/21 is the first generalized eigenvector of graph
Laplacian.

For the spectral solutions above, the membership of a vertex, n,
to either the subset V1 or V2 is uniquely defined by the sign of the
indicator vector, x = u1, that is

sign(x(n)) =

Y
]

[
1, for n œ V1,

≠1, for n œ V2.

(13.18)

Notice that a scaling of x by any constant would not influence the
solution for clustering into the subsets V1 or V2.

13.4 Repeated Portfolio Cuts

Although the above analysis has focused on the case with K = 2 disjoint
sub-graphs, it can be straightforwardly generalized to K Ø 2 disjoint
sub-graphs through the method of repeated bisection.
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Figure 13.1: Graph cut based asset allocation strategies. (a) Hierarchical graph
structure resulting from K = 4 portfolio cuts. (b) A graph tree based on the 1

2Ki

scheme. (c) A graph tree based on the 1
K+1 scheme.

A single application of the portfolio cut on the market graph, G, pro-
duces two disjoint sub-graphs, G1 and G2, as illustrated in Figure 13.1(a).
Notice that in this way we construct a hierarchical binary tree structure,
whereby the union of the leaves of the network is equal to the original
market graph, G. We can then perform a subsequent portfolio cut oper-
ation on one or both of the leaves based on some suitable criterion (e.g.,
the leaf with the greatest number of vertices or volume). Therefore,
(K + 1) disjoint sub-graphs (leaves) can be obtained by performing the
portfolio cut procedure K times (Scalzo et al., 2020).
Example 41: Figure 13.1(a) illustrates the hierarchical structure re-
sulting from K = 4 portfolio cuts of a market graph, G. The leaves
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of the resulting binary tree are denoted by {G3, G4, G5, G7, G8} (in red),
whereby the number of disjoint sub-graphs is equal to (K + 1) = 5.
Notice that the union of the leaves amounts to the original graph, i.e.,
G3 fi G4 fi G5 fi G7 fi G8 = G.

13.5 Graph Asset Allocation Schemes

We next elaborate upon some intuitive asset allocation strategies, in-
spired by the work in Calkin and Lopez de Prado (2016) and Ra�not
(2017), which naturally builds upon the portfolio cut. The aim is to
determine a diversified weighting scheme by distributing capital among
the disjoint clusters (leaves) so that highly correlated assets within a
given cluster receive the same total allocation, thereby being treated as
a single investment entity.

Upon denoting the portion of the total capital allocated to a cluster
Gi by wi, we consider two simple asset allocation schemes:

(AS1) wi = 1
2Ki

, where Ki is the number of portfolio cuts required to
obtain a sub-graph Gi;

(AS2) wi = 1
K+1 , where (K + 1) is the number of disjoint sub-graphs.

Remark 30: An equally-weighted asset allocation strategy may now
be employed within each cluster, i.e., every asset within the ith cluster,
Gi, will receive a weighting equal to wi

Ni
.

Remark 31: The weighting scheme in AS1 above is closely related to
the strategy proposed in Ra�not (2017), while the scheme in AS2 is
inspired by the generic equal-weighted (EW) allocation scheme (De
Miguel et al., 2009). These schemes are convenient in that they require
no assumptions regarding the across-cluster statistical dependence. In
addition, unlike the EW scheme, they implicitly consider the inherent
market risks (asset correlation) by virtue of the portfolio cut formulation,
which is based on the eigenanalysis of the market graph Laplacian, L.

Example 42: Figures 13.1(b) and (c) illustrate respectively the asset
allocation schemes in AS1 and AS2 for K = 4 portfolio cuts, based on



13.6. Numerical Example 509

the market graph partitioning in Figure 13.1(a). Notice that the weights
associated to the disjoint sub-graphs (leaves in red) sum up to unity.

13.6 Numerical Example

The performance of the portfolio cuts and the associated graph-theoretic
asset allocation schemes was investigated using historical price data
comprising of the 100 most liquid stocks in the S&P 500 index, based
on the average trading volume, in the period 2014-01-01 to 2018-01-01.
The data was split into: (i) the in-sample dataset (2014-01-01 to 2015-
12-31) which was used to estimate the asset correlation matrix and to
compute the portfolio cuts; and (ii) the out-sample dataset (2016-01-01
to 2018-01-01), used to objectively quantify the profitability of the asset
allocation strategies (Scalzo et al., 2020).

