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REZIME:

U obradi signala, teorija koja stoji iza kompresivnog odabiranja pokazala se kaouspje$na
tehnika uzorkovanja u razli¢itim oblastima. Upotreba malog broja mjerenja za akviziciju
povecéava efikasnost skladiStenja, memorije i prenosa signala. Buducéi da se brojni signali u
prirodi mogu predstaviti kao rijetki u odredenom domenu reprezentacije, tehnika je pokazala
ogroman potencijal u mnogim oblastima kao §to su medicina, telekomunikacije, radar i sonarni
sistem. Medutim, iako je veoma uspjeSno, kompresivno odabiranje jo§ uvijek nije u potpunosti
razvijeno i primijenjeno u podvodnoj akustici. Akusti¢ni signali koji se prenose kroz vodu uvode
mnoge slozene karakteristike ¢ineéi njihovu analizu izazovnom i teSkom. Proces prenoSenja i
primanja signala kroz plitko vodeno okruZenje reprezentativan je primjer prenosa signala kroz
disperzivni kanal. Nestacionarna priroda takvih signala zahtijeva prilagoden i pogodan alat
za analizu razvijenu u vremensko-frekvencijskoj analizi signala. Unutar okvira kompresivnog
odabiranja, vazno je naglasiti da su nestacionarni signali samo priblizno rijetki ili nerijetki u
odgovaraju¢em domenu transformacije. Budué¢i da se metoda rekonstrukcije u kompresivnom
odabiranju intrinzi¢no oslanja na rijetkost, rekonstrukcija priblizno rijetkih ili nerijetkih signala
stvori¢e gresku koja mora biti uzeta u obzir u prora¢unima i primjenama. Glavni doprinos ove
teze je u prosirivanju i prilagodavanju glavnih rezultata kompresivnog odabiranja na nestacionarne
signale, uz primjenu na akusti¢ne i sonarne signale. Ovo moze da obuhvati propagiranje u
disperzivnim medijima. Konkretno, izvedena je ta¢no ocekivana greska rekonstrukcije nesta-
cionarnih signala u vremensko-frekvencijskoj analizi koris¢enjem metoda kompresivnog odabiranja.
Predlozene su tehnike dekompozicije i rekonstrukcije signala u sonarnim sistemima i disperzivnim
podvodnim kanalima koriséenjem vremensko-frekvencijske analize. Razli¢ite sekvence koriSéene
u sonarnom snimanju se razmatraju sa stanovista rekonstrukcije zasnovane na kompresivnom
odabiranju, ukljuéujuéi smanjeni skup mjerenja ili visoko osteéenih uzoraka i podesavanje scenarija
u stvarnom svijetu. Svi predstavljeni teorijski rezultati prate brojni primjeri. Takode, prikazana
je primjena rekonstrukcije opSte obrade slika i problema rasumljavanja. Algoritmi za dobijanje
glavnih rezultata koji se koriste u tezi dati su u dodatku.
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ABSTRACT:

In signal processing, the theory behind compressive sensing presented a successful sampling
technique in various fields. Using a small number of measurements for the acquisition improves
the efficiency of storage, memory, and transmission of signals. Since numerous signals in nature
can be represented as sparse in some representation domain, the technique showed massive po-
tential in many areas such as medicine, telecommunications, radar, and sonar systems. Although
very successful, compressive sensing is not yet fully developed and implemented in underwater
acoustics. Acoustic signals transmitted through water introduce many complex characteristics
making their analysis challenging and difficult. The process of transmitting and receiving signals
through shallow water environment is a representative example of a signal transmission through
dispersive channel. The non-stationary nature of such signals leads to the time-frequency signal
analysis as well developed theory suitable for non-stationary signal processing. Within the
compressive sensing framework, it is important to emphasize that the non-stationary signals are
only approximately sparse or nonsparse in the corresponding transformation domain. Since the
compressive sensing reconstruction methods intrinsically relies on the sparsity, the reconstruction
of approximately sparse or non-sparse signals will produce an error that should be considered in the
calculations and applications. The main contributions of this thesis are in extending and adjusting
the compressive sensing methods and results to the non-stationary signals, with application to
the acoustic and sonar signals. This can include dispersive media propagation. In particular, the
exact expected error of the reconstruction of non-stationary signals in time-frequency analysis
using the compressive sensing methods is derived. The decomposition and reconstruction of
signals in sonar systems and dispersive underwater channels using time-frequency approaches
are presented. Various sequences used in the sonar imaging are considered from the point of
the compressive sensing based reconstruction, including a reduced set of measurements or highly
corrupted samples and real-world scenario setup. All of the presented theoretical results are
followed by numerous examples. Application of the proposed methods and obtained theoretical
results to image reconstruction and denoising problems is also presented as an example that
developed tools and theoretical results are important not only for underwater acoustic systems.
The algorithms used to achieve the main results in the thesis are given in the Appendix.
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Abstract

In signal processing, the theory behind compressive sensing presented a successful sam-
pling technique in various fields. Using a small number of measurements for the acqui-
sition improves the efficiency of storage, memory, and transmission of signals. Since
numerous signals in nature can be represented as sparse in some representation domain,
the technique showed massive potential in many areas such as medicine, telecommu-
nications, radar, and sonar systems. Although very successful, compressive sensing
is not yet fully developed and implemented in underwater acoustics. Acoustic sig-
nals transmitted through water introduce many complex characteristics making their
analysis challenging and difficult. The process of transmitting and receiving signals
through shallow water environment is a representative example of a signal transmis-
sion through dispersive channel. The non-stationary nature of such signals leads to
the time-frequency signal analysis as well developed theory suitable for non-stationary
signal processing. Within the compressive sensing framework, it is important to em-
phasize that the non-stationary signals are only approximately sparse or nonsparse in
the corresponding transformation domain. Since the compressive sensing reconstruc-
tion methods intrinsically relies on the sparsity, the reconstruction of approximately
sparse or non-sparse signals will produce an error that should be considered in the
calculations and applications. The main contributions of this thesis are in extending
and adjusting the compressive sensing methods and results to the non-stationary sig-
nals, with application to the acoustic and sonar signals. This can include dispersive
media propagation. In particular, the exact expected error of the reconstruction of
non-stationary signals in time-frequency analysis using the compressive sensing meth-
ods is derived. The decomposition and reconstruction of signals in sonar systems and
dispersive underwater channels using time-frequency approaches are presented. Various
sequences used in the sonar imaging are considered from the point of the compressive
sensing based reconstruction, including a reduced set of measurements or highly cor-
rupted samples and real-world scenario setup. All of the presented theoretical results
are followed by numerous examples. Application of the proposed methods and obtained
theoretical results to image reconstruction and denoising problems is also presented as
an example that developed tools and theoretical results are important not only for
underwater acoustic systems. The algorithms used to achieve the main results in the
thesis are given in the Appendix.
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Introduction

In recent years, compressive sensing was an enormous breakthrough in the signal pro-
cessing community as a successful sampling and reconstruction method for signals in
various areas. The idea of using a small number of randomly positioned observations
for signal acquisition improves efficiency of signal processing systems in terms of stor-
age, memory, and transmission. Accurate recovery of signals with a reduced set of
measurements is the primary goal of compressive sensing and sparse signal process-
ing. Defining the domain of sparsity of a signal is the first step to be considered for
application of compressive sensing to a specific signal. Each of the signals and their
sparsity domains has characteristics that are important for defining the method that
should be used for their proper recovery. Many signals can be represented as sparse in
some representation domain, resulting in compressive sensing showing a huge potential
originally in medicine, and then later in many other fields, such as communications,
meteorology, remote sensing, image processing, and radar and sonar systems.

Although very successful, the idea of compressive sensing is still challenging for
research and developing in many application areas, including the underwater acoustics
field. Acoustic signals transmission through the water introduce many complex charac-
teristics that are very difficult for analysis. Most of the problems occur in the process
of transmitting and receiving signals in water due to its dispersive media properties.
This is especially exhibited in shallow water environments, as a representative exam-
ple of dispersive channels. The dispersivity produces multiple nonlinear components,
changing the very nature of the original transmitted signals. The non-stationary nature
of such signal components makes them suitable for the analysis using time-frequency
tools.

In the compressive sensing sense, non-stationary signals are only approximately
sparse or nonsparse in the most of the common transformation domains. Such sig-
nals, when reconstructed under the sparsity assumption, will produce errors in the
reconstruction procedure. This error highly depends on the sampling method and the
sparsity domain of the analyzed signal. The exact error is of great importance for
further improvement of the reconstruction performance in prospective. Except for the
dispersive systems, time-varying nonsparse signals can also be found in the process-
ing of many other areas, such as audio signals, images, radar systems, and wideband
sonar images, where the processing under the sparsity assumption requires appropriate
analysis of the reconstruction results.

The problem of approximative sparsity is intrinsically built in the area of compres-
sive sensing based reconstruction of targets in sonar images. In real-world cases, the
sonar signals are positioned off-grid in the transformation domain, which makes them
nonsparse in their nature. The problem of finding a sequence suitable for the transmis-
sion, as well as developing the proper theory behind the detection and reconstruction
of targets, is a topic of great importance for theory and practice in sonar systems.

1



2 Introduction

Considering that only a few target points (or few targets) commonly are of interest in
the sonar images, the idea of compressive sensing can successfully be applied in their
reconstruction. The compressive sensing methods can be suited and used for effective
localization of the underwater targets in sonar systems.

The dispersive characteristics of the underwater environment is of crucial impor-
tance in the underwater acoustics and signal processing. A typical example of a dis-
persive media is the shallow water environment since most activities are performed
in waters with depth less than 200 meters. From the signal processing view, a dis-
persive channel introduces many complex nonstationary components during the signal
transmission. It is essential to recognize, decompose, and reconstruct such components
(modes) truthfully, for a better understanding of the environment in which the signal
is transmitted. Although challenging, the theory of compressive sensing with appropri-
ate transformation domain, adjusted to the complex nature of the signal modes, can
provide an effective reconstruction of the strongest modes.

Three key problems which are considered in this thesis are:

1. exact error calculation in the reconstruction procedure in compressive sensing
(only error bounds were given in the existing literature);

2. reconstruction of sonar images within the compressive sensing framework using
various sequences for transmitted signal (so far only basic sequence forms were
used in the literature, applied to real data);

3. the problem of decomposition of signals in dispersive channels (with a robust
method for such a requirement).

One of the aims of this thesis is to fulfill the gaps of using the compressive sensing
techniques in underwater acoustics and sonar systems with appropriate and exact re-
construction performance analysis, which can also serve as a basis for a further direction
in implementation of these techniques in other signal processing fields.

The contribution of this thesis can be divided into three major parts:

e Analysis of nonsparsity — Many signals, especially non-stationary and signals
arriving from a dispersive environment are not strictly sparse in their correspond-
ing representation domains. They should be considered as approximately sparse or
nonsparse signals, meaning that all components cannot be exactly reconstructed
with compressive sensing methods. The expected reconstruction error caused by
the nonreconstructed components is derived and exactly calculated. This helps
further investigation on the quality of the reconstruction of various signals. The
problem of quantization (digitization) of measurements is considered within the
context of additive noise and signal nonsparsity.

e Reconstruction of sonar signals — The wideband sonar images can be re-
constructed using different sequence forms. An extensive analysis of different
sequence forms within the compressive sensing reconstruction framework is done
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with appropriate comparison and directions how to achieve an improved recovery
of sonar images. The time-varying cross-range, as a challenging topic that causes
sonar image smearing, was additionally analyzed, as a complex parameter in the
analysis of such signals. Gathering of real data and their reconstruction helped
further justification of the presented analysis.

e Sparse decomposition of signals in dispersive channels — A novel approach
to the decomposition of signals received in the dispersive channel is introduced.
The method is based on the time-frequency representations derived from polyno-
mial extension of Fourier transform. High-resolution and model-based techniques
are considered for the analysis of received signals in such channels.

The methods presented for sonar imaging can be applied to general problems in
image processing. A method for denoising and reconstruction of sparse images based
on a gradient-descent algorithm is developed as an example. Unlike common image
reconstruction methods, the advantage of this method is that the uncorrupted pixels
remain unchanged in the reconstruction process. The noisy pixels are blindly detected
and reconstructed using compressive sensing approach by assuming (and not explicitly
imposing) the image sparsity.

The thesis is organized as follows. The background theory on signal processing and
the compressive sensing theory are presented in Chapter 2. The analysis of nonspar-
sity, together is presented in Chapter 3. Chapter 4 presents the analysis of different
sequences and their application in compressive sensing, for a successful reconstruction
of sonar signals. The background of shallow water environment, together with the
techniques for sparse decomposition of the received signals in dispersive channels is an-
alyzed in Chapter 5. Additional work on the topic of image denoising using compressive
sensing techniques is introduced in the Chapter 6. Chapter 7 concludes the thesis, with
the brief description of presented results and discussion on future work.
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Signal processing, as such, was introduced in the 1960s, and became one of the most
important tools for the analysis of signals and corresponding information. Although
introduced in the 20th century, the basics on which the analysis lies are mathematical
formulations known for many centuries earlier. Its use is mostly related to the introduc-
tion of computers we know today (such as the Fourier series and transform). However,
due to their rapid development, the digitalization of the world is inevitable. The data
which should be stored became massive. That is why the techniques developed earlier
are helpful, yet not enough. In recent years, it has been seen that numerous signals
are of sparse nature in a specific representation domain. New technologies have been
introduced, based on compressing those signals and trying to keep the original infor-
mation in their full meaning. These technologies can be summarized under the theory
of compressive sensing, which is based on sparse signal processing.

In this Chapter the fundamental theory and notations used throughout this thesis
are presented. The basics of signals and their representations in a transformation
domain are introduced with the method of time-varying signals. It also introduces the
background of compressive sensing and sparse signal processing. A basic yet effective
reconstruction algorithm, which will be used through the thesis, is explained. Finally,
the conditions necessary for a successful and unique reconstruction of sparse signals are
presented.
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1.1 Signal representation

Consider a time-domain signal z(t) of duration 7. Its samples x(nAt) are within the
sampling interval At = T;/N. The sampling interval satisfies the traditional sampling
theorem. The traditional sampling theorem was introduced in few occasions [1-4], and
states that a signal can be fully recovered if its sampling frequency f, is at least twice
as high as the maximum signal frequency f4z, i-€.

fs 2 2fmaz- (1.1)

Any discrete one-dimensional signal z(n) = z(nAt) of length N, n =0,1,..., N — 1,
can be written in the vector form as

x = [2(0),z(1),...,2(N - 1)]T, (1.2)

where T' is the transpose operation. Examples of one-dimensional signals can be found
in a large number of everyday applications, including audio, speech, sonar, radar, vari-
ous environment sensing and biomedical signals (such as the electrocardiogram - ECG
and electroencephalogram - EEG).

The sampling theory can be extended to two-dimensional signals. Examples of
two-dimensional signals are photos, radar/sonar images, biomedical images (such as
magnetic resonance imaging - MRI), and many others. A two-dimensional signal of
size N x M is represented in a matrix form as

z(0,0) z(0,1) o x(0,M —1)
d(N=1,0) a(M—=1,1) - a(N=1,M—1)

In the two-dimensional case, the sampling frequency has to satisfy the sampling relation
for each considered sampling direction.

In the theory, signals are commonly analyzed and processed in a certain represen-
tation (transformation) domain. Depending on its nature, the transform is suited for
a specific type of the signal. The most common transformation domains are the dis-
crete Fourier transform (DFT), discrete wavelet transform (DWT), and discrete cosine
transform (DCT). For the case of radar and sonar signals, the representation domains
are related to specific sequences that will be explained along with this application field.

In general, the transformation of a one-dimensional signal from one domain to
another one can be presented using the matrix relations

X = ®x (1.4)
where ® is the transformation matrix and X is the signal transform vector

X = [X(0),X(1),..., X(N - 1), (1.5)
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considering the length to be N. The inverse transform provides the relation between
the transformation and the signal as

x=¥X =d'X (1.6)

with the common orthonormal transformation domains relation ®~! = & where
H is the complex-conjugate and transpose (Hermitian) matrix. In general, the full
transformation and inverse transformation matrices are given by

B0 6(0) - Gy a(0)
s | A0 el e | .
G (N=1) Gi(N=1) - vy a(N—1)
. Cw(0) () e wwa(0)
po| MO B0 ) s
Go(N = 1) (N =1) - vy a(N = 1)

These matrices depend on the type of the transformation used for a particular signal.

1.1.1 Discrete Fourier transform (DFT)

The most frequently used transformation domain in the field of signal processing is
the discrete Fourier transform, named after the mathematician Joseph Fourier (1768
1830). The basis functions are harmonic signals, allowing analysis of signals in the
corresponding spectral domain. The DFT form, for a discrete-time signal x(n), is given

by

N-1 N-1
X (k)= z(n)pr(n) = z(n)e 2k, (1.9)
n=0 n=0
Its inverse is
N-1 L Nl 4
2(n) =Y X(k)n(k) = ~ D X (k)eP RN, (1.10)
k=0 k=0

Note that the relation between the DFT and the inverse DFT coefficients is given by
Un(k) = ¢(n)/N or ¥ = ®H /N.
The two-dimensional extension of the DF'T is defined by

N-1M-1

X (k1) = Z Z z(n, m)e I2mmk/N g=j2mmi/M (1.11)

n=0 m=0
with the corresponding inverse transform

N—-1M-1
X(k’, l)ejQWnk/NejQﬂml/M. (112)
k=0 [=0

1

1
x(n,m) = N
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The transformation coefficients e =727&/N ¢=327ml/M are four-dimensional, since they

depend on four indices (n,m, k,[l). In order to use the standard derivations and opti-
mization algorithms, as well as for notation simplification, the two-dimensional signals
and transformation matrices are commonly rearranged into column matrices by layering
its columns after each other in a way that

z(n+ N(m—1)) = x(n,m), (1.13)
X(k+M(I-1))=X(k,1), (1.14)

wheren =0,1,... N-1,m=0,1,.... M—1,k=0,1,...,N—1,and [ =0,1,..., M —
1. Then, the four-dimensional transformation forms of coefficients are rewritten as large
two-dimensional matrices.

1.1.2 Time-varying signals

The signals whose spectral content happens to change through time, are considered
as time-varying or non-stationary signals [5-7|. Audio signals or signals transmitted
through a dispersive channel are representative examples of time-varying signals. For
their analysis, more complex transforms than the standard DFT must be used. These
transforms should adapt for signal changes in both time and frequency domains, simul-
taneously.

Consider a time-varying signal z(n) with C' components,

c
x(n) = Zxc(n), (1.15)

where z.(n), ¢ = 1,2,...,C, are the non-stationary signals. Commonly, time-varying
signals are localized in time by using a window function defined by w(n,,). The basic
linear time-frequency representation is a direct extension of the DFT of a windowed
signal, and it is referred to as the short-time Fourier transform (STFT). It is calculated
as the standard DFT applied to the windowed signal around the instant n. That is,
the signal x(n + n,) at n (and around it) is multiplied by a window w(n,,). Its DFT
is then found as

Nu/2—1
Ssrrr(n, k) = DET{z(n + ny,)w(n,)} = Z (1 + Ny )w(ny, e 2k N (1.16)
Nw=—Nyw/2

positioned at an instant n, a frequency k, windowed by w(n,,) of length N,,. The window
function can be a rectangular, Hamming, Hanning, or any other window introduced in
the literature [8]. The indices n,, that vary from —N,/2 to N, /2 — 1 will be used.
Similar results would be obtained when the index values vary from 0 to N, — 1 (due
to the DFT periodicity). If the STFT, for a given instant n, is arranged into a vector
form, the coefficients can be denoted by Sgrprr(n).
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The STFT represents a simple and robust tool for time-varying signal analysis.
As mentioned, the main difference from the standard DFT is in introducing the time
localization window. If this window is narrow, then more localized properties in the time
domain, around the considered instant n, are obtained. However, narrow windows have
poor frequency resolution, meaning that a compromise should be made. Many efforts
have be done in literature to find the optimal window width for a given signal which
would produce a good localization in the time domain, with a sufficiently high frequency
resolution. For more complex signals, with fast changes of the spectral content, a
suitable window can be found using, for example, the approach presented in [9]. In
order to elevate the resolution problem more sophisticated quadratic representations
are introduced in time-frequency analysis. The goal of those representations is to track
spectral changes more accurately, preferably without using a localization window.

The most prominent representation of quadratic time-frequency representations is
the Wigner distribution whose discrete-time form is calculated as

N/2
S(n, k) =2 Z T(N + Ny )T (1 — nyy ) IAk/N (1.17)

Nw=—N/2

It can track linear changes in the frequency of signal components without any window.
In order to limit the computation interval, a window is introduced in this distribution
as well. This distribution is then defined as the pseudo Wigner distribution (PWD) of
the form

N/2
Spwp(n, k) =2 Z W (N /2)W( =Ty /2) (1 + Ny )™ (1 — 1y )e 4 RN 0 (1.18)
ny=—N/2

Although a window is present (as in the case of STFT), its only purpose in PWD is
to limit the calculation interval. This means that the window is not crucial for the
spectral localization of the presentation. For such reasons, the PWD is used for signals
with fast spectral variations. However, the PWD is a quadratic distribution since it is
calculated as the DFT of the product z(n+n,/2)z*(n—n,/2). For a multicomponent
signal, we will have the product of different components z.(n + n,/2)z(n — n,/2) for
¢ # s. The DFT of these products will appear in the time-frequency representation as
new components (cross-terms) and can sometimes overlap with desirable auto-terms.

A simple way to keep the good properties of the PWD, while avoiding or reducing
cross-terms can be achieved by using the S-method (SM)

Lsnr

SSM(TL, k) = Z SSTFT(”? k +p)S§'TFT(n7 k _p) (119>

p=—Lsm

where 2Lg); + 1 is the width of the window in the spectral domain. Two of the most
widely used representations (STFT and PWD) can be obtained from the S-method as
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its special cases |9]. That is, when Lgy = 0, the squared modulus of the standard
STFT (i.e. spectrogram), is

Sspectrogram(na k) = ‘SSTFT(nw k>’27 (120)

while for 2Lgy; + 1 = N,, the standard PWD is obtained. The optimal representation
is obtained by adding the terms for p = 0, +1,+2,... which improve the representa-
tion from the STFT toward the PWD, until the cross-terms start to appear [9]. This
effect can be detected by using measures of concentration of time-frequency represen-
tations. One such measure was based on norm-one and was introduced for measuring
and optimizing time-frequency representation finding the minimum of

N-1

[Ssrer(n, k)||1 = Z |Ssrrr(n, k)| (1.21)

k=0

with respect to the window length. In this case

miny, L, |[Ssa (72, K)|h (1.22)

produces optimal representation. It is interesting to note that this kind of minimization
is used in compressive sensing for sparse signal reconstruction [10-13]. This will be
reviewed in the next section.

1.2 Compressive sensing and sparse signal processing

Many signals in the nature exhibit sparsity property in a transformation domain. This
fact brought the idea of developing the compressive sensing technique, which was in-
troduced in data processing as such by Donoho, Candes, and Baraniuk [14-18].

A signal wtih small number of nonzero components, in comparison to the total
length of the signal, in a transformation domain is described as sparse. It is defined by
Definition 1.1.

Definition 1.1

A signal x(n) of length N is K-sparse in a transformation domain if it consists
of K nonzero components in the corresponding domain, K < N, at positions K €
{ki1, ke, ..., ki}, and zero-valued components everywhere else,

| Ay #0, forkeK
X(k) = { 0, otherwise (1.23)

where Ay are the amplitudes of the components at positions k € K, which can be
complex-valued.
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1.2.1 Measurements of sparse signals

Unlike the traditional sampling theorem, one of the main advantages of sparse sig-
nal processing is that such signals can be recovered using a reduced number of Ny
observations. The measurements are defined in Definition 1.2.

Definition 1.2
A measurement of sparse coefficients X(k), k = 0,1,...,N — 1, is obtained as their
linear combination

N-1
y(i) =Y ap(i) X (k), (1.24)

k=
where ay(i), k =0,1,..., N—1, are the weighting coefficients for the i-th measurement,

i=0,1,...,Ny— 1.

The aim of recovering sparse signals with a reduced set of samples /measurements/observations
had a wide range of interest in the recent literature [19-23]. The theory stating this fact
is known as compressive sensing (CS), developed under the framework of sparse signal
processing (SSP). Notice that we can relate the general form of measurements, defined
by (1.24), with signal samples defined by (1.10). Comparing these two relations, we
can state that a signal sample, at one instant n;, can be seen as the measurement of
X (k) with

N-1
y(i) = w(n) = Y e PPN (), (1.25)
k=0
where the weighting coefficients are the DF'T transform coefficients, i.e.
ag(i) = e7I2mmik/N. (1.26)

A reduced set of measurements, within this context, can be considered as the re-
duced number of signal samples. The difference between the sampling by the traditional
sampling theorem and by compressive sensing is shown in Fig. 1.1, where only N4 = 32
samples are used for the analysis, instead of the full set of measurements N = 128.

The main objective of CS and SSP is to desirably reduce the number of acquisi-
tion samples/observations/measurements used for the signal sensing, transmission, and
storying. Besides that, the small number of available measurements or signal samples
can be the consequence of other physical restrictions in the considered system. It could
also be a result of unavailable samples due to high corruption of some signal samples
or parts of the signal. All of these scenarios will be considered in the thesis, since the
formal mathematical framework is similar.

1.2.2 Measurement matrix

The measurement matrix consists of the coeflicients used to form measurements of a
sparse signal with elements X (k). In the case that the signal samples are used as the
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Shannon-Nyquist sampling
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Figure 1.1: The difference betweeen traditoinal sampling theorem and compressive sensing:
traditional Shannon-Nyquist sampling (top); compressive sensing sampling (bottom).

measurements, the measurement matrix is defined based on the transformation matrix
for the considered domain of the signal sparsity.

The N, available samples y(i) at the positions defined by the set
Ny = {ni,ng,...,nn,},
can be written as

y =[5(0),y(1),-...y(Na = DI" = [z(n0), z(m1), ..., 2(nw, )] (1.27)

The measurements, which are the linear combinations of the inverse transform coeffi-
cients, are presented in a matrix form as

y = AX, (1.28)

where A is a measurement matrix of size N4 X N obtained by keeping the rows of the
inverse transformation matrix ¥, which correspond to the instants n;, ¢ = 0,1,..., Na—
1, of the available samples/measurements

Yo(no) Yi(no) 0 Un_i(no)

Yo(n1) Yi(na) o noa(m)

A= (1.29)

@Do(nz‘vf,—l) ¢1(7”LNA—1) @Z)N—l(ﬁNA—l)

Using the notation ay (i) = 1x(n;) we can write a more general form of the measurement



1.2. Compressive sensing and sparse signal processing 13

matrix as
(ZQ(O) aq (O) tee aN,l(O)
A_ agz(l) a1:(1> : CLNzl(l) ‘ (1.30)
(lo(NA—l) CL1<NA—1) CLNfl(NA—l)

Depending on the particular application, several measurement matrices other than
the partial DFT, are frequently used in compressive sensing. An example of a widely
used measurement matrix is the Gaussian measurement matrix, where the weighting
coefficients are the Gaussian distributed random numbers

ax(i) ~ N(0,1/Ny), (1.31)

with zero mean and variance 1/N4. The weighting coefficients can also be uniformly dis-
tributed random numbers, or random numbers assuming values +1 or —1 (i.e. Bernoulli
measurement matrix).

Note that randomness is a desirable property of the measurement matrices. Consid-
ering the DFT, the randomness can be increased by sampling the signal at an arbitrary
instant ¢; instead of the regularly defined Nyquist samples at ¢At. This case will be
also examined.

1.2.3 Problem formulation

In the mathematical sense, the objective of the CS based approach is to reconstruct
the N unknown elements of a sparse signal using only the Ny < N available samples
y. Reduction in the number of available measurements will result in a system of N4
equations, whose matrix form is AX = y. Since there are N > N, unknown variables
in X, the system is under-determined and cannot be solved uniquely, without additional
constraints.

The primary and most crucial constraint in CS is that the signal is sparse. If this
constraint is satisfied, the solution is obtained by maximizing the sparsity of the signal
X, given the measurement equations. Firstly, in order to maximizing the sparsity, the
sparsity measure must be defined. The most straightforward sparsity measure is the
Lg-norm, which counts the nonzero values in the transformation domain. The Ly-norm
of X with K nonzero elements is

X, = K. (1.3
The problem formulation, using the Lg-norm, is then
min ||X||, subject to y = AX. (1.33)

This is a direct and basic way to maximize sparsity. However, it is an NP-hard (NP
— non-deterministic polynomial-time) combinatorial problem. Also, it is sensitive to
noise and not feasible for computational purposes, having (%) possible combinations
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for a viable solution. This is why more practical cases, such as the closest convex cost
function, the Li-norm, are used

min || X||, subject to y =AX. (1.34)

In theory, it has been proved that the minimization of the L;-norm will have the same
solution as the minimization of the Ly-norm following particular conditions [24]. The
L;-norm minimization allows the application of linear programming methods for convex
function minimization.

1.3 Problem solutions

The CS theory has produced a vast number of methods to find the unique solution
to the previously stated problem. These can be divided into three broad groups of
algorithms maximizing the signal sparsity:

e [o-based reconstruction algorithms, solving Eq. (1.33), such as

— Orthogonal matching pursuit (OMP) [25-27],
— Compressive sampling matching pursuit (CoSaMP) [28],

e [;-based reconstruction algorithms, solving Eq. (1.34), such as

— LASSO minimization [29-32],

— Gradient-based reconstruction [33, 34]

— Total variations |[35-37],

— Iterative hard thresholding (IHT) [38-40].

e Bayesian-based reconstruction [41,42].

The summary of some of these algorithms can be found in Appendix 1. In the next
subsection, the OMP and its iterative extension will be further detailed.

1.3.1 Reconstruction algorithm

In all reconstruction methods, the initial estimate plays a crucial role. It is not only
a starting point for all of them, but contains information about the solution existence
as well. The initial estimation gives a good insight of the reconstruction performance
which could be expected.

Initial estimate

The available samples (measurements) are used to estimate the initial values of the
sparse coefficients X (k), k = 0,1,2,..., N. The values of the initial estimate will be
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denoted by Xo(k), k = 0,1,2,..., N, or in a vector form as X,. The initial estimate
can be considered as a back-projection of the measurements to the matrix A,

X, = Afly. (1.35)
The elements of this initial estimate can be written as
Na-1
Xolk) = D auiyylo). (1.36)
i=0

From Eq. (1.35), using y = AX, the relation between the initial estimate with the
true coefficients (the actual solution of our problem) is

Xo=A7AX. (1.37)

Note that if A7 A is an identity matrix, i.e., A A = I, then the initial estimate would
be equal to the correct coefficients X, resulting in the solution of our problem. However,
this is impossible to achieve when a reduced set of measurements is available (when the
measurement matrix is of size N4 x N). The off-diagonal elements in the matrix A# A
cannot be zero. The maximal value of these elements, denoted by p (discussed later in
Section 1.3.2.), satisfies the Welch lower bound [43,44]|, meaning that

= 1/%. (1.38)

From this inequality, we see that the maximal off-diagonal element must be greater
than zero when Ny < N. Only if all signal samples are available (when Ny = N),
then it is possible to get the bound equal to zero and A# A = I. This is an expected
result when the reconstruction process reduces to the inverse signal transform. Then,
the measurements would be equal to the full set of signal samples y = x.

Since the properties of the initial estimate will be crucial throughout this thesis,
its form for a sparse signal will be presented in detail. The measurements in (1.24)
for a sparse signal with nonzero coefficients X (k) at k € {ky, ks, ..., kx} = K, can be
written as

y(i) =Y an ()X (k) (1.39)

The initial estimate elements from (1.36) is of the form

Xolh) = 3 i) = 3 awli)( D e )X (k) (1.40)

or, by changing the order of summation,

Np—1

Xo(k) = 32 X(k) (Y axli)an (i) = - XCh)ulk, k), (1.41)

=0 =1
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where
Na-1

plk, k) = > an(i)ag, (i). (1.42)
i=0
This relations will be used for the analysis of the reconstruction accuracy. Note that
the value of u(k, k;) is equal to the element of matrix A¥ A at the position (k, k;).

OMP reconstruction algorithm

For most of the presented results, an iterative variant of the OMP reconstruction
algorithm [19, 28|, will be used. This algorithm belongs to the group of implicit zero-
norm minimization solutions, since it is based on counting and minimizing the number
of nonzero elements in X (k). Most of the results presented in the thesis are valid for
other CS algorithms as far as the conditions for unique reconstruction are satisfied.

The reconstruction algorithm is implemented in two main steps:

1. estimation of the set of positions K of the nonzero components in X, and

2. reconstruction of the element X (k) values using the measurements/available sam-
ples with the estimated nonzero positions.

In order to find the positions of nonzero elements, the initial estimate from (1.35)
is calculated and used. Two of the methods are considered, an one-step reconstruction
and the iterative version of this algorithm. Note that, the hardware realization of the
algorithm in the Field Programmable Gate Arrays (FPGA) circuit is shown in [45].
More architectures for CS methods can be used, as presented in [46,47].

One-step OMP

The simplest case is when we can expect that the number of nonzero coefficients of
the initial estimate Xo(k) at k& € K is notably greater in comparison to all other elements
at k ¢ K. In this case, matrix A A should be such that X contains K coefficient much
higher than the other coefficients. The position detection of the nonzero component is
done by finding the positions of the K largest components in Xy, that is

K= {]{51,]{?2,...143[(} = arg{maX]X0|}. (143)

Taking the positions of theK largest components forming the set K in (1.35) the am-
plitude reconstruction is performed. As it has been stated before, if A# A were an
identity matrix, Xy would be identical to the exact solution X. However, with a re-
duced set of samples, the Welch lower bound prevents this. Nevertheless, it is important
to achieve that the diagonal elements of A¥ A are more significant regarding the other
non-diagonal elements.

For the second part of the algorithm, let consider that all K positions are found
correctly. Then, the values in X (k) at k ¢ {ki,ko,..., kx} are set to zero, and the
vector Xg = [X (K1), X(ks), ..., X (kg)]T is with unknown nonzero values that should
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be found (reconstructed). Note that this assumption transforms the initial under-
determined system y = AX with N, equations and N unknowns in X to an over-
determined system of N4 equations with K unknowns (X (k1), X (k2),..., X(kk)). The
new set of equations now reads

This system can be solved for the nonzero spectral values X at the estimated positions
K. The matrix Ag is an N4 x K sub-matrix of A, keeping only the columns of the
nonzero elements positions in X (k)

Ay (O) Ay (0> U Qe (O)
alﬁ(NA_l) akz(NA_l) akK<NA_1>

The smallest number of measurements needed to recover K coefficients at the known
positions is Ny = K < N. However, for an accurate estimation of the nonzero posi-
tions, a much larger number of measurements is needed according to the reconstruction
conditions (which will be discussed in the next section). When N, > K, the system
is over-determined, and the solution is found in the mean squared error (MSE) sense.
The solution is

Xy = (AZAK) ALy = pinv(Ag)y, (1.46)

where pinv(Ag) = (AZAg)™ Al is a matrix Ag pseudo-inverse and AZA [ is called
a K x K Gram matrix of Ag.

Iterative OMP

The OMP procedure considers the criteria when the K components are larger than
the initial value coefficients at originally zero-coefficient positions. That condition can
be relaxed by using the iterative version of the method. In order to estimate the position
of the largest nonzero component, only its value must be larger than the values at the
originally zero-valued coefficient positions. The position of the largest component is
found as

ki = arg max{|Xo|}. (1.47)

Its amplitude value is estimated using Eq. (1.46) as it were the only nonzero coefficient.
It is reconstructd using the sub-matrix A;. Then, this component is subtracted from
the measurements, i.e., y—A;X;, and the procedure is continued by estimating the next
largest coefficients with the new measurements. After the initial estimate is calculated
with these samples, its largest value position is found as k3, and the new set of two
nonzero positions is formed as {k1, ko}. Matrix Ay is formed with these two positions
and (1.46) is solved for X,. After the two largest coefficients are detected and estimated,
they are removed from the measurements as y — Ay Xos.

If these new measurements are equal to zero after the subtraction, it means that
we have solved the problem and that signal is K = 2 sparse. If this not the case,
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the new measurements (removing the two largest coefficients) are used for the next
initial estimate and the third largest coefficient position detection. The procedure is
iteratively continued until some desired stopping criterion is achieved. The simplest
measure for it can be that the new measurement matrix, after K steps, calculated as
v — A Xk, is equal to zero or its energy is bellow a defined small accuracy level.

1.3.2 Conditions for reconstruction

Having the condition of sparsity fulfilled, additional criteria should be satisfied for a
successful and unique reconstruction with a reduced number of samples. These criteria
are intensively studied and they are commonly expressed using the coherence index of
a measurement matrix or the restricted isometry property (RIP) of this matrix.

Coherence index

The most widely used criterion for a successful reconstruction is based on the co-
herence index of the measurement matrix A. Consider an N4 X N measurement matrix
A and denote its columns by vectors a;, ¢ = 0,1,..., N — 1, that is

A= [ag,al,...,aN_l]. (148)

The scalar product of two columns of this matrix, £ and ¢, is defined by

Ni—1

(aff &) = > ai(p)ai(p). (1.49)

p=0
Notice that this product is, by definition, equal to the (k,i) element of matrix A7A.