Figure 13.2 displays the Kth iterations, for K = 1, 2, 10, of the
normalized portfolio cut in (13.9), applied to the original 100-vertex

Figure 13.2: Visualization of the 100-vertex market graph connectivity for the
100 most liquid stocks in S&P 500 index, and its partitions into disjoint sub-graphs
(separated by dashed grey lines). The edges (blue lines) were calculated based
on the correlation between assets. (a) Fully connected market graph with 5050
edges. (b) Partitioned graph after K = 1 portfolio cuts (CutN), with 2746 edges. (c)
Partitioned graph after K = 2 portfolio cuts (CutN), with 1731 edges. (d) Partitioned
graph after K = 10 portfolio cuts (CutN), with 575 edges. Notice that the number
of edges required to model the market graph is significantly reduced with each
subsequent portfolio cut, since

qK+1
i=1

1
2 (N2

i + Ni) <
1
2 (N2 + N), ’K > 0.
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.

Figure 13.3: Out-sample performance of the graph cut based asset allocation
strategies. Notice that the Sharpe ratio typically improves with each subsequent
portfolio cut. The traditional portfolio strategies, EW and MV, attained the respective
Sharpe ratios of SREW = 1.85 and SRMV = 1.6.

market graph obtained from the in-sample data set. Next, for the out-
sample dataset, graph representations of the portfolio, for the number
of cuts K varying in the range [1, 10], were employed to assess the
performance of the asset allocation schemes described in Section 13.5.
The standard equally-weighted (EW) and minimum-variance (MV)
portfolios were also simulated for comparison purposes, with the results
displayed in Figure 13.3.

Conforming with the findings in Calkin and Lopez de Prado (2016)
and Ra�not (2017), the proposed graph asset allocation schemes con-
sistently delivered lower out-sample variance than the standard EW
and MV portfolios, thereby attaining a higher Sharpe ratio, i.e., the
ratio of the mean to the standard deviation of portfolio returns. This
verifies that the removal of possibly spurious statistical dependencies in
the “raw” format, through portfolio cuts, allows for robust and flexible
portfolio constructions.
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Such an approach enables the creation of graph-theoretic capital
allocation schemes, based on measures of connectivity which are inherent
to the portfolio cut formulation. In addition, the proposed portfolio
construction employs full information contained in the asset covariance
matrix, and without requiring its inversion, even in the critical cases of
limited data length or singular covariance matrices.



14
Conclusion

In many modern applications, graph topology is not known a priori and
hence its determination becomes part of the problem definition, rather
than serving as prior knowledge to aid solution. To perform simulta-
neous estimation of both data on a graph and the underlying graph
topology, without loss of generality we assume that the vertices (their
number, location, etc.) are given, while the edges and their associated
weights form part of the solution to the problem under consideration.
Three possible scenarios for the estimation of graph edges from the
data observed on a graph have been considered. Namely, in various
sensor network sensing setups (temperature, pressure, transportation)
the locations of the sensor positions (vertices) may be known while the
vertex distances convey physical meaning about data and inter-sensor
dependence and thus may be employed for weight determination. An-
other possibility is to employ the covariance and precision matrices,
which are commonly used as data similarity metrics and are thus a
natural choice of a metric for learning graph topology from data. The
third scenario are graphs for which the relations among the sensing
positions are physically well defined, such as in electric circuits, power

512
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networks, linear heat transfer, social and computer networks, and spring-
mass systems. Next, the problem of simulation of graph signals has
been addressed and a detailed derivation and elaboration of sparsity
structure promoting optimization approaches, such as the LASSO and
graph-based version of LASSO (GLASSO), has been given. The inherent
connection between graphs and deep neural networks (DNNs) has been
further addressed, and the concepts of graph neural networks (GNN)
and graph convolutional neural networks (GCN) have been introduced.
It has been shown that the di�usion process on graphs underpins the
operation of GNNs. The enormous potential of the combination of the
universal function approximation property of neural networks with the
elegance and generality of graph models has been demonstrated through
the concepts of recurrent GNNs, spatial GNNs, spectral GNNs, together
with the interpretation of graph signal filtering as a di�usion process in
a “neural network” language. The advantages of these concepts have
been illustrated over the paradigms of semi-supervised learning and
label propagation, while the use of GNNs in graph link prediction has
been addressed based on an innovative but natural combination of
characteristic functions and generative adversarial nets, referred to as
reciprocal adversarial learning via characteristic functions (RCF-GAN).
Furthermore, the application of graphs in Big Data scenarios has been
demonstrated through their link with tensors, and tensor factorizations.
This is particularly significant, as multidimensional graphs are common
in practice, but are inadequately modelled through their imbalanced
and “flat view” adjacency matrices. To this end, we show that multi-
linear algebra, whereby multidimensional graphs are modelled via the
corresponding adjacency tensor, is a natural choice to discover intrinsic
relations in such multidimensional data. This has led to the concept of
multi-graph tensor network (MGNT), which serves as a general frame-
work for neural network learning in big data settings and on multiple
irregular domains. Finally, innovative and comprehensively elaborated
case studies have been given in support of the concepts, ranging from
portfolio cuts in finance to the modelling of vulnerability of stations in
underground metro tra�c.
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