Definition 1.3
The coherence index of a measurement matrix is defined as the maximal value of the
normalized scalar product

= max ; (1.50)

Na—1 .
_ a; a
= max |u(i, k)| = max pro (p) k|(p)

Ni—1
2 po  lax(p)?

<asza ai>
<akH’ ak)

fori # k. For the normalized measurement matrices N:A*l a;(p)|* = 1, the coherence
p=0
index is defined by

Na—1

= max‘ Z ai(p)aZ(p)’. (1.51)

p=0

o = maix (i, k)| = max | (af’, a;)

This value is an important parameter in choosing the measurement matrix which
will be further discussed by Statement 1.
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Statement 1: A K-sparse signal can be reconstructed from the measurements in a
unique way if the coherence index of the matrix A satisfies the condition

1 1
K<-(14—-]. 1.52

2 ( i u) (152
A smaller coherence index means that signal with larger sparsity values K can be

reconstructed. The relation can be derived considering the initial estimate as
K
Xo(k) =Y X (k) k). (1.53)
=1

Without loss of generality, assume that the largest coefficient value is X (k1) = 1.
The largest disturbance to this coefficient estimation is if the remaning (K — 1) nonzero
coefficients are almost equally strong, i.e., close to 1. Then the initial estimate would

be
K

Xo(k) = ulk, k). (1.54)
1=1
Since u(k, k) < p, the largest possible value at the original zero coefficient position is
| Xo(k)| < Ku. At the largest coefficient position, k = k;, the worst case is if all other
(K — 1) terms are maximal (equal to p) but with opposite sign than its value, that is
Xo(k1)| > 1 — (K — 1)u. The detection of the largest element is successful if its worst
case initial estimate is greater than the worst case value at zero coefficient positions

1— (K —Vp> Kpu (1.55)

Note that, if this relation is satisfied for the largest coefficient, then, after it is success-
fully detected, reconstructed and removed, the relation holds for the signal with lower
(K — 1)-sparsity.

Restricted isometry property (RIP)

The restricted isometry property is another way to define a condition which the
measurement matrix should satisfy in order to uniquely reconstruct a signal under the
CS approach.

Firstly, a K sparse signal is uniquely reconstructed if the size of the smallest non-
singular sub-matrix of A (spark) is such that

spark{A} > 2K. (1.56)
This condition means that all submatrices of A with order lower than 2K are nonsin-
gular.
Statement 2: A K-sparse signal can be uniquely reconstructed using the measurement
matrix A, if the RIP condition
| Aok Xox |3

1 =9 <
1 Xox|l5

<1+ bk, (1.57)
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holds for all its sub-matrices Asx of order 2K, where d9 is the isometric constant in
the range 0 < 09 < 1. The constant dox can be calculated as

(52]( = max{l — )\min7 )\max — 1} (158)

where A, and Apac correspond to the minimum and the maximum eigenvalue of
Al Ay, respectively.

The RIP condition ensures that the solution of the Eq. (1.33) and Eq. (1.34) give
the identical results, meaning that the results of the approximation are close to the

true values [24]. It is seen that, in the case of Eq. (1.34), the isometric constant is in
the range 0 < 09 < V2 —1.

Although these conditions are fundamental for obtaining a successful and unique
reconstruction of a sparse signal, it is interesting to note that they are very conserva-
tive for real-world sparse signals. Without loss of generality, we can assume that the
reconstruction conditions are met and the practical guidelines are satisfied (that the
number of measurements is significantly higher than the sparsity).
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The compressive sensing framework assumes sparse signals. However, due to their
nature, many real signals (particularly non-stationary signals) are only approximately
sparse or not sparse at all. Additionally, the sparsity condition can be distorted due to
many other reasons. The most evident one is the additional noise in signals. Moreover,
a very simple, yet an immense real-world problem, is the analysis of signals which are
not on the sparsity domain grid. This includes signals which are not on grid frequencies.
These signals can be analyzed and processed within the compressive sensing framework
assuming that they are sparse under natural circumstances. The influence of their
nonsparsity will result in the error through the reconstruction. For such signals, only
the limit bounds of the reconstruction error were derived in the literature [15,24,48-50].
The main contribution of this Chapter is the calculation of the precise expected squared
reconstruction error in time-varying signals. The STFT is assumed as the sparsity
domain of the analysis. The reconstruction of nonsparse signals constrained with a
sparsity condition will be examined and compared to the statistical error calculation.

In the first part of the Chapter, the properties of the initial estimate in the recon-
struction procedure will be explained as the basis to the error derivation. The noise
in the initial estimate will be calculated on uniformly and randomly sampled signals.
These results will support the error calculation in the STFT domain. The result will
be generalized for cases when the signal is nonuniformly sampled [51] as a consequence
of sampling jitter or intentional sampling deviations. Since most of the real systems

21
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are implemented in hardware using finite length registers, a specific form of noise, the
quantization noise, is also present in signals [52|, and it will be also analyzed in this
Chapter. At the end, the effect of noise folding will be considered, which will conclude
the effectiveness of the error calculation in many real circumstances of signals nature.

2.1 Initial estimate analysis for uniform sampling

The initial estimate X, from Eq. (1.35) is the key for deriving the exact error of an
approximately sparse or nonsparse signal. It can be understood as the back-projection
of the samples on the measurement matrix, which is defined as the matched filtering. It
is the first important step for the analysis and reconstruction of a signal. The available
data are back-projected to the measurement matrix and used in all reconstruction
algorithms. Moreover, the back-projection relation contains more properties of the
desired sparse signal than being used just as its initial estimate. In Section 1.3.3. it
was shown that the key criteria for the signal reconstruction can be related to the
back-projection relation and initial estimate (e.g. the coherence index).

The initial estimate can be rewritten as

Xo(k) = Y 2(n;)én, (k). (2.1)

n;ENy

If all measurements are available, the initial estimate of an originally sparse signal X (k)
will be sparse and equal to the original signal transform. However, if the set of available
measurements is reduced, the missing samples will produce noise in the initial estimate
and cause its deviation from the original transform. Having less available samples will
make the signal in the transformation domain more noisy, as illustrated in Fig. 2.1.

For an easier understanding, let us consider the STFT calculated at one instant
using a rectangular window. The analysis of the transform then reduces to the DFT
analysis of the signal samples within the window. For the DFT case, the Eq. (2.1)
reads

Xo(k) = > w(ng)e >k, (2.2)
n; ENy
Firstly, let assume a simple single-component signal, i.e. K = 1, with amplitude A, at
a position kg,

= ) Age I Tk, (2.3)
neNy4
The expected value of Xy(k), i.e., E{Xo(k)}, denoted by fix,x) is equal to
pxo) = Ao Y, E{e I N htom}, (2.4)
neNy

Note that the set N, is random, since it contains random N, samples, out of N. The
expectation is caclulated over this random set. In [8, 53], it has be shown that the
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Figure 2.1: Initial estimate noise illustration: time domain (left); frequency domain (right).
Top - signal with full set of measurements. Middle - signal with 50% of available samples with
corresponding DFT. Bottom - signal with 25% of available measurements with corresponding
spectrum. Red dots represent true values, black lines present available values.

expected value is
E{e IR ERmY — 5k — k), (2.5)

where 6(k — ko) = 1 for k = ko, and 0(k — ko) = 0 for k # ky. Since there are N4 terms
n (2.4), we get
,uXo(k) = AoNAd(k} — ko) (26)

For the calculation of variance, the value at the position of the component, i.e.
k = ko, is aio ") = 0. For the case when k # kg, the variance of the initial estimate will
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be nonzero, while the mean value is zero. The variance is calculated using

oty = D O |AgPE{eIFERo)n=m)}, (2.7)

neNy meNy4

It has been previously confirmed in [53] that, for random n # m and k # ko,
variables e % (F=Fon are equally distributed, producing expectation equal to
E{e—j%(k—ko)(n—m)} — _—1 . (2.8)
N -1
For n = m, the complex sinusoid is deterministic, and the relation E{e‘j %(k_ko)(”_m)} =
1 holds.

Note that, in (2.7), there are N4 terms when n = m, and N4(N4 — 1) terms when
n # m. Therefore, for k # kg, the DFT coefficient variance becomes
NaNg

oty = [Ao* 77— (2.9)

In the general case, i.e. when K > 1, the initial estimate is a summation of
independent random variables

K
Xo(k) = > Y A K lhkon, (2.10)

neNy =1

According to (2.6), the mean value of a K > 1 sparse signal is then

K
/vLXo(k) == NA ZA;(S(/{J — k}l) (2.11)
=1

Since the random value at k = k;, [ = p, does not contribute to the noise, the variance
of X (k) will be

K
NANg
O%(O(k):ZNALAZPN 1 .

=1
I#p

(2.12)

This analysis can be applied on sparse time-varying signals in the joint time-
frequency domain. The total variance of a STFT signal will be the average sum of
the variances of each windowed instant of DFT.

2.2 Initial estimate analysis for random sampling

In some practical scenarios, signals are randomly sampled due to intentional strategy
to increase randomness in sampling or due to the effect of high jitter in sampling. The
jitter can be caused by lack of synchronisation, hardware or transmission problems.
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Random sampling affects the processing of signals under the CS framework, since the
sample values are not on the grid anymore, i.e., at random positions 0 < ¢, < N. Then,
the initial estimate of a signal with available samples at random positions ¢, € Ny =
{tl, tg, ce ,tNA} is

Xo(k) = a(ty)e 72mnk/N, (2.13)

neNy

The mean value of such signal remains the same as for the uniform sampling case, i.e.
the mean value is equal to the one from Eq. (2.11).

In the case of random sampling, it is interesting to notice that, unlike when the
signal is uniformly sampled on the grid, the variance at the signal component of a signal
will not be zero even when NN signal samples are available. This will conclude that the
all components in the initial estimate Xo(k) are affected by a noise. The noise has a
variance

K
Tty = NaAP[L = 6(k — k). (2.14)

=1

2.3 Error in time-frequency signal reconstruction

Intuitively, it can be seen that this idea is closely related to finding the exact error
of the reconstruction of approximately sparse or nonsparse signals when they are re-
constructed under the assumption that their nature is originally sparse. For a signal
x(n), with the corresponding transformation X (k),k =0,1,..., N — 1, the definitions
of approximately sparse and nonsparse signals are given next.

Definition 2.1

An approximately sparse signal, of length N, is a signal which consists of K sig-
nificant non-zero components, K < N, at k € K = {ky,ko,..., kx}, and N — K small
non-zero components k ¢ K | i.e.

min { X ()|, X (ko) o [X (i) | b ma {1X ()|, X (i) 1X ()|
(2.15)

Definition 2.2
A nonsparse signal, of length N, is a signal which consists of N non-zero components
of the same order of amplitude.

Since the signal is considered as originally sparse, the reconstruction is performed
under the constraint that it is K-sparse. The reconstructed are K components and the
remaining components are set to zero using the OMP algorithm. This results that the
remaining N — K components, that are not reconstructed, will impact on the error in
the reconstructed K components. An analysis of the error in the reconstructed signal
caused by this effect will be analyzed.
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For the analysis, recall a time-varying signal z(n),and its windowed version x(n, n,,)
of length N,,, with its STFT denoted by Sy(n) as

Ny/2—1
Sy (n, k) = DET{x(n + ny)w(n,)} = Z (1 4 Ny )w(ny, e 2k Ne 0 (2.16)

Nyw=—Nw/2

Assuming sparsity K, the signal is reconstructed using the available measurements
at positions n + n, € N4y. Consequently, the number of missing measurements is
Ng =N — Ny.

Notice that using any CS reconstruction method (assuming that conditions for a
successful and unique reconstruction are met), we detect and reconstruct K coefficients,
with A;(n) corresponding to the reconstructed amplitudes at k € K. The amplitudes
of the nonreconstructed components generate noise in the reconstructed coefficients
Sr(n). The noise variance caused by the components that are not reconstructed is
obtained from the variance of the initial estimate, given by Eq. (2.14) as

9 NaNg

A"

(2.17)

The amplitude values at the positions of the original nonzero coefficient in the initial
estimate Syo(n) are proportional to N4. In the reconstruction process, the amplitudes
should be reconstructed to their true values (i.e., when the full measurement set is
available). Thus, the values of the recovered amplitudes should be proportional to N,
instead of Ny4. resulting in the scaling factor to be N/N,. Therefore, the noise variance
scaling factor in the reconstructed coefficients is (N/N4)2. Hence, the noise variance
caused by one nonreconstructed component to the reconstructed coefficient will be

Ng

) N NANQ
~ | 4,
= N,

(A" 55 (n)]* N—= (2.18)
The noise energy in the K" components of Sg(n) is the summation of the K variances of
each reconstructed coefficient. The total energy of noise in the reconstructed coefficients

generated by the N — K nonreconstructed components is

ISnr(n)—=Snk(n)|3 = KN— Z [Ai(n)]” (2.19)

A= K+1
where Syg(n) is obtained from Sg(n) by adding zero values at the positions k£ ¢ K.

The energy of the nonreconstructed elements in the STFT can be written as

N

ISx(n)=Sxx()l5 =Y INAn), (2.20)

I=K+1

where Syi(n) is a signal of length N, which represents the amplitudes of Sy(n) at
positions K, and is zero-valued everywhere else. From (2.19) and (2.20), it can be
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concluded that the energy of error in the reconstructed components is proportional to
the energy of the nonreconstructed components of the nonsparse signal in the form

N,
ISxa(n)=Snx(n)l; = K5 1Sn(m)=Snx(m)l; (2.21)
NN
Note that, in the case when a randomly sampled signal is considered, the error is
» K 2
ISnr(tn) =Sk (ta)l; = N ISn () =Sn (tn)]l5 - (2.22)
If the signal is strictly sparse, we can conclude there is no reconstruction error, i.e.

1SN () =S (t)ll5 = 0, (2.23)

meaning that Sy (¢,) = Syx(t,), whether the signal is sampled uniformly or randomly.

For uniformly sampled signal, the reconstruction error is zero-valued when all sam-
ples are available, i.e. Ngy = N and Ng = 0.

2.3.1 Additive input noise

In a more realistic case, the received measurements are usually with some additive noise

y +e=AX, (2.24)

where ¢ is the additive noise with variance o2. Having noisy measurements will provide
that the initial estimate of the signal, Syo(t,, k), is with an additional noise component
as well. The variance in Syo(t,, k), caused by the measurements input noise, is

T2 o(tnt) = Nao?. (2.25)

In the reconstruction process, as mentioned, the initial estimate is scaled by the factor
N/N,. The noise variance in one reconstructed component is then
N )2 _N?

var{Syr(tn, k)} = NAcrf(N—A = N—AJE.

That will result in the total MSE in K reconstructed coefficients, due to to the additive
noise

(2.26)

N2

HSNR<tn) — SNK@n)HS = KN—O'€2. (227)
A
The error energies, caused by the nonsparsity effects and the additive input noise
independently, can be summed to produce a general relation for the expected squared
error including both effects. The equation for the noisy and nonsparse signals case is
given by [54]

2 2 N?
ISnr(tn) =Sk (tn)ll; = KCk ISn(tn) =Sk (tn) > + KN_AU‘?’ (2.28)
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with Cx = Ng/NaN for uniform sampling (¢, = nAt) and Cx = 1/N,4 for random
sampling.

The accuracy of the theoretic result in Eq. (2.28) will be validated on different sig-
nals. The result for the error calculation will be compared with a statistically calculated
error,

Estatistical =10 1Og10(||SNK(tTL) - SNR(tTl)Hg) (229)

where Syx () is the original K-sparse signal at positions k£ € K and Syg(t,) is the
reconstructed signal at k£ € K.

2.3.2 Error calculation examples

Example 1: Uniform sampling. Let assume a signal consisting of two main com-
ponents which are linear frequency modulated (LFM)

52%+32(%)2+2¢1) j (4%-20(%)%2@)

z(t) = 1.3ej”< +2.1¢ : (2.30)

with N = 1024. The values ¢; and ¢, are the random phases in the signal. The cases
of uniform and random sampling are considered. The signal is sampled with sampling
interval At = 1. The STFT of the signal with full set of measurements at ¢t = nAt and
with Hamming window of length N,, = 256 is presented in Fig 2.2 (top left).

A reduced number of available measurements/samples is considered next. The
available samples are affected by a random Gaussian noise with zero-mean and variance
0. = 0.1. The STFT with the set of available samples of size Ny = 2N/3 is presented
in Fig. 2.2 (top right). From the Figures it is seen that the signal is non-stationary.
The reconstruction with sparsity level of K = 8,16, 32,48 is presented in the remaining
subplots of Fig. 2.2, respectively. It is interesting to note that, by using only K = 8§
the weakest component is not reconstructed. When K = 16, only few parts of the
component are reconstructed. Only by using K = 32 or more we can get the recovery
of both components.

Using the calculation from Eq. (2.28), the theoretical error is calculated as

2
Erneoretiat = 1010gyg (K% ISx(n)—Snx ()| + K%gg). (2.31)
The total reconstruction error assuming different numbers of available measure-
ments N4 and various sparsities K is illustrated in Fig. 2.3. The results are averaged
in 100 realizations. The statistical error is presented with the dots, while the theoretical
error is shown with lines. The filled dots present that the reconstruction is performed
successfully with high probability. In this case, the condition to consider a successful
reconstruction is when N4 > 4K.

Example 2: Random sampling. Assume a LFM signal with three main com-
ponents
x(t) = x1(t) + 2o(t) + x3(t) (2.32)
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Figure 2.2: Sparse STFT reconstruction when signal is uniformly sampled: STFT with the

full set of measurements (top left); STFT with the reduced set of noisy measurements with
variance o, = 0.1 (top right), the reconstruction with K = 8,16, 32,48 (remaining subplots).

where
zo(t) = 1.3

.’L’g(t) = e

jm (52%+32(%)2+2¢>1>
e
jm (113%—%46(%)2—‘,-2@)

i (446%—54(%)24-2%)

(2.33)
(2.34)

(2.35)
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Figure 2.3: Total averaged reconstruction error asuming different number of available mea-
surements N4 and various sparsity levels K. The error is averaged over 300 realizations. The
signal is uniformly sampled. Lines present the theoretical results, while the dots are the sta-
tistical values. The filled dots show when the recovery is performed with a high probability,
i.e. for Ng > 4K.

with N = 1024 and random phases ¢1, ¢o, and ¢s.

In this case, a random set of N, available samples at 0 < ¢,, < 1024 is considered.
The STFT, when the full set of measurements is considered, is shown in 2.4 (top left).
It can be observed that random sampling of the signal adds to the nonsparsity of the
signal, together with the reduced number of available samples, Fig. 2.4 (top right).
The signal is reconstructed with assumed sparsity levels of K = 16,24, 32, 48.

Using the calculation from Eq. (2.28), the theoretical error is

2
FEiheoreticat = 1010gy <(N£ +1) Sy (n)—=Snx(n)| + K]]:][—‘T?)- (2.36)

A A
The total reconstruction error when Ny = N/2,2N/3,3N/4 is presented in Table
2.1. The total error is averaged in 100 realizations. The statistical results are presented
with dots, and the theoretical error is presented with the lines. The filled dots present
the results when the reconstruction success is of high probability. Note that the error
in the random sampling case is larger than the one received in the uniform case. It
is due to the fact that it causes higher nonsparsity than in the uniform sampling.
Additionally to that, noise increases the nonsparsity in the signals. Our goal, however,
is to find the exact error which is produced by the reconstruction. The statistical and
the theoretical error show high agreement in the reconstruction, proving the exactness

of the derivation.
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Figure 2.4: Sparse STFT reconstruction of a randomly sampled signal: STFT with the full set
of measurements (top left); STFT with the reduced set of noisy measurements with variance
oe = 0.1 (top right), the reconstruction with K = 8,16, 32,48 (remaining subplots).

Example 3: Application on audio signals. The audio signal “ITrain”, included
in the MATLAB software, is considered. Its original STFT, with full set of samples, is
presented in Fig. 2.5 (top left). The STFT is performed using a Hanning window with a
50% overlap, which allows simple and direct reconstruction of the audio signal. Assume
that the sparsity of the signal is K = 55 and that only half of the measurements are
available. The STFT of the signal with the available set of measurements is presented
in Fig. 2.5 (top right). The reconstructed STFT assuming the sparsity K = 10 is
illustrated in Fig. 2.5 (bottom left). The reconstructed STFT with sparsity K = 50 is
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Table 2.1: Total averaged reconstruction error in the reconstructed coefficients (in dB) for
Ny = N/2,2N/3,3N/4, and sparsity levels K = {16,24,32,48} when randomly sampled
signal is used.

Ns=N/2 K=16 24 32 48
Theory 023 —0.58 —0.83 —1.07
Statistics —0.35 —0.74 —1.01 —1.23

Njo=2N/3
Theory —-0.50 —-0.93 —-1.25 —1.57
Statistics —-0.61 —-1.00 —1.28 —1.61

Njo=3N/4
Theory —-0.54 —-096 —-1.35 -—-1.64
Statistics —0.65 —-1.03 —-1.37 —1.57

presented in Fig. 2.5 (bottom right).

Also, an audio signal with the words “You and I” is recorded. It was recorded
on a MacBook Air laptop using the MATLAB software. The signal was sampled at
a frequency f; = 44.1 kHz, with 16-bit A/D conversion and single-channel mode.
Assume that 50% of the samples are unavailable. Two sparsities are assumed, K = 30
and K = 80. The four subplots in Fig. 2.6 present the original STFT, the STFT with
a reduced number of measurements, the STFT reconstruction with K = 30, and the
STFT reconstruction with K = 80, respectively.

The total error of the reconstruction using different sparsities K for the two audio
signals is shown in Fig. 2.7. The error is calculated according to 100 realizations. The
black solid line presents the the theoretical error. The red circles are the statistical
results. We can conclude that in both cases, the results are similar, proving that the
exact error equation is found and statistically confirmed.

Example 4: Radar signals. Another suitable application for the recovery of non-
sparse signals assuming sparsity constraint is inverse synthetic aperture radar (ISAR)
imaging [55-60]. In general, ISAR images require only few components for transmission
and reception, which is sufficient for obtaining information on the range and cross-range
of a target. That makes them usually sparse in the 2D-DFT domain. Assuming sam-
pling on the grid, an ISAR signal, of size N x M, has reconstruction error

Nog 9 (NM)?
Etheoretical =10 10310 <KW ||SN(TL)—SNK(TL) ||2 + KN—AU§> . (237)
where Ng = NM — Ny.

The ISAR image of an airplane MIG-25 is considered [61]. It is approximately
sparse in the 2D-DFT domain. The ISAR image is shown in the top left subplot of Fig.
2.8. In the logarithmic scale (top right subplot), the nonsparsity is noticeable. Sparse
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Figure 2.5: The recovery of the audio signal “Train”: STFT with full set of measurements (top
left); STFT with 50% of available samples (top right); Reconstructed STFT with K = 10
(bottom left); Reconstructed STFT with K = 50.

reconstructions from N4 = NM/2 available samples, with K = 50,150,250, 350 are
shown in the remaining four subplots of Fig. 2.8. The error calculation, according to
Eq. (2.37), is presented in Table 2.2.

Table 2.2: The error in the ISAR reconstructed coefficients for MIG data for assumed sparsities
K = {50,150, 250, 350}.

No=NM/2 K =50 150 250 350
Theory —20.92 —24.72 —-28.71 -31.60
Statistics —20.19 —-24.36 —28.17 —-30.34

Ny =2NM/3 K =50 150 250 350
Theory -16.36 —17.87 —20.12 —20.12
Statistics —17.85 —19.32 —21.58 —21.58
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Figure 2.6: The recovery of the recorded audio signal “You and I”: STFT with full set of
measurements (top left); STFT with 50% of available samples (top right); Reconstructed
STFT with K = 30 (bottom left); Reconstructed STFT with K = 80.
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Figure 2.7: Total error in dB after the reconstruction in 100 realizations of “Train” (left) and
“You and I” (right), with various sparsity levels. Black line represent the theoretical results,
red circles is the statistical estimation.
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2.4 Sampling generalization

For uniform sampling, the considered instants in the reduced set of measurements are
defined by sampling theorem and a random subset of all such instants. The random
sampling is done at a set of fully random instants within the considered time interval.
These two cases can be considered as the special cases of the nonuniform (jittered)
sampling at the instants t,, = n + v,,, where v, it the random variable causing the shift
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in the uniform sampling at instant n (unit sampling interval is assumed without loss of
generality). the random variable (jitter) with a uniform distribution —A/2 < v, < A/2
is assumed. The two special cases of this nonuniform sampling are: (i) the uniform
sampling (when A = 0) and (ii) the random sampling (when A is large). The resulting
reconstruction depends on the degree of randomness in the nonuniform sampling, as it
will shown next.

The general form of the expected squared error in the reconstructed coefficients is
obtained using the initial estimate. Having a signal x(¢,) sampled at t, = n + v, its
initial estimate can be written as

= ) Aged T = N7 Aged Fhned ke (2.38)

neN 4 neNy
The initial estimate of a single-component x(t,), with amplitude Aq at kg, will then be

= ) Aged Fhned K hkovn, (2.39)

neN 4

The mean value of Xy(k) becomes

oy = Ao Y BASR OBl ROty (2.40)

neN 4

We have seen that for the first term, Ay .y, E{e? % (=ko)n} the mean value is
xo(k)y = AoNa6(k — ko). For the second term, caused by a random sampling jitter, the
expected value is calculated as

AJ2
— E{e]N (k—ko) V’n} / 6]%”(’6—160)@659
A/2
- m(k—ko)A
sin(==5>=) m(k — ko)A
= W = SIHC<T> . (241)
N
The probability density function p(©) = % is used for the uniform random variable
© = v, within the interval [—— %] When £ — ky = 0, the expected value in Eq.
(2.41) is 1.
The variance is calculated as,
oty = D D Ao E{eI ko) mmmy ped i (hko)(n—vim) ) (2.42)

neNy meNy
For k # ko,n # m, the second term is written as
E{ejN k kO)(Vn Vm } E{@‘]N k kO Vn}E{e]N(k kO)Vm}7 (243)

which, obviously, is equal to u?, as the expectations over statistically independent 1,
and v,,. For n = m, Eq. (2.43) produces the result equal to 1.
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When all the available samples are considered, there are N4 terms in the sum when
m =n, and Na(Na — 1) terms when n # m. In the multicomponent case, i.e. K > 1,
the variance is a sum of individual variances of each noise-only component k # k;.

For K > 1, k; = ky,ks,...,kk, the generalized variance of the components at
k’l 7& ]{31, kQ, ce ,k}K will be

N 1 Z(F(k—kl)A

K
L
oty = 3 Nal Al [1 — A —sinc ~ )] [1—6(k — k). (2.44)
=1

The variance is frequency dependent. Its mean can be estimated as a frequency inde-

pendent parameter
N

G(A) = % ; sin(:?(%) (2.45)

Note that, in the same manner as in the analysis for the partial uniform DFT and
the partial random DFT, we can define variances in other measurement matrices.

Example: Generalization. The nonuniform distribution analyzes the case when
the signal is close to the uniform sampling, with a small-offset of the true value. This
is known as the jittering effects, which affects many real-signals in their transmission.

Consider an approximately sparse signal in the DFT domain,

X(k) = {1 +r(l), forl=1,2,... K, (2.46)
—3l)2K, forl=K+1,K+2,...,N.

The sparsity level K = 7 and (1) is a random variable. It is uniformly distributed
between 0 and 0.4. The error in the reconstructed coefficients is calculated and given in
Fig. 2.9. The cases with Ny = 2N/3 and N4 = 3N /4 available samples are considered.
The error calculation is analyzed for the cases when A = 0 (uniform sampling), A =1
(nonuniform sampling) and A > 0 (random sampling). The assumed sparsity is varied
Sk =1,2,...,15. Black color represents the statistical values

Etatisticar = 10 10g10 (HXK - XR| |§)7 (247>

while red color represents the theoretical results,

K Ny—1
FEiheoreticar = 10 1Og10 (N— |:1— ]\? 1
A —

G| IX-Xal}).  (24)

We can see that, in all three cases, the error significantly drops when the assumed
sparsity is Sk = 7 reached the signal approximate sparsity. The uniform sampling
produces the best reconstruction results in all considered cases, while an increased
randomness results in a higher reconstruction error. The theoretical and statistical
results highly agree, proving that, in the general case, the accuracy of the derived
error.
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Figure 2.9: Reconstruction error as a function of various sparsity levels K for different values
A: for No = 2N/3 of available samples (left) and for Ny = 3N/4 of available samples (right).
Values for A used are A = 0 (lower lines), A =1 (middle lines), and A > 0 (higher lines).

2.5 Quantization error in compressive sensing

So far, it has been assumed that the measurements can take as many bits as needed for
their representation. If a non-quantized signal is strictly sparse, the error, calculated
as a difference between the original and reconstructed signal, will be zero or negligi-
ble. However, the reconstruction will produce some error if a signal is reconstructed
from quantized (digitized) measurements. After quantization, the input signal will be
corrupted with uniform additive noise, whose values are between the bounds of the
quantization levels.

Despite the effects the quantization is exploiting, it is of great importance in the
hardware implementation. The samples measurements are stored into registers of (B +
1) bits, where B bits are for the measurement absolute value and the additional bit is
for its sign. The samples are formed as

yp = digital;{ AX} (2.49)
or for complex-valued case, where both real and imaginary parts are quantized, as
yp = digital g {R{AX}} + jdigital s {S{AX}}, (2.50)

where digital, is the signal digitized by B bits. Considering the quantized measure-
ments, the transformation coefficients X (k) are reconstructed with the quantization
error that depends on number of bits and number of measurements.

When a signal is quantized in the amplitude, the error which produced by the
quantization is the quantization noise within the limits

le(na)| < Aq/2, (2.51)

where A, is related to B as
A, =275 (2.52)
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To achieve appropriate analysis, the quantization error is assumed to be an uni-
formly distributed white noise, which affects the measurements in the form

y=yB+te, (2.53)

where e is the vector of the quantization noise with elements e(n;). Note that the
quantization errors must be uncorrelated with each other nor with the considered signal.

By definition, the mean and variance of that noise is [§]
jte = E{e} =0, (2.54)
ol =AZ/12. (2.55)

When a complex-valued signal is analyzed, both real and imaginary parts of samples
add to the noise, resulting in a variance

ob =2A%/12 = A%/6. (2.56)

As mentioned in Section 2.3.1. (Additive noise), noisy y will lead to noisy Xo(k)

with variance 0%, ;) = oa. The noise variance of the reconstructed signal is then

J?(R(k) = 0'2. (257)

The energy of the reconstruction error in the K reconstructed components is
IXp — Xl = Ko?. (2.58)
In this interesting to note that, the energy of error in the reconstructed components

will remain unchanged if [52]

—2B

Ko?=K

e

= const. (2.59)

That is, reducing the number of B bits to B — 1 bits will require reducing the number
of sparsity components from K to K/4. The logarithmic expression of the error cane
be written as

e? = 10logyo (| Xr — Xkll3) = 3.01log, K — 6.02B — 7.78. (2.60)

2.5.1 Quantization effect analysis

The effect of quantization will be examined in the next two examples.

Example 1: Sparse signal quantization error. The sparse signal reconstruc-
tion analysis is performed in this example. The signal is of the form

Na(1 — k(1)) forl=1,...,K
X _ K y g ey 21
(F) {0, for|=K+1,...,N, (2.61)
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Figure 2.10: Average reconstruction SNR of sparse signals with quantized measurements as
a function of number of bits B, for various numbers of measurements and sparsity levels
K € {3,8,13,18}. The statistical error is presented with dots and the theoretical results
are presented by dot-dashed lines: when the signal is uniformly sampled (left); nonuniformly
sampled (middle); randomly sampled (right).

with length N = 256 and the random changes of coefficient amplitudes is uniformly dis-
tributed in between 0 < k(l) < 0.2. It is considered that N4 = 128 available measure-
ments are quantized. The quantization levels to bits B € {4, 6,8, 10,12, 14,16, 18,20, 24}
and sparsity levels K € {3,8,13,18} are analyzed.

The average statistical and theoretical signal-to-nose ratios SNR, and SN Ry,
values are shown in Fig. 2.10. The results are averaged over 300 realizations. The
statistical error SN R, is presented with black dots, and the dash-dot lines are the
theoretical errors, SN Ry,. It can be concluded that the results are of high agreement.

Example 2: Nonsparse signal quantization error. The signal is modeled as

{ INA(1—R(),  forl=1,...,K

@exp(—l/&l(), forl=K+1,...,N.

X(k) = (2.62)
The length of the signal is N = 256 and the andom uniform changes of coefficient
amplitudes is assumed to be between 0 < £(l) < 0.2. In order to reduce its influence to
the quantization level, the amplitudes of the coefficients X (k) for k; ¢ K are X (k;) =
exp(—Il/(8K)). In that case, the effect of quantization influences the reconstruction
procedure when up to B = 14 bits are used. The enery cause by the nonsparsity is
dominant for the case when B > 16. The results are presented in Fig. 2.11, proving a
similar results of the statistical results with the theoretical error.

2.6 Noise folding

Another important issue is the analysis of the quantization noise in the transform
coefficients prior to taking the measurements [62|. This noise is called the quantization
noise folding and it will be denoted by z. Then, the measurements are of the form

ypt+e=A(X+2z), (2.63)



2.6. Noise folding 41

Uniform sampling, A =0  Nonuniform sampling, A =1 Random sampling, A > 0

—. 100 100 100
% . W = Bt Sl | p—0 o 0 —o o s o . 2 o _a »
= 80tK=3 /. -iTiTn 80IK=3 / v 80IK=3 / v
sz /: ./" /:/(A—OT“T1 /:/.’,.—.+'w1
»n 60 ’/./ K =18 60 ’/./ K =18 60 ’/./ K =18
= 4 47 4
» »

40t/ a0t /7 40t /Y
g /(/ //- //o
Z 207 20t ¢ 201 ¢

4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24

Number of bits B Number of bits B Number of bits B

Figure 2.11: Average SNR of the reconstruction of nonsparse signals with quantized measure-
ments as a function of number of bits B, for various numbers of measurements and sparsity
levels K € {3,8,13,18}. The statistical error is presented with dots and the theoretical results
are presented by dot-dashed lines: when the signal is uniformly sampled (left); nonuniformly
sampled (middle); randomly sampled (right).

which can be rewritten in the form of
yg+v=AX (2.64)

where v. = e — Az. The value e is the quantization noise which affects the signal
samples with covariance o2I. The noise vector z is random whose covariance is o>1.
Note that it is independent of e. Thus, the covariance matrix of the noise v is

C =01+ 02AA". (2.65)
For the partial DFT matrix, the relation AAY = NiAI holds. The variance of v is then

N
ol =0+ N—Aag, (2.66)
with the covariance matrix C = o21.

However, when sparse signalas are considered, the quantization error only affects

the K nonzero components of X. It means that the noise Az variance is NAAag or

K
Xk —Xkll; :KU§+N—A02- (2.67)

Finally, for the nonsparse partial DF'T matrix case, the error is calculated as

K K Ny—1 2
Xp—Xgli = Ko2+ 02+ — |1 - —2—G(A)| |X — Xkl 2.68
We assume that the quantization of the K main components in X moslty influences
the corresponding part of the error calculation. This relation is statistically checked in

the next example.
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Example: Error calculation with noise folding. The simulation with non-
sparse signals affects by noise folding is repeated for 300 realizations using the formula-
tion from Eq. (2.68). The results are presented in Fig. 2.12, proving a close agreement
theoretical and statistical results.
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Figure 2.12: Average SNR of nonsparse signals reconstruction with noise folding when various
number of available measurements is considered, for different sampling methods. Top subplots
- N4 = N/4 available samples, middle subplots - N4y = N/2, bottom subplots - Ny = 3N/4.
Left subplots - uniform sampling, middle subplots - nonuniform sampling when A = 1, left
subplots - random sampling when A > 0.
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Many radar systems are based on a few targets in the signal, showing the potential
of using the compressive sensing algorithms for their processing. The idea of importing
the CS theory to the detection of targets and their successful recovery in the radar
systems was discussed previously in the literature [55,63-66]. In the research, indeed,
the CS framework is seen as a useful tool for the reconstruction of sparse radar signals.
Even though radar and sonar systems have many common basic principles, yet the
application of CS techniques is still relatively new in sonars. Despite the similarity
in the rules, there are specific characteristics of the sonar systems that need to be
considered for a successful analysis. The main difference is the environment in which
they operate, mainly due to entirely different propagation characteristics. This will be
discussed in more detail later in this thesis.

The complexity of the problem made it difficult for the transmitted signals to be
anything more than basic forms of sonar signals to be analyzed and used in the recent
literature. The usage of specific sequence form of these signals has already produced
promising results in the reconstruction of sonar images. The implementation of CS
idea to the underwater sonar signals was initially discussed in [67,68]. However, only
the Alltop sequence was considered a sequence used to form the transmitted signal
and reconstruct the sonar image with a reduced number of measurements. In [69], the
results in sonar imaging were improved using the M sequence, as an excellent alternative
to the Alltop sequence, in forming the transmitted signal waveform.

43
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In this Chapter, we will consider a whole spectrum of various sequences in the
sonar imaging within the CS to find the best solution to the sonar signal reconstruction
problem. The considered sequences are the random binary sequence, the random Gaus-
sian, Bjorck, and Zadoff-Chu sequence, in addition to the Alltop and maximum length
sequence (M sequence). All these sequences are studied and compared concerning the
performances notable for sonar imaging within the CS framework.

The implementation of the radar systems was also expanded from narrowband
[63] to wideband [66]. Although the Alltop and the M sequences were considered
theoretically, in practice, only the basic forms were considered due to their simpler
hardware implementation [70]. This challenge will also be taken into account in the
analysis of real data in the next sections. The main results presented in this Chapter
were published in [71-74]. In the analysis, it is common to consider the targets on
the grid. However, in practice, they are off-grid, causing even the targets with a small
number of reflecting points to be only approximately sparse when considered in sonar
signals. This effect of image leaking due to the off-grid impacts influences the CS
reconstruction. It has been examined by extending the analysis of approximately sparse
and nonsparse signals from the previous section.

We tackle one more problem in this Chapter: the decomposition of two misaligned
receivers for two close components. It will be shown that the problem can be successfully
surpassed using high-resolution techniques in time-frequency analysis.

3.1 General sonar signal modelling

A typical model of a transmitted wideband sonar signal is of form

x(t) = s(%) exp (j2m fet), (3.1)

where s(%) is the transmitted form of the sequence. The sequence is coded within the
width A\, 0 <t < N, and modulated with the carrier frequency f.. The received signal
is a delayed and attenuated version of z(t). If one target is considered, i.e., if K = 1,
the received (echoed) signal is formed as

ri(t)=gs (#) exp (j27rfcc LA T))7 (3.2)

cC—V

where v is the velocity of the target, ¢ is the underwater speed of sound, and g is a
complex-valued scattering coefficient. Due to the Doppler effect, the received signal is
scaled in frequency for (¢ +v)/(c —v). Additionally, it is shifted in time for a value 7.

The signal is sampled according to the sampling theorem at instants nAt, with
At being the sampling interval. The discrete received signal, when K > 1 targets are
considered, is the sum of K received discretized components of form (3.2). That is

r(n) = i gr;s(n — dg,) exp (jwkin>, (3.3)
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where s(n — dj,) is the circular shift of the sequence. The parameter dj, presents
the time delay 7 which is defined by the range of the targets. The parameter wy,
corresponds to the cross-range of targets corresponding to the frequency shift. The
details of this derivation are given in [67,68]. If we consider the targets to be on the
grid, the coordinates are then taken from the finite set

(dp,wq) S {dl,dg,...,d]\[} X {wl,wg,...,wN} (34)

where d, takes values from d, € {dy,ds,...,dy} and w, € {w1,ws, ..., wy}, making it
a total of N? of possible positions of the targets. If the targets are off-grid, they will
spread over several points, with the most significant influence on a few neighboring grid
points. The off-grid effects cause the analyzed signals to be only approximately sparse.
In the analysis we will first assume that the targets are on the grid, as it is common in
literature, and then analyze the effects of sparsity degradation due to off-grid sampling.

For a pair (d,,w,) = (p, 2qu), the basis function can be calculated as

Ppq(n) = s(n —p)exp (j%q%)- (3.5)

and received is the signal
K
r(n) =Y G bpigs(n)- (3.6)
i=1

The relation between the indices for the scatterer k, and range and cross-range positions
p and ¢ is

k=p+ Ngq,
p=k—N|k/N], (3.7)
q=[k/N],

wherep=0,1,...,N-1,¢=0,1,...,N—1,k=1,2,..., N*~1, and | k/N | presenting
the rounding of k/N to the closest lower integer value.

The periodic autocorrelation (AC) function of the sequence s(n) is defined as

N

Rs(n) = Z s(n+m)s*(m) (3.8)

m=1

Note that the AC function is associated to the coherence index p from Eq. (1.50), as
it will be seen later in the chapter.

3.1.1 Relation to compressive sensing

Taking into account the nature of the received signal, it can be analyzed as a signal in
the representation domain with basis functions

or(n) = s(n —dy,) exp (jwkin), (3.9)
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and rewritten as .
r(n) = gror(n) (3.10)
i=1
or in matrix form
r = &g, (3.11)

The vector r is the received column vector of the echoed signal, and ® is the matrix
with basis functions. The scattering coefficients g(k) = gi are within the column vector

g =9(0),9(1),...,g(N* = 1)]".

In the compressive sensing sense, if the signal g consists of only few target points,
it means that there are only K nonzero coefficients in the full N x N matrix, with
K < N. Then, the signal is considered as sparse. Since it is sparse, it can be recovered
from the received samples y

y = [r(nl),r(m),...,r(nNA)]T (3.12)
y = Ag (3.13)

where the elements of A are from (3.5), i.e.,

ar, = s(ng — dp) exp (jwq”l>> (3.14)

For a given scattering point, positioned at k, d, corresponds to the rearranged range
coefficients and w, is for the rearranged cross-range coefficients. Note that, since N
samples are transmitted, and the results lies in the area of N x N points, the number
of measurements is naturally Ny = N.

As mentioned in previous chapters, the initial estimation of the signal is performed
using the available observations

go = Ally (3.15)

or in element-wise form

go(k) = Z (1) ay .- (3.16)

TLZ‘ENA

If 7(n;) is replaced according to (3.10), we get
K
go(k) = Z ngigbpqu'(ni)az,m' (3.17)
n;ENy =1

Denoting the terms > i &p, q: ()@ ., by pu(k, ki)

plh ki) = > bpg(ni)ag,, = Y s(ni— dy)s*(ng — p)e?> @0 (3.18)

n; ENg n; ENg
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the initial estimate will be

go(k) = 3 gnp(k, ko). (3.19)

For a random set of measurements, the values pu(k, k;) and go(k) are random vari-
ables [53,75]. If the calculation is performed over all samples, i.e., n; =0,1,2,..., N—1,
we get

=

p(k, k) = s(n — dy)s*(n — p;)e?? @ an/N, (3.20)

n

Il
o

It is important to note that, even by taking all samples, the set with measurements is
small. That demands the use of CS based reconstruction algorithms since the number
of possible target positions is N x N = N2> N, = N.

The maximal absolute value u(k, k;), for k # k;, is associated to the coherence index
of the measurement matrix from (1.50), which, as mentioned, defines the condition for
a unique signal reconstruction. The uniqueness condition, as seen in (1.52) is K <

(1+1/p)/2.

In the case when all samples are taken, the analysis of the maximal absolute value
w(k, k;) for qr, = qx is reduced to the analysis of the AC function (3.8)

N-1

p(k ki) =Y s(n—dy)s*(n — p;), for ¢ =q. (3.21)

n=0

A good reconstruction performance in the compressive sensing sense can be expected
when the maximum absolute value of side lobes of the AC function ]ZHN:_OI s(n —
di)s*(n—p;)| are minimized (for dy, # p;). Although strict, the coherence index p(k, k;)
can indicate the quality of recovery we may expect from a certain sequence.

The whole expression for p(k, k;) and k # k; reduces to the analysis of the ambi-
guity function (AF) [76] which is defined as the two-dimensional FT of the Rihaczek
distribution

[y

N—

AF(n,r) = Z s(n +m)s*(m)e> /N, (3.22)
m=0

for all n and r. It can be seen that (3.22) equals the AF of the Rihaczek distribution

of the sequence [5,6]. Then, the analysis of u(k,k;) reduces to the estimation of the

maximum value of |AF(n,r)| for (n,r) # (0,0), For (n,r) = (0,0), the results is

AF(0,0) = pu(k, k) = 1. This step will be important in the case of time-varying signals,

which is discussed in Section 3.4.

3.1.2 Sequence forms and properties

In the literature, only the basic signal processing forms are used, such as the LFM signal,
for underwater transmission [70]. Instead of the basic forms, there are a vast of other
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sequence forms which can be used for the transmission in sonar systems. Some of them
will be represented with their key properties and further examined for the usefulness
in the transmission. Six of them are presented in the next definitions. Discrete-time
sequence, of length N, is denoted by s(n), n=0,1,..., N — 1.

Definition 3.1
The Gaussian sequence is formed as

1
s(n) ~ \/—NN(O, 1). (3.23)

The Gaussian sequence is one of the most commonly used sequence forms, whose
properties are well known in the literature. The auto-correlation (AC) of the Gaussian
sequence is

Ri(n) = E{s(n+m)s(m)} = d(n —m). (3.24)
Note that the AC function takes an approximative form for finite-duration sequences.
The samples of the Gaussian sequence have to be uncorrelated.

Definition 3.2
The binary Gaussian sequence is formed as [77]

1 .
s(n) ~ Wi sign(N (0, 1)). (3.25)

The signum of the Gaussian sequence is a simpler yet effective form of the Gaussian
sequence, resulting in only the sign part of the measurement. It may be considered as
a binary random sequence.

Definition 3.3
The Alltop sequence is first presented in [63,67]. It is formulated in the form of

1 ., s
s(n) = ——=e’?" N, 3.26
) = (3:20)
The property of this sequence is the small intensity of the side lobes in the auto-
correlation function, which are in the order of 1/ VL. For the aperiodic AC function,

the side lobes are approximately similar to 1/ VL as well.

Definition 3.4
The Bjérck sequence, for a prime number N > 2, N = 1( mod 4), is formulated

as [78, 79/
s(n) = \/LN exp <][(n/N)] arccos <ﬁ>), (3.27)

where [(n/N)] is the Legendre symbol that takes values £1 and 0 as

0, forn =0 mod N
[(n/N)] = +1, forn is a qudratic residue mod N

—1, forn is a qudratic nonresidue mod N.
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The Bjorck sequence, for a prime number N > 2, N = 3( mod 4), is formulated
as [78, 79/

s(n) = {\/—lﬁ exp (j arccos (;—%)), if [(n/N)]=—1 (3.28)

1, otherwise.

Definition 3.5
The mazxzimum length sequence (or M sequence) is a pseudo-random binary se-
quence, generated with linear-shift register using the recursive formula [80]

s(n) = Z Cms(n —m). (3.29)

The M sequence is a commonly used tool in the area of spread spectrum techniques
in digital communication systems. The two most frequently used systems are the direct-
sequence and frequency-hopping spread spectrum. Usually, it is normalized to get the
energy in the N samples equal to one. The values of the M sequence, —1/ V/N and
1/ VN, occur approximately equal times. For the sequence of length N = 2™ — 1 the
number of 1/v/N values is N/2, while the number of —1/v/N values is N/2 — 1.

The periodic AC function of the M sequence is of the form

Ru(n) 1, forn =kN (3.30)
s(n) = :
—1/N, elsewhere.

In the CS theory sense, the coherence indices of the measurement matrices formed
from the M sequences and the Alltop sequence are identical.

Definition 3.6
The Zadoff-Chu sequence is formed as [81,82]

\/Lﬁexp —j%%), N even,
s(n) = 2y m(m+1420) (3.31)
\/Lﬁexp —j%T>, N odd.
where 7y is integer such that the greatest common divisor ged(y, N) = 1 and Q is

arbitrary integer.

The discrete sequence forms in one cycle are shown in Figure 3.1 (left). Their main
properties depend on their AC functions, shown in Fig. 3.1 (right). Note that, except
for the Bjorck sequence (where the imaginary part is taken), we take the real part of
all of them. Also note that, the Bjorck and Zadoff-Chu are part of the group of the
so-called constant amplitude zero auto-correlation (CAZAC) sequences, since the side
lobes of their periodic auto-correlation function are almost zero-valued [83,84].

The absolute values of the ambiguity functions of the six sequences are shown in
Fig. 3.2 (left). Even though Zadoff-Chu is a CAZAC sequence, showing good AC
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properties, it produces values AF(m,r) = 1 for (m,r) # (0,0). It can be seen from
Fig. 3.2 that it cannot be used for the analysis in the wideband sonar signal case. This
will be further discussed. The sequence forms with a reduced set of measurements is
shown in Fig. 3.2 (middle) and their corresponding AFs are shown in Fig. 3.2 (right).

3.2 Sequence selection

The selection of the sequences will be decided upon their reconstruction performances
in various cases with different exhaustive statistical parameters. The sonar signal is
represented by various number of components (sparsity level K) and different number
of available measurements in a signal. Five cases for statistics were considered before
taking the decision of the most convenient sequence form.

Case 1: Percentage of detected targets.

Since our goal is the right targetting of the objects, the first experiment is based
on the percentage of detected components in the signals. Consider 1000 repetitions of
the experiment using the signal of the form (3.1). We consider that the transmitted
signal is of length N = 31, which is the equivalent to the number of available samples,
ie. Ny = N. The number of target components (which is equivalent to the sparsity
level) is in the range 1 < K < 20.

This case experimentally shows that the Zadoff-Chu sequence is not suitable for
the detection of components. In the case when a small noise is present in the signals,
the Bjorck and the M sequence show better results. In the case when the noise is high
(i.e. SNR= 5dB and SNR=0dB), all sequences show similar results.

Case 2: Error calculation.

Many problems which can arise in practice will cause a signal to be nonsparse.
The most realistic case is that the received signal is off the grid, making the targets
randomly positioned. According to Chapter 2, for the sonar signal case, the theoretical
error is

K N
B, = 10log ((N—A +1) lg—gxll? + KN—Aag). (3.32)

where g is the vector of the same length as g, with the K nonzero targets at their
positions and zero-valued everywhere else. The statistical error is calculated as

E, = 10log (|lg—ggll3)- (3.33)

The test is performed with 100 random realizations of nonsparse images. The signal
length is N = 31 with K = 5 target points. The available number of measurements
is Ny = N. Table 3.1 presents the statistical and theoretical results for each sequence
form and two different noise levels.
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Table 3.1: Average reconstruction error of nonsparse images with K = 5 target points, Ny =
N =31 and SNR= 20, 5dB.

SNR=20dB| Gaussian Binary Mseq. Alltop Bjérek

Statistics —-1243 —-12.35 —13.57 —-13.42 —-12.62
Theory —-12.35 1242 -13.62 —-13.69 —12.88

SNR= 5dB ‘ Gaussian  Binary M seq. Alltop  Bjorck
Statistics —0.96 -0.88 —1.52 —-1.37 —0.83
Theory —0.83 -093 -161 -—-192 -1.01

Case 3: Robustness on number of available measurements.

In the previous cases we use Ny = N. Here, we will consider the number of
available samples N4 that can be higher or lower than the length of the transmitted
signal N. That is, we consider the case when Ny # N. Assume N = 31, with Ny4
varying as N4 = 8,...,3N, taking the prime numbers. The results in 100 realizations
for the Bjorck, Alltop and M-sequence, are shown in Fig. 3.4, Fig. 3.5, and Fig. 3.6,
respectively. For each sequence, noise levels of SNR= 20, 5,0 dB are considered.

Case 4: Randomly positioned targets.

The three most robust sequence from the previous cases, Alltop, maximum-length
and Bjorck, are further analyzed. Consider that six real targets are positioned randomly
in an area of interest. More false targets are arriving due to different reasons, making the
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Figure 3.4: Successful reconstruction performance of the Bjorck sequence for different sparsity
levels K, number of measurements taken N4 and noise levels with SNRs= 20,5 dB (upper
row) and SNR=0 dB (lower row).

area nonsparse by nature. Additionally, the environment is noisy the level of SNR=10
dB. The noisy and nonsparse interest area is presented in Fig. 3.7 (top left). The
reconstruction using the Bjorck sequence is illustrated in Fig. 3.7 (top right). The
reconstruction when M sequence and Alltop sequences are used are presented in Fig.
3.7 (bottom).

Case 5: Real-world set-up.

In Fig. ?7 (top left) an underwater boat set-up is modeled. We assume the sparsity
level is the number of target points needed to model the boat. Assume the number is
K = 14, as counted in Fig. 3.8 (top). Since the number of points is high, the sequence
of length N = 31 cannot be used. The next available sequence length, satisfying
the conditions for all three considered sequences (Alltop, Bjorck and M sequence) is
N = 127. Assume a noise level of SNR=15 dB. The reconstruction when the M sequence
is used is presented in Fig. 3.8 (top right). The reconstruction results with the Alltop
and Bjorck sequences are shown in Fig. 3.8 (bottom).
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Figure 3.5: Successful reconstruction performance of the Alltop sequence for different sparsity
levels K, number of measurements taken N4 and noise levels with SNRs= 20,5dB (upper
row) and SNR=0dB (lower row).

3.3 Real-data reconstruction

In this section, the challenge of the real data is analyzed. In summary of Section 3.2,
considering all cases, the Bjorck sequence resulted in the best solution for further work.
Therefore, it will be used for the next experiments. It is concluded that the Zadoff-Chu
sequence, due to its quadratic nature, failed in the reception and reconstruction. Also,
the Alltop and M sequence performed very good and gave similar results. Therefore,
for the practicality in the implementation, the Alltop and Bjorck sequences will be used
for the next experiments.

An underwater experimental setup is created in the rooms of the GIPSA Laboratory
at INP Grenoble. A water tank of 2 cubic meters was used for the experiment. An
interferometer transducer is used for the transmission and reception of signals. The
interferometer was supplied by the “ITER Systems” company from Annecy, France,
with the operating frequency of 468 kHz, and 100 kHz bandwidth. Note that the
sequences are modulated to satisfy the operating frequency range of the transducer.
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Figure 3.6: Successful reconstruction performance of the M sequence for different sparsity
levels K, number of measurements taken N4 and noise levels with SNRs= 20,5dB (upper
row) and SNR=0dB (lower row).

The transducer has one transmitter sensor and four receiver sensors. However, since
the goal is to examine the robustness of the CS theory to the real data, the results will
be analyzed from only one receiver. The transducer was fixed under the angle of 30°
close to the water surface. The setup of the water tank, and the individual instruments
used for the experiment are presented in Fig. 3.9. The block diagram followed for
the experiment is illustrated in Fig. 3.10. According to the block diagram, the setup
includes steps such as the interpolation, modulation, filtering, and power amplifying of
the sequence. When the signal is received, the CS methods are applied.

The target as in Fig. 3.9 (bottom left) was put at the tank floor. The position
of the target to the transducer is illustrated in Fig. 3.11 and the real setup is shown
in Fig. 3.9 (bottom right). The Alltop and the Bjorck sequences are transmitted,
modulated and interpolated, as in Fig. 3.12. The received signals, when Alltop and
Bjorck sequences are used, are shown in Fig. 3.13 (first two rows). For comparison, a
chirp sequence as in [70] is transmitted also. The result, when the chirp sequence is
used, is shown in Fig. 3.13 (third row). The reconstruction using the matched filter
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Figure 3.7: The reconstruction of a noisy nonsparse target area, with noise level of SNR=10dB
and target points K = 6: The nonsparse area of interest (top right); Reconstruction when
Bjorck sequence is used (top right), when M sequence is used (bottom left), and when Alltop
sequence is used (top right).

(MF) is shown in Fig. 3.13 (middle column). The reconstruction using the iterative
version of the OMP algorithm is shown in Fig. 3.13 (right column).

3.4 Time-varying cross-range detection

In the examples considered in previous sections, the velocity is defined as constant, and
therefore stationary. In more realistic cases, the cross-range (velocity) is varying and
has to be detected so that the target can be successfully and truthfully found under
this setup. If the cross-range parameter is misdetected, the exact position and velocity
of the target will not be estimated accurately, leading to an incorrect reconstruction.

The time variations of target velocity can be written as v 4+ at. Target velocity
corresponds to the cross-range of the received signal. Having the received signal in the
form

r(n) = ngﬁki (n) (3.34)
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Figure 3.8: The reconstruction of an underwater boat set-up, with noise level of SNR=15dB
and target points K = 14: The modelled area of interest (top right); Reconstruction when
M sequence is used (top right), when Bjorck sequence is used (bottom left), and when Alltop
sequence is used (top right).

will have the basis functions as

or,(n) = s(n — dy,) exp (jwkin + jakinQ). (3.35)
According to (3.5), the basis function is

bpq(n) = s(n —p)exp (j27rq% + jomZ). (3.36)
for (dy, wg) = (p, #q). The clements of the measurement matrix are then

axs = s(m — dy) exp (juogn + jon?). (3.37)

3.4.1 Decomposition and reconstruction

The technique for decomposition of targets in sonar signals is inspired by the idea of
decomposition of time-varying signals using the polynomial Fourier transform (PFT)
in [85]. The estimation of the parameter corresponding to the cross-range in wideband
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Figure 3.9: Real water tank setup: Water tank (top left); Transducer (top right); The shape
of the target (bottom left); Position of the target and transducer in the water (bottom right).
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Figure 3.10: General block diagram of the experimental setup.

sonar signals is the aim of this analysis. When a; = «a, the CS reconstruction will
be successful. The parameter & € a in u(k, k;) is varied until the signal is maximally
concentrated, i.e.,

G = argmax |90a (k)| (3.38)

The solution of (3.38) is when & is equal or close to the true value of a. The set a
represents the set of possible values for a.

For more target points (K > 1), the procedure is as follows:
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Figure 3.11: Illustration of the water tank setup: the position of the target to the transducer,
with an elevation angle of 30°.
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Figure 3.12: Real transmitted sequence forms, interpolated and modulated to operate under
the transducer characteristics: Alltop sequence (left), and Bjorck sequence (right)

e The set of possible parameters a is defined.

The initial estimate, go(k), is calculated for each value & € a.

The parameter & is found in such a way that the initial estimate is concentrated
the best by using (3.38).

e The value of p(k, k;) is calculated using the determined parameter.

e The first component of gg is reconstructed with y and pu(k, k;).

e The reconstructed component is removed from the initial estimate, gg — gg.

e The previous steps are repeated with the reconstructed component removed from

y, until all the parameters are determined and all K elements are reconstructed.

As an example, the analysis is performed using the Alltop sequence. The area of
interest is nonsparse and noisy, with K = 6 important target points and SNR of 10
dB. The procedure is shown in Fig. 3.14. The original interest area is shown in Fig.
3.14 (top left). The reconstruction result is illustrated in Fig. 3.14 (bottom right).
The steps of the initial estimates for each target point are presented in the remaining
subplots of Fig. 3.14.
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Figure 3.13: Received signal - real data: Received signals with different sequence forms (left),
reconstruction with matched filter (middle), reconstruction with compressive sensing (right);
when the Alltop sequence is transmitted (top); when the Bjork sequence is transmitted (mid-
dle); when the chirp sequence is transmitted (bottom).

3.5 High-resolution decomposition

Another issue in the decomposition of signals is the separation of closed components
(targets). This can be solved by using high-resolution techniques developed for that
matter. In practice, the high-resolution techniques are frequently used in the direct-
of-arrival (DOA) estimation in the field of array signal processing [7,85]. They can
also be used in various engineering problems [7,86-89|, such as the misalignment of the
sensors [90]. Two of the methods, which have shown in the literature to produce reliable
results in separation, are Capon’s method and Music Signal Classification (MUSIC)
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Original area of interest Initial estimate of the area, Alltop sequence
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Initial estimation 1 Initial estimation 2
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Initial estimation 3 Initial estimation 4
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Initial estimation 5 Reconstructed area of interest
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Figure 3.14: The reconstruction of a nonsparse target area, with K = 6 main target points..
The noise level of the area is SNR=10dB: Original area of interest (nonsparse) (top left);
Reconstructed target area (bottom right); Initial estimations for each target points (remaining
subplots).
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technique. They will be presented in the form that is adjusted for implementation
using the time-frequency representations.

3.5.1 Problem formulation

Consider a LFM signal as a common case of a transmitted signal form
s(t) = A(t) exp (527 (Qot + cxt?)) (3.39)

where A(t) is the amplitude (slow-varying), €y is the initial frequency and ¢, is the
chirp rate. The discrete signal s(n) with sampling interval At is of the form

s(n) = A(nAt) exp (j2m(nQoAt 4+ n’cp,(At)?)). (3.40)

In Fig. 3.15, two schemes are presented. When the receiver is properly aligned
with transmitter, as shown in Fig. 3.15 (a), the received signal will be an attenuated
and delayed version of the transmitted signal. The problem arises when the receiver is
not properly aligned with the transmitter. This is shown in Fig. 3.15 (b). The solid
line represents how the signal was received, while the dashed line illustrates how the
signal was supposed to be received.

aj

Tx

sin}

xin}

Rx

b}

Rx

Figure 3.15: The positions of the sensor: when the sensor is properly aligned with the receiver
(top); when the sensor is misaligned (bottom). Solid line represents the actually received
signal.

The misalignment causes false estimation of positions of the physical sensors [90].
Also, vibrations in the environment can cause the sensors to misalign. The signal will
then change through the channel due to the dispersive nature. The received signal
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will change in both time and frequency. If the received signal is assumed from two
propagation paths, it will be received as

r(n) = s.(n) * hy(n) + s.(n) * ha(n) (3.41)

where "+’ is the convolution of s,.(n) with two transfer functions hq(n) and hy(n), coming
from the two propagation paths, respectively.

In general case, for two transfer functions, the received signal consists of two com-
ponents. For t; & t,, the received signal is a modulated version of the transmitted
signal, i.e.,

r(t) & 2A(t) cos (2me(ty — ta)t + ¢1) cos (2m(Qt + ct?)). (3.42)

A special case is when the received signal consists of two time-shifted versions of the
transmitted signal
r(t) = s (t —t1) + s,.(t — ta). (3.43)

The signal, with its corresponding spectrum, is presented in Fig. 3.16 (top). The
received signal and its corresponding DFT domain, are shown in Fig. 3.16 (bottom). As
seen, the two received components are closely positioned in both time and frequency.
The aim is to separate them in order to successfully reconstruct the original (trans-
mitted) signal. Note that the signal attenuation is neglected since our main interet is
the signal form, which will make the calculation of the attenuation caused during the
transmission easier.

3.5.2 High-resolution techniques

Recall the normalized STFT with a rectangular window of the width N

1 = 1
=5 z(n + ny)e™? N — NaH(w)x(n), (3.44)

m=0

STFT(w,n) =

where the vector notation of the basis functions and the signal are
a(w) = [1,e7 7% e N=Diw)T

x(n) = [z(n),z(n+1),...,2(n + N — 1)]".

Note that the value w is introduced instead of %k to increase the frequency axis density,
necessary for using the Capon’s and MUSIC high resolution techniques.

Definition 3.7
The averaged Capon’s STFT is defined as [91,92]

1
all (w)R; " (n)a(w)

SC’APON(T% w) = (345)



3.5. High-resolution decomposition 65
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Figure 3.16: Transmitted signal with its spectrum (top); The received signal when the sensors
are misaligned (bottom).

where
R.(n) = % S x(n)x" (n), (3.46)

is the autocorrelation matriz over N samples (ergodicity over N samples around n
is assumed), which comes from the power of the signal in the STFT representation
domain.

By the eigenvector decomposition, the autocorrelation matrix can be written as
- 1
Re(n) = 1 32 x(m)x" (n) = Am) V7 (n), (3.47)

where A(n) is the diagonal matrix with eigenvalues on its diagonals and V(n) is the
matrix whose columns are eigenvectors of the matrix R, (n).

Definition 3.8
The averaged MUSIC STFT is defined as [95]

1
Swvsic(n,w) = aH(W)Vge (n)Vg, (n)a(w)

(3.48)

where Vg, (n) is the eigenvector matriz with S, eigenvectors with lowest S. eigenvalues.
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For a signal with time-varying component, the local form of the PFT and corre-
sponding STFT (local polynomial FT - LPFT) should be used with any of the high-
resolution techniques [7]. Let us consider a signal with quadratic phase

z(n) = Aedleontwonteo) (3.49)

As in the case of polynomial Fourier transform, the Capon high-resultion method
can be further expanded to the LPFT by calculating the autocorrelation matrix with
a signal multiplied by an exponential factor exp(—jan?), i.e.

To(nw) = x(ny)e 7™ (3.50)

The parameter « is estimated as the maximal concentration value of

LPFT,(k,n) = %aH(w)xa(n) (3.51)

as
a =argmax |LPFT,(w,n)|. (3.52)

For the optimization of the parameter, we can use the concentration measures such as
a = argmin, ||LPFT,(w,n)||1. Since the LPFT is biased in amplitude when greatly
concentrated, it would not be appropriate to use it for the concentration comparison
of different parameters . Therefore, for the comparison, the standard LPFT is used.
The local AC function is calculated using a sliding window function with the optimally
found parameter «

n+Ny /2
. 1
R.(n, Ny, a) = N1 Z X (M) X (M) (3.53)
w Nw=n—Ny /2

where N,, is the width of a symmetric sliding window.

Definition 3.9
The optimal local Capon’s representation is defined by [7, 92/
1

LPFT, , = — . 3.54
CAPON(n w) aH(k:)R;l(n,Nw,a)a(w) ( )

In the same way, the local representation of the MUSIC algorithm can be presented
by using the eigenvectors of the autocorrelation function of the windowed signal z(n,,).

3.5.3 Examples

Assume that a signal of the form (3.40) is transmitted, with frequency range between
fmin = 40 Hz and f,.. = 98 Hz, sampled at frequency f; = 1024 Hz. The decomposi-
tion of the signal is performed and compared using the standard, Capon’s and MUSIC
spectrogram, together with their local forms. A rectangular window is used for the
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Figure 3.17: Decomposition of the signal using high-resolution techniques: standard STFT,
i.e., the spectrogram (top left), standard LPFT (top right), Capon’s STFT (middle left),
and Capon’s LPFT (middle right), standard MUSIC STEFT (bottom left), and MUSIC LPFT
(bottom right).

analysis of local forms. The window is of length N,, = 64. For the MUSIC calcula-
tion, we have used the S, = 100 lowest eigenvectors for the STFT decomposition, and
S. = 2 for each windowed function in the LPFT decomposition. The decomposition of
the signal is presented in Fig. 3.17. An one time-instant of Fig. 3.17 is presented in
Fig. 3.18, where it is visible that the two components can be separated using the local
forms of Capon’s and MUSIC high-resolution techniques.

From Fig. 3.17, it can be seen that two components are successfully separated
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Figure 3.18: The spectrum of one time-instant (zoomed) in the standard LPFT (top); in the
local Capon'’s representation (middle) and in the local MUSIC representation (bottom).

by the local forms of the high-resolution techniques, i.e. Capon’s and MUSIC, while
other approaches result in aa modulated single component signal. From Fig. 3.18, we
can see that the local MUSIC representation shows the better result in the sense of
distinguishing the two components. However, the local Capon’s representation is much
stronger and computationally more efficient for any further analysis.
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The decomposition and reconstruction of signals transmitted through a dispersive
channel are analyzed in this Chapter. Dispersive channels are characterized by multi-
component and multi-phase signals, even when the transmitted signal is of a simple
form. The problem of the decomposition and localization of signal component in dis-
persive channels is an intensively studied research topic. The warping techniques have
shown interesting and promising results in the decomposition and reconstruction of
normal modes of the signal. The characterization of the signal propagating trough dis-
persive channels was also analyzed in [94]. The problem of localization of these signal
using the phase-continuity of the signal was studied in [95].

After the transmission through a dispersive environment, the signal consists of
several components called modes. These modes are non-stationary due to frequency
dependent properties of the media for signal propagation. Therefore, the standard
Fourier transform is not suitable for the implementation on such signals. Since the
frequency variations can be approximated by a polynomial function, the natural choice
for the methods developed in this thesis is the polynomial Fourier transform (PFT).
Since the number of important modes is small, the non-stationary signals in dispersive
channels can be considered as sparse in the PFT domain. The analysis of the sparse
signals in the PFT domain is quite specific since the transformation basis functions are
not orthogonal [96]. After the PFT analysis, it has be found that the dual form of the
PFT is a more appropriate domain for the analysis of the signal in dispersive channels.

69
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This form of the PFT is examined and the sparsity property is employed reconstructing
the signal with a small number of available samples.

Since the dual PFT is only an approximation of the signal modes, the next step
was to use the exact normal mode form as the sparsity domain and the domain of
analysis of dispersive channel signals. Therefore, the second considered approach is
based on the decomposition of the exact modes of the dispersive channel signals. The
modal-function based decomposition is adapted and used in the analysis at last.

4.1 Shallow water theory and dispersive channels - background

Shallow waters are of great research interest for many years [94,97-108]. Typically,
shallow waters are defined by the depth of the sea/ocean which is not greater than
D = 200 meters. Also, signals traveling through water have a faster speed than signal
traveling through air (where the speed is ¢ = 380m/s). The exact speed of sound in
water depends on many factors such as the salinity or the temperature of the water,
but it can be generally approximated at ¢ = 1500m/s. This, consequently, makes their
wavelengths A much shorter, usually D > A, with D being the shallow water channel
depth. The reason they attract the researches is the extremely complex analysis of such
setups.

The complexity of the problem depends on many factors, such as the volume and
bottom properties. Further, the noise in shallow water occurs due to the many activities
happening on the coastlines and surface of the sea, which causes cavitations in the sea
itself. Thus, it can be concluded that shallow waters are more dispersive than deep
waters. Dispersivity occurs in underwater channels due to the roughness of the bottom,
the strength of the waves, the cavity level of the water and many other reasons. The
main characteristics of dispersive channels is that they are frequency dependent. The
frequency characteristics (phase and spectral content) change during the transmission
of the signal.

The propagation of sound in shallow water environment is mathematically repre-
sented by the wave equations. For the analysis, let consider the wave equation of the
displacement potential ¢ in free space [99,109|

1 0
V3 + Zap =0 (4.1)

where V presents the Laplacian operator for the considered coordinate system. If the
Cartesian coordinate r = (z,y, z) system is assumed, the Laplacian operator is defined
by
P Py O
V) = + + . 4.2
v ox?  0y*> 022 (42)

Accordingly, for the cylindrical coordinates system, with coordinates (r, 6, ), the Lapla-
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cian operator will be
10 0 1 9 0?
Vi= - (r— —— 4+ —. 4.3
ror <rar) + r2 062 * 0722 (4:3)
It is usual in the theory that the displacement potential is not azimuth dependent,
reducing the analysis from (7,6, z) to (r, 2).

If we assume a pressure term of a point source (for example, an underwater source,
i.e., a target), the wave equation becomes inhomogeneous

1%t
2 0Ot?

where f(r,t) presents the volume injection in coordinate system r at time ¢. Using the
Fourier transform pair

V2 (r, t) = f(r,t), (4.4)

1

ft) = Py /00 F(w)e ' dw (4.5)

mm:/mﬂmwﬁ (4.6)

we can get a frequency and space domain wave equation

2

V2 (r,w) + —U(r,w) = F(r,w), (4.7)
c
where U(r,w) is the Fourier transform of ¢(r,¢) and F(r,w) is the Fourier transform
of f(r,t). Note that the Fourier transform of % is equal to —w?¥(r,w). Using the
notation w
k=— 4.8
! (4.8
the Helmholtz equation
V2V (r,w) + k*¥(r,w) = F(r,w), (4.9)

is obtained.

As an example, we can consider a plane in the Cartesian coordinates along z-axis,
which does not depend on the coordinates y and z, when the wave equation Eq. (4.9)
with F(r,w) = 0, assumes the form

PV (r,w)

T—Fk \I/(m,w) :0. (410)
It results in the solution A A

U(z,w) = A’ 4 Be=ik® (4.11)

where k = w/c is the wave vector as in Eq. (4.8). When B = 0, the wave is propagating
directly in direction of r. When A = 0, the wave propagates against the direction
r [99,109].
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In the cylindrical case, if we assume that only the range r changes, the homogeneous
wave equation reduces to

[lﬁ <7aﬁ) n kz} W(r,w) = 0 (4.12)

resulting in Bessel functions
U(x,w) = Ady(kr) + BYy(kr) (4.13)

The result can be related to the Hankel functions as

U(z,w) = CHY (kr) + DHS (kr) (4.14)
= ClJo(kr) + jYo(kr)] + D[Jo(kr) — jYo(kr)], (4.15)
where
HO (kr) e 1 | ——edtbr—m/4 (4.16)
wkr
2 :
H (kr) m ([ ——e30r=m/b), 4.17
Pkr) 4| e (417
These results can be approximated as
ejkr e—jkr
U(r,w)=A + B (4.18)
r r

Assuming only direct wave (when B = 0), we can write that

Jkr
U(r,w) = Aer , (4.19)

and, by using the derivation of the surface displacement [99], calculate that

kT

U(r,w) = _Sw47r7"’ (4.20)
where S,, is the strength of the source. Note that
ikr

gu(r,0) = gy (4.21)

is the definition of the Green’s function. For a source at r; = (14, z;), the general Green’s

function is defined by

ejk|r—rt|

gu(r, 1) = (4.22)

4rlr — 1|
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4.1.1 Normal mode solution

In the underwater acoustics, there are four main methods of deriving the solution for
a wave equation: fast field program, normal modes, ray theory, and the parabolic
equation model [99,104]. In this thesis, normal mode solution will be analyzed, as
one of the most widely used solutions in underwater acoustics. It is based on solving
depth-dependent equations using the method of variable separation.

The general model of the environment is presented in Fig. 4.1. The boundary
of the bottom depends on the nature of the ocean, such as the roughness, depending
on the weather conditions and different environment in the ocean itself. This will
introduce more layers of the seabed. Also, the scattering of the transmitted signal
can cause a non-ideal environment for the analysis. The isovelocity waveguide model,
which is presented in Fig. 4.2, characterizes a rigid boundary of the seabed. This
yields to an ideally spread velocity of c¢. All channel models are based on the fact
that the structure of the channel is a waveguide, with multiple normal-modes received,
representing delayed versions of the transmitted signal. The goal is to estimate and
decompose the received signal, by finding each mode separately.

GENERAL MODEL

Medium 1: AIR \

/

¢ ? DRX &2
€ 7 '
D

Medium 2: OCEAN
Density p
[:ITX (0.2) Speed c

Seabed density P, Soundspeed Cp

2=
L ’ém
Z ._.65 Seabed density ., Sound speed Cp,

Figure 4.1: The general model of a shallow water environment [106].

The one-point received pressure field y from a point source located at depth 2z, and
range r = 0 is defined by the Helmoltz equation
2

Lo (1) e (S iy = M

Using the method of variable separation, we can write the pressure as product of two
functions one dependent on range r and another one dependent on depth z

y(r, z) = Q(r)G(z). (4.24)
By substituting this form into Eq. (4.23) and considering only its homogeneous part,
we get
1{1({ dQ 1 d 1 dG w?
— |- r— — — | —— — = 0. 4.25
Q [7" <7’ dr) * G p(z)dz (p(z) dz) + 02(Z>G}] 0 (4.25)




74 Chapter 4. Decomposition in dispersive channels

ISOVELOCITY MODEL

Medium 1: AIR \
< 7

5 ¢ )|Z|Rx(r,zr)

Medium 2: OCEAN
Density p
[ZITX (0.z) Speed c

Figure 4.2: The isovelocity model of a shallow water environment [106].

Note that this equation has two terms %[% (r%)} and & [p(z)d% <p(lz)%> + CQW—(ZZ)G}}
The first term is a function of coordinate r only, while the second term is a function
of coordinate z only. Their sum can be zero only if both of them are constant and do

not depend on r and z. This constant is called the separation constant and denoted by

k% . where m presents the mode index.
Now, by equating the second part of the last wave equation with this constant k2
we get
1 d 1 dG w?
— — m | = K2 4.2
n [p<z>dz (p(z) - ) + a3 ] 2m,w) (4.20)
or
d| 1 dG,(2) w? 5
—|— —k Gn(z)=0. 4.27
() [p(z) L [ 5 Ko (m.0) | Gu) (.27

Note that G(0) = 0 and 4¢|._p = 0, where D is the ideal rigid bottom. It is interesting
to note that the modal equation is a Sturm-Liouville problem [110] whose properties
are well-studied. The modes are orthogonal and the pressure function can be written
as their sum

y(r,z) = Qu(r)Gm(2). (4.28)

The modal equation, for this sum of the modes, can be written as

3 {11 (deL“) Gnl2) + ki(m,m@mmam(z)} - AR (g

rdr

m=

By multiplying this equation with G, (z) and using the property that the modes are
normal for the considered interval of z, the following equation is obtained

%di?” <TdQCZ“(T)> + kf(nvw)@ﬂ(ﬂ = _M' (4'30)

2rr
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Its solution is given by the Hankel function

Qulr) = 4p{Zt)Gn(zt)Hél’2)(kT(n, w)r). (4.31)

Ignoring the time dependence for now, we can conclude that
J

= Zt m\Z él) P\, W )T ). .
= (2 Gm(20)Gm(2)Hg (K (m, w)r) (4.32)

WE

y(r, 2)

3
[

By approximating the Hankel function, the final value for pressure will be

. o0 jkr (myw)r
~ J —jm/4 } : e’
r,z) & e Go(z)Go(z . 4.33
ylr,2) 4p(z)\/ 87 — (2)Gm(2) k. (m,w) ( )

In terms of signal processing [105, 106], considering the time dependence of the
solution, with a source pressure field z(t), the normal-mode solution to the Helmholtz
equation in Eq. (4.23) can be rewritten for the pressure release as

B . B 1 9%(r, 2,t) _ 8(r)d(z — z)
v(,o(z)vy( ’ ’t)> p(z)c2(z)  ot? (t) 27r ' (4:34)

When the range and the depth parameters are known, the acoustic pressure of the
received signal can be reduced to y(t). Following the approximation of the Hankel
function to the received pressure in Eq. (4.33), the corresponding FT is

ek (mw)r

(’;t> D Cn(w)——. (4.35)

Y(w) = X(w)p( 1 oo

where the constant C' is

C= \/jgﬁej“/‘* (4.36)

and the frequency-dependent shape function C,,(w) is

Con(w) = G (2) G (). (4.37)

since G, (2¢), G (2) are dependent on w. In the isovelocity case, the general solution
1s

Gm(z) = Asin(k,z) + B cos(k.z), (4.38)
where
w2
_ YN g2
k, = ( c> k2, (4.39)

is the vertical wavenumber. The aim of this thesis is to introduce a novel approach of
decomposition, reconstruction and analysis of the modes using techniques of compres-
sive sensing, described in Chapter 2.
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4.2 Problem formulation - signal processing approach

For the practical setup, it is assumed that the transmitter is placed in water at the
depth z;. This wave is assumed to be transmitted through an isovelocity channel as
in [94,95,97,101-103]. The setup is presented in Fig. 4.3. The receiver is placed at z,
meters in water. The value r presents the distance from the transmitter to the receiver.
Considering the received spectrum Eq. (4.35), the transfer function of the channel in
the normal-mode case is

eXp(jkT’ (m, W)

+oo
T) _ Z Ai(m,w) exp (jk’,,(m,w)r), (4.40)

m=1

H(w) = Z Gm(zt)Gm<Zr)

k. (m,w)r

where G,,(2;) is the transmitter modal function of the m-th mode and G,,(z,) is the
modal function of the m-th mode corresponding to the receiver [95,105,111]. The rate of
attenuation is A;(m,w) = A(m,w)/y/r. The multi-component structure of the transfer
function depends on the number of modes. Note that the dispersive characteristic of
the signal depends on the wavenumbers k,.(m,w) [95]

k2(m, w) = (%)2 - ((m - 0.5)%)2. (4.41)

The speed of sound in underwater communications is ¢ = 1500 m/s. The response to a
monochromatic signal,

s(n) = exp(jwon) (4.42)
at the m-th mode, is
Sm(n) = Ar(m,wo) exp(jwon — jk.(m,wo)r). (4.43)
O r range
| 'I_ _____________ .
P
‘i @ Transmitter zZ
|
: D
| ‘Receiver
|
W
depth

Figure 4.3: The isovelocity setup under water with depth D. The transmitter is located at
position z, the receiver is positioned at z,, with the transmitter-receiver range r [95].

The phase velocity of this signal is

U = = : (4.44)
frlm,w) = J(2)? = (m - 0.5)5)°
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and presents the horizontal velocity of the corresponding phase in the representation
of the m-th mode.

The group velocity represents the energy propagation of the component of the
signal. Considering the time dependence of the signal,

1 w+te€ )
y(t) / Y (w)ellwtkrmeirl gy, (4.45)

" or

—€

and the fact that the phase must stay the same in order to have the signal remain
unchanged through the whole time interval, the group velocity is defined as

dr dw 1 1
wodbbne) CRES L J#) - (m-09)3)’

Since the received signal can be written in the Fourier transform domain as
X(w) = S(w)H(w), (4.47)

where H(w) is the transfer function of the channel in the normal-mode form and S(w) is
the transmitted signal Fourier transform, within signal processing framework the time-
domain form of the received signal is then equal to the convolution of the transmitted
signal and the impulse response of (4.40), that is

z(n) = s(n) * h(n), (4.48)

where h(n) is the impulse response of (4.40).

Amplitude of the first four modes of the impulse response of a dispersive channel
environment and its ideal time-frequency representation is calculated and shown in Fig.
4.4. Our first goal is to present efficient tools for decomposition of mode functions. This
will help to easier detect and estimate the signal parameters. The detection approaches
related to this kind of problems will be introduced in the next sections.

Impulse response of a dispersive channel Response of a dispersive channel
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Figure 4.4: The ideal response of the four considered modes.
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4.3 Polynomial Fourier transform (PFT)

The standard Fourier transform is spread in the frequency domain for the signal with
polynomial phase function. The idea behind the polynomial Fourier transform (PFT)
is to introduce a polynomial function in the Fourier transform whose adjustment would
improve a polynomial phase signal concentration in the frequency domain.

Let assume a polynomial phase signal (PPS). The signal is of order P, presented
in the form of e
z(n) = Ae/ ¥ Timran’ (4.49)

The standard Fourier transform of z(n)
X(k) =" a(n)e ¥, (4.50)

would contain all frequencies defined by the instantaneous frequency variations of the
polynomial phase signal.

Definition 4.1
The PFT is defined starting from DFT and introducing additional polynomial phase
parameters [112-114]

ap(B) = 3 ()i loantosnboctapn) =i n (4.51)

n

-----

The PFT parameters are denoted by s, as, ..., ap.

The aim is to estimate the parameters as, as, ..., «p when the transformation of the
signal is largely concentrated. The signal components can be extracted and localized
following this procedure [7,85].

When the largest component of the transform is found, the signal will be maximally
concentrated in the PFT representation domain. That is, when the PFT signal is best
concentrated, we can find optimal PF'T parameters as

(G2, a3, ...,ap) = arg  max |Xa,. . ap(k)|- (4.52)
(k,a2,...,ap)
to achieve the maximum sparsity. In the ideal scenario, the PFT of x(n) will have the

highest concentration when (qo, ..., ap) = (as, ...,ap). In reality, the goal is to calculate
the values to be as close as possible to the ideal parameters, i.e., as < a9, ..., ap = ap.

4.3.1 Local polynomial Fourier transform (LPFT)

For time-varying signals, when the parameters may change in time, a localized ver-
sion of the PFT is introduced in the same way as the STFT is defined by using the
Fourier transform. Spectral localization of the signal is achieved applying a window
and calculating the PFT of the windowed signal to get the local PFT (LPFT).
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Definition 4.2
The LPFT is defined as [7,115]

XOCQ,O[?, 77777 Otp(k:7 ’)’L) = Z .T(n + nw)w<nw)6_]2ﬁﬂ(1€nw+a2n2’w++OtP’Vl.{X) (453)
where w(ny,) is the window function for the localized signal analysis.
In the same way as for the PFT, the maximum of LPFT is achieved when
(G2, a3, ...,ap) = arg  max |Xa,  ap(k,n)|, (4.54)

(k,az2,...,ap)

where as, as, ..., ap are the parameters that can now be adapted for each considered
instant n. However, in order to simplify the notation we will not use argument n in the
parameters in this case.

4.4 Dual form of PFT (DPFT)

The dual form of PFT (DPFT) is introduced as a more suitable representation for the
decomposition of signals when their spectral content is localized within a short time-
interval, while the changes of their spectral content are significant. As it is the case
for both PFT and LPFT, the idea is to estimate the parameters where the maximal
concentration of the DPFT is calculated.

The signal model is a polynomial-phase in the frequency domain,
X (k) = Ae™I % Tia bk, (4.55)
The discrete DPFT will then be
T,y 50 (n) = D X (k)eI N Mkt BkS 4 00kT) (4.56)
k

The maximum of DPFT is achieved when

(b1, by, ..., bp) = arg  max |z, s, (n)|. (4.57)

(n,B2,...8p) 7

The highest concentration is calculated when the estimated values are equal to the
true ones, i.e., (B2, ..., Bp) = (b2, ..., bp). For a successful decomposition, the parameters
should be estimated such that b2 ~ by,...,bp = bp.

Note that a local version of the DPF'T may be used for the analysis of more complex
time-varying signals. The local DPFT uses a window in the frequency domain W (k)
and it is defined as

$52 Bs... ,3P n, ]'C Z W k —|— l nl+5212+ +6Plp) (458)
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4.4.1 Sparsity in DPFT

Signals with a small number of polynomial phase components, considered in the previ-
ous section, may be considered as sparse in the DPFT. These signals can be efficiently
decomposed and analyzed using the compressive sensing methods. Note that the CS
approach can be applied even in the cases when not all signal samples in the Fourier
transform are available, allowing application in denoising of acoustic signals corrupted
with high sinusoidal interferences (clutter). These frequency samples are removed, de-
clared as unavailable, and the signal is reconstructed using the undisturbed frequency
values, as it will be shown in the examples.

Consider that the Fourier transform of a signal X has a reduced number of avail-

able samples, for example, due to denoising procedure on harmonic disturbances. Let
consider the PPS from (4.55)

X (k) = Ae I F Tibk = fomi R (rhtbak® 4 tbpk?) (4.59)

and its samples at k € {ki,ko,...,kn,} = Ny. The initial estimate of the P-order
DPFT of a signal whose Fourier transform is X (k), using a reduced set of its samples,
is

Ty (n) = Y X(k)el N (bRt 0pkT) (4.60)
keNy
Assume that the parameters (5, s,...,8p are correctly estimated, so that the

DPFT achieves the maximum concentration. The DPFT of a single-component signal
is then

Thy,. bp(N) = Z Aed K k(n=b1) _ Ad(n — by). (4.61)
k

Having only one component, with the rest of the spectrum being zero-valued, we can
conclude that it is sparse. In the multicomponent signals case

M
X(h) = 3 Apeiombrtanketbrn?) (4.62)

m=1

set of parameters is iteratively estimated separately for each component individually.
Without loss of generality, we consider that the component amplitudes are decreasing,
ie. Ay > Ay > --- > Ay The first component is matched with

(Bars -, Bp1) = (bar, - - -, bpn). (4.63)

After the first match, other components are considered as insignificant. The measure-
ments matrix is found from (4.60) assuming only the available samples at k € Ny. The
relation for various values of n is

Tbo1,....bp1 (nl) X(kl)
x n X
6227---,1?132( 2) _ AK ‘ (464)

Lhok,....bpK (nK) X(kNA)
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where the matix A is defined by

eI (n1k1+61) ... eI (nxki+¢1)

Ak = : : (4.65)

e IR kN, +oN,) L. oI R (kN N ,)

with

¢i = kb + -+ + kinPl (4.66)
fori =1,..., N4. Using the available coefficients of X (k), k € Ny, the nonzero values
in time [Zy,,,_bpy (M1)s Tbgy, bps (M2), -+ -, Thype . bpi (i) are reconstructed using the CS

algorithm from Section 1.3.1. The first component is calculated as

When the first DPFT component at n; is recovered, the remaining coefficients of X (k)
are estimated for the first element. Then, the first component is deleted from the
set of available measurements and the algorithm is repeated for the next coefficient.
After its parameters are found and denoted by (fag,...,8p2) = (baa,...,bp2), both
the first and second component are reconstructed simultaneously. The components are
reconstructed using

(521, e ,ﬁp1> = (b217 . 7bP1); and (522, e BPQ) = (17227 e ,bpg) (468)

and the components are removed for the further estimation of the remaining compo-
nents. The procedure is repeated for all n;. Note that, if the DPFT values are off-grid,
we may use few samples around the position n; for a more accurate reconstruction.
The stopping criterion of the reconstruction is defined by the desired error rate.

The results of the decomposition are single components of a non-stationary signal.
The analysis of the signal will be done in the frequency domain, using the dual version
of the STFT, since all examined modes are spread over a broad spectrum of frequencies.
The dual STFT is defined by

Ng/2—-1
STFTp(k,n)= Y X(p— k)W (p)el ¥, (4.69)
p:7N5/2

where Ny is the length of the window in the frequency domain.
Following the form of the S-method (1.19), the dual S-method is then

L
SMp(k,n) =Y STFTp(k,n+i)STFT}(k,n —i). (4.70)

i=—L

4.4.2 Results

Three examples, showing the efectiveness of the proposed method, are presented. The
algorithm used for the reconstruction is the OMP algorithm explained in Section 2.1.
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Example 1: Ideal polynomial phase signal with sinusoidal disturbances.

Let consider the case when the polynomial phase structure of signal is fully satisfied
(4.55). Assume that the received signal consists of four components (modes).

X (k) = X1(k) + Xo(k) + X3(k) + X4(k), (4.71)
where

Y

( ) ejN (150k+-0.06k2)
e’

27 (180k+0.015k24-0. 00009k3)

Xo(k) =
Xg(k:) _ e” 2% (300k4-0. 00008k3)

X4(l<:) — N 27 (480k—+0.035k2+0. 0001k3)

The frequency index range is k = 0,..., N — 1 with N = 1024. The time domain of
the signal is presented in Fig. 4.5 (top left). The corresponding frequency domain of
the signal (4.71), is shown in Fig. 4.5 (top right). Assume that Ny = 256 of samples
in the frequency domain are corrupted by strong sinusoids, resulting in the signal

Ng
za(n) = z(n) + ) B @), (4.72)

=1

Time and frequency domains of the corrupted signal are illustrated in Fig. 4.5 (middle).
The first goal is to detect and remove the strong periodic disturbances from the signal.
In order to filter the signal, a simple notch filter is used to set to zero the disturbed
components (i.e., hard thresholding). The filtered signal, in time and frequency domain,
is illustrated in Fig. 4.5 (bottom).

The decomposition is performed using the DPFT according to the definition (4.60),
assuming the third-order DPFT. The parameter (3, is varied between —0.2 to 0.2 and
B3 between —0.3 to 0.3. The parameter values where the DPFT gives the best concen-
tration for each mode are detected in an iterative way. When the first set of parameters
Ba, B3 is found, the peak in the DPF'T corresponds to a single component with these
parameters. The component can be dismissed from the DPFT and the estimation of
the remaining components is continued. The DPFT decomposition of the four modes
is shown in Fig. 4.6, with the estimated (s, 85 presented in Table 4.1.

Table 4.1: Parameters (s, 83 for each mode corresponding to the DPFT where the maximal
concentration is achieved in the ideal case.

Parameters/Mode 1 2 3 4
B2 0.1232 0.1888 0.0600 0.1536
B3 0.0132 0.0168 0.0000 0.0144

For the TF representation, we have used the S-method with L. = 31 and Hanning
window of length N,, = 256. The S-method of the received signal is shown in Fig. 4.7
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Figure 4.5: Ideal case scenario: Time domain received signal (left); received signal in the
frequency domain (right): the received signal without disturbance (top), the recieved signal
with disturbance (middle), the signal with filtered disturbances (bottom).

(top left). The decomposition of the four reconstructed components in the S-method
representation is presented in the next four subplots of Fig. 4.7. The sum of the
normalized representations of the four modes is presented in Fig. 4.7 (bottom right).
For the comparison, the original (without noise) and the reconstructed signal in time-
domain are shown in Fig. 4.8.

Example 2: Decomposition of a simulated acoustic signal.

The acoustic signal, interpreted in Section 4.2. will be used for the decomposition.
Note that this signal is not characterized by the ideal polynomial phase structure, but
rather it can be approximated by a polynomial phase signal.
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Figure 4.6: Decomposition of the components using DPFT in the ideal case.

A simple one-component LEM as in (4.42) is transmitted over a dispersive media.
The dispersive channel consists of M = 4 modes. The received signal is of form (4.48).
It depends on (4.40) and (4.41). The amplitude attenuates by A,, = (6 — m)W(f),
where W ( f) is the frequency response of the Hanning window of length N,, = 256. The
depth of the dispersive channel is assumed to be D = 20 meters. The distance between
the transmitter and receiver is r = 2350 meters. The frequency range is f,.;, = 195 Hz
and fynq = 430 Hz. The received signal is presented in Fig. 4.9 (top left).

The DPFT of the third order is used for the analysis, and the parameters (35, f3 are
varied between —0.2 to 0.2 and —0.3 to 0.3, respectively. The estimated parameters
are presented in the Table 4.2. The DPFT mode decomposition is illustrated in Fig.
4.9.

Table 4.2: Parameters corresponding to the maximal DPFT values for each mode in the
simulated acoustic case without disturbances.

Parameters/Mode 1 2 3 4
B2 -0.0380 -0.0400 0.1780  0.1240
B3 -0.0180 -0.0420 -0.1530 -0.2340

The Hanning window of size N,, = 512 is used for the dual STFT, while for the
dual S-method L = 63 is used. The S-method of the received modes is shown in Fig.
4.10 (top left). The sum of the four normalized component representations is presented
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Figure 4.9: Time-domain mode decomposition: Received signal (top left); Sum of the recon-
structed modes (bottom right); Optimal DPFT estimation for each mode separately (remain-
ing subplots). Red circles - samples related to the corresponding mode.

in Fig. 4.10 (bottom right). The S-method decomposition of the four modes, obtained
by the DPFT before the CS theory, is presented in the remaining subplots of Fig. 4.10.

Example 3: Acoustic signal with strong disturbances.

Assume the signal Example 2, affected by high sinusoidal interferences according
to (4.72). Assume the case same as in previous example, with A,, = 1. The received
signal without intereferences is illustrated in Fig. 4.11 (top). It is assumed that the
received signal has high-impulse intereferences in the frequency domain in 25% of the
spectrum. The corrupted received signal is shown in Fig. 4.11 (middle).

As in Example 1, the affected components are removed using hard thresholding,
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Figure 4.10: S-method of the decomposed modes and sum of the normalized representations

of all modes in the simulated acoustic case without disturbances

and the corrupted spectral samples are considered as not available. Time and frequency
domains of the filtered received signal are presented in Fig. 4.11 (bottom).

After filtering, the estimation of the parameters is achieved using a third-order
DPFT, illustrated in Fig. 4.12. The parameters $ and (3 are varied within the range
—0.7 to 0.7. The estimated DPF'T parameters 5, 53 can be found in Table 4.3.

The S-method of whole signal and individual modes given in Fig. 4.13. The compar-
ison between the received signal, when no noise is present, and the final reconstructed

signal are presented in Fig. 4.14.

It can be concluded that it is possible to decompose and recover original values
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Table 4.3: Parameters corresponding to the maximal DPFT values for each mode in the

acoustic simulated case with disturbances.

Parameters/Mode 1 2 3 4
B2 0.2576  0.3556  0.5712  0.1288
B3 -0.1764 -0.1232 -0.3584 -0.0812
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Figure 4.11: Simulated acoustic signal with disturbances: Signals in the time domain (left);
Signals in the frequency domain (right): Received signal without disturbances (top), received
signal with disturbances (middle), filtered received signal (bottom).
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Figure 4.12: Decomposition of the components using DPFT in the acoustic simulated case
with disturbances.

of the acoustic samples using the CS techniques for reconstruction of reduced set of
samples in the frequency domain. It is seen that the obtained results are similar to the
results obtained in Example 2, i.e., when the signal without interferences is examined.

4.5 Model-based decomposition

In the previous section, the decomposition of the signal is performed by varying DPFT
parameters. In this section, we will use the idea to vary the parameters of the modal
functions as the decomposition functions instead of the polynomial phase model of
the signal. Since the components take the form of modal functions in the considered
acoustic signal propagation case, we take the channel depth D,, and the range r as the
parameters that are being estimated, instead of the polynomial coefficients 35 3. The
goal is to vary the parameters of the transfer function model in the way we would vary
the frequency parameters in the DPFT. Taking into account the FT of the discrete
received signal X (f) and the wavenumbers k,.(m, f) as in Eq. (4.41), instead of the
DPFT, given by

M
X(k) =3 ApedCimktbonttbank?), (4.73)

m=1
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Figure 4.13: S-method decomposition of the components in the acoustic simulated case with
disturbances.

the received signal will be then decomposed using its normal mode form

X(k) =Y A(m)elttmbr, (4.74)
where !
ky(m, k) = <an]:c>2 — ((m = 05)7/Dy)?). (4.75)

The speed and the frequency range in which the underwater acoustic system oper-
ates are defined a priori. The values 5, and 3 are varied within the expected range in
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Figure 4.14: Comparison of the signals in the acoustic simulated case with disturbances: The
original signal (left) and the reconstructed signal (right).

the transform

~i((28) - (n-09)m/) Yo
T o s (n) = Y X(k)e "\ ¢=92mmh/N (4.76)
k

If the parameters (5, 83 are correctly estimated, 8o = r and B3 = D,, then this new
representation g, g,(n) will achieve maximum concentration. Therefore, the represen-
tation with the highest concentration produces estimate of the parameters r» and D,,

(7, Dp,) = arg max |, , s, (1)] (4.77)
(B2,83)
when these values are close to the true ones, i.e. ﬁm ~ D,, and 7 =~ r. Asis in the
case of the DPFT, when the strongest component is detected, it is removed and the
next mode parameters are detected. This procedure is continued until the remaining
components are negligible.

4.5.1 Results

To illustrate the decomposition and reconstruction, let consider the ideal case as from
Section 4.2., with the frequency range between f,.;, = 320 Hz and f,,.. = 570 Hz.
The distance between the transmitter and receiver r and the true channel depth D
will remain the same. These two parameters are considered as unknown and further
estimated.

The transmitted signal is considered to be a pulse with a short interval, close to a
delta function, whose spectrum is then equal to 1, i.e. U(f) = 1. The received signal
is of form Eq. (4.48), which will result in X (f) = H(f).

Variables D and r are arbitrarily varied. The value for depth D is varied in the

range between 0 to 100. The distance value r is varied in the range between 1000 to
3000.

It has been calculated that the maximal values are found at the position D =
20.0357 m and r = 2350 m. The decomposition of each component is shown in Fig.
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Figure 4.15: Decomposed modes in the time domain using the model-based technique

4.15. The sum of the received coefficients and the sum of reconstructed components

are shown in Fig. 4.16.

Sum of the received components Sum of the reconstructed components

150 150
< 3
S 100 S 100
8= 8=
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0 1 1 J 0 1 1 J 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time index n
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Figure 4.16: Sum of the components: received (left); reconstructed (right)

The decomposition results will be analyzed in the frequency domain using the dual
S-method from Eq. (4.70). A Hanning of size N,, = 63 is used as the window. The dual
S-method representation of a sum of the four received modes is shown Fig. 4.17 (top
left). Sum of the decomposed components and the amplitudes of individual components
are given in Fig. 4.17 (bottom right), with the decomposition of each mode individually

in the other four subplots of Fig. 4.17.
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Figure 4.17: S-method decomposition of the components when model-based decomposition is
used.

4.6 Comparison

The mean squared error (MSE) in the decomposition is calculated as

. >k [SMpr(k,n) — 32 SMppy(k,n)|?

e =101o
> km |SMpr(k,n)|?

(4.78)

where SMpr(k,n) and SMp,,(k,n) are the sum of received dual S-method compo-
nents and the sum of S-method components of modes of the received signal after the
decomposition. The errors in dB are shown in Table 4.4.
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Table 4.4: Error in the form of MSE in dB for the examples considered

Case MSE [dB]
Ideal-case DPFT -12.6198
Simulated acoustic signal DPFT -10.1590
Simulated acoustic signal with disturbance DPFT -7.9361
Model-based technique -30.5013

The MSE value of the model-based technique gives the best results in terms of
error, which is expected due to its specific (i.e., not generalized) nature to find the
exact values of parameters. The method is not sensitive to noise until the threshold for
the detection is reached, i.e. when the input SNR is approximately —5 dB. When the
threshold is reached, the error sharply increases, since some modes are not detected.
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This chapter presents further work on compressive sensing, which can be considered
as an extension of results presented in the previous chapters. Here, we focus on the
reconstruction and error calculation of general images, analyzed in the two-dimensional
discrete cosine transform (2D-DCT) domain.

In the first part of the chapter, a method for recovery of sparse images is presented.
The algorithm is based on a gradient-descent procedure. The proposed algorithm per-
forms blindly to detect and reconstruct corrupted pixels. The assumption is that the
image is sparse in the 2D-DCT domain and that the noise degrades this property.
The advantage of the proposed reconstruction algorithm is that the uncorrupted pixels
remain unchanged in the reconstruction process. The proposed method can be used
without explicitly imposing the image sparsity. The algorithm is compared with some
state-of-the-art algorithms, proving its reconstruction robustness.

In most cases, images are approximately sparse or nonsparse in the 2D-DCT do-
main. The sparsification step of images can produce the error in their final reconstruc-
tion. In the second part of the chapter, the exact error is derived for nonsparse images
reconstructed under the sparsity assumption. The mean squared error calculation the-
ory is compared to the corresponding statistical values.

95
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5.1 Problem formulation

Let consider an 8-bit N x M image, x(n, m), meaning that its pixel values are integers
between 0 and 255. For compressive sensing methods, it should be assumed that the
image is sparse in the 2D-DCT domain.

Definition 5.1
The 2D-DCT (and its inverse) of an image x(n,m) is defined by [8, 116]

=
=

—1M-1

X (k,1) z(n,m)p(k,l,n,m)

I
- o

g3
DY

(5.1)

lZ:

z(n,m) = X(k,Dp(n,m, k1),
—0 1=
where p(k,l,n,m) is the 2D-DCT basis function and 1(n,m,k,l) is the 2D-DCT in-

verse basis function, defined as

o(k,l,n,m) =1v(n,m,k,1) = cxc cos (W) cos <7r(272n—]\;1)l> ) (5.2)

o
[e=]

The constants ¢ and ¢; are scaling constants defined as

. { 1/V/N, fork=0 ) { 1/VM, forl=0 (5.3)
b V2/N, fork#0 L V2/M, forl#0" '

In matrix form, the image and its 2D-DCT can be written as x = X and X = &x,
respectively, where ¥ and ® are the rearranged matrices defined in (5.2). For the
compressive sensing framework, we assume that the considered image is K-sparse in
the 2D-DCT domain and that only N4 < N M of its pixels are available at the positions
(n,m) € Ny = {(n1,m1), (n2, ma), ..., (nn,,mn,)}. Consequently, assuming that the
positions of the corrupted pixels are known, we can set their values to zero (as it is
done in the initial estimate). The initial image form is then presented as

2, m) = z(n,m) for (n,m) € Ny (5.4)
o 0 elsewhere. '

Note that the nonzero entries of (5.4) are the measurements within the CS framework
y = [#(ny,m1), z(ng, ma), ..., w(nn ., ma,)]" - (5.5)

The image is sparsified according to the quantization matrix of the JPEG standard
[116]. The quality factor (QF) defines the level of sparsification of the image. For
different QFs, which influence the level of sparsity in the block, the quantization matrix
is defined as

Qor = round(Qso - q), (5.6)
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where ()5 is the standard quantization matrix and the value ¢ is the level presented as
2 —0.02QF, for QF > 50
= 50 f F 50 (57)
Q_F7 or Q <
The reconstruction procedure is performed using blocks of the image of size 8 x 8.
Then, each block is analyzed and recovered separately. After each block is recovered,
the full image is restored by combining the blocks back. Also, different quality factors
are assumed to compare the performance of the algorithm with various sparsity levels.

5.2 Gradient-based reconstruction algorithm

Here, we will consider an image with Ng = NM — Ny pixels affected by noise. The
amplitude of noise can be within the range of the available N4 pixel values. The aim is
to reconstruct the corrupted pixels without knowing the number of affected pixels nor
their positions, while not changing the values of available noise-free pixels.

5.2.1 Algorithm

The algorithm is based on the maximization of the sparsity measure through itera-
tions [34,117,118|. Each particular image pixel is considered as possibly corrupted. Its
value is varied by adding an estimation parameter, +A. For each pixel, the gradient
sparsity measure ||X]||, is estimated based on its finite difference value. The pixel pro-
ducing the largest gradient estimate is marked as corrupted and omitted. Then the
iterative process is repeated until the sparsity measure does not change significantly.
All detected corrupted pixels are set as unavailable. When the set of corrupted pixels
is defined, the reconstruction is performed. The reconstruction procedure is described
in Algorithm 6 of Appendix [34]. The corrupted pixels are varied through the recon-
struction procedure to produce the most sparse solution. During the reconstruction
process, the uncorrupted pixels remain unchanged.

The algorithm can also be used when the noise is much stronger than the signal
itself, meaning that the corrupted pixels are distinguishable from the uncorrupted pixels
(salt-and-pepper noise), so that their positions are easily found. When we have strong
noise in the image, we will omit the corrupted pixels from the calculations and continue
with the reconstruction as described in Algorithm 6 of the Appendix.

5.2.2 Corrupted pixel selection procedure

For the selection of potentially corrupted pixels, let assume that one pixel is corrupted
at a position (ng,mg). The image with the corrupted pixel will be defined by z,(n, m),
where the corrupted pixel is x,(ng, mg) = x(ng, mp) + 2, with z being the noise value.
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Following the Algorithm 6, the corrupted pixel is varied according to £A to form

)l (n,m) =x(n,m)+ (z + A)§(n — ng,m — my)

z, (n,m) =xz(n,m) + (z — A) d(n — ng,m — my). (5.8)
The gradient of the sparsity measure is estimated as
g<n07m0) = HX;H1_ HX;”l (59)

where X and X are the 2D-DCT of the images (5.8) with coefficients X (k,1) and
X, (k,1), respectively.
Assume that the 2D-DCT of the image when only one pixel is nonzero is (z + A) ¢(k, [, ng, mo).
The sparsity measures can be approximated as a sum of the original image measure
and the measure of the corrupted pixel (with the A shifts)
N-1
%[l = D7 X k0] = X, + ]2+ A
e 1=0
N-1
1G], = D2 X G )| = XLy + |2 — A€

k,1=0

(5.10)

where C' which depends on the corrupted pixel position (mg,ng) and the size of the
image. The gradient is then

g(no,mo) = || X5, — [IXo|l, = 12+ A[C — |z — A| C. (5.11)
For variations from the true image value smaller than the step |z| < A we get
g(ng,mp) = 2Cz ~ . (5.12)

From (5.12), it can be concluded that the gradient is proportional to the intensity of
noise at the corrupted pixel.

5.2.3 Pixel selection and reconstruction

The aim is to find the positions of corrupted pixels and select which pixels are uncor-
rupted. According to the previous subsection, this will be achieved by repeating steps
9-15 of the gradient-based reconstruction procedure in Algorithm 6 in the Appendix.
Note that this procedure should be repeated for all pixels, in order to estimate which
pixels are corrupted. The full method of pixel selection and recovery is presented in
Algorithm 7 of the Appendix. During the reconstruction, we include all previously de-
tected positions of corrupted pixels in each iteration. The procedure is repeated until a
required precision is achieved. The algorithm is repeated for each block, and the image
is combined back when all blocks are reconstructed.

In the reconstruction, we have concluded that the edge effects of some blocks can
influence reconstruction success. Small pieces of the neighboring blocks may appear
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at the edging pixels in the current block. Since the algorithm finds the solution by
maximizing the sparsity, it will recognize those small pieces as disturbances in the
considered block. It will try to select them as corrupted pixels, meaning that they
are removed. To overcome this problem, the pixel selection analysis is done using
partially overlapping blocks. Only the central parts of the blocks (the ones which are
not overlapped) are included for the final reconstruction.

5.2.4 Results

The image “Peppers”, of size N x M = 512 x 512, is used to demonstrate the presented
method. The image is affected by a combination of two noise types. These disturbing
noise types are the salt-and-pepper noise (having intensity either 0 or 255) and the
uniform noise (noise in the range between 0 and 255). In color images, the noise is
randomly positioned in each of the three channels (R, G, and B) separately. Assume
that 50% of the pixels are affected by noise, with 10% of them being the uniform
noise. The results of the presented denoising algorithm are compared with a 5 x 5
median filter and two state-of-the-art methods. The first method is from [119], based
on adaptive filtering. The second considered method is the total-variation imaging
algorithm from [120,121].

The results are shown in Fig. 5.1. The original image is presented in Fig. 5.1
(top left). The image with the corrupted pixels is shown in Fig. 5.1 (top right). The
reconstruction using the proposed method and the reconstruction of the image using
the 5x 5 marginal median filter are presented in Fig. 5.1 (middle). In Fig. 5.1 (bottom),
the reconstruction with the two state-of-the-art algorithms is shown. The methods for
comparing the reconstruction results, along with the specific values of the comparison
parameters, will be given next.

Comparison

The performance of the algorithm will be examined using the SSIM index as well
as MAE and PSNR, with respect to the original image. The SSIM index is introducted
[122] and defined as a function of luminance, contrast and structure comparison between
two images, i.e.

(2o tz, + €1)(202,0, + C2)
(13, + 13, + c1)(0F, + 02+ c2)
where x, and x, are the original and the reconstructed image, respectively. The values
fz,, Mz, correspond to the mean values of the two images, o, ., is the covariance
between X, and X, 02, 02 are the variances of the considered images. The constants
¢; and ¢y are used for stabilization. The SSIM value is a constant between the values
0 and 1, where 1 is obtained when the similarity between images is complete and 0 is

obtained when no similarity is present.
The MAE is calculated as

MAE(x,,x,) = mean(mean(|x, — X,|)). (5.14)

SSIM(x,, X,) = (5.13)
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Original image Noisy image

Reconstructed using proposed method Reconstructed using 5 x 5 median filter

Reconstructed using TV-L1 Reconstructed using two-stage adaptive method

Figure 5.1: Reconstruction of color image “Peppers” corrupted with 50% combined noise:
Image with corrupted pixels (top left); Reconstruction using the proposed method (middle
left); Reconstruction using the 5 x 5 median filter (middle right); Reconstruction using the
two state-of-the-art algorithms (bottom).

Table 5.1 shows the SSIM index and MAE for different quality factors different
percentage of corrupted pixels in the grayscale image “Lena”, presented in Fig. 5.2 (top
left). Note that the quality factor (which determines the sparsity level of the block)
nor the number of the corrupted pixels are not known by the gradient algorithm.
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Table 5.1: SSIM index and MAE between original and reconstructed image “Lena’” for various
quality factor QF and percentage of corrupted pixels.

SSIM MAE
QF 12.5% 25% 37.5% 50% 12.5% 25% 37.5% 50%

5 0.99 0.99 0.91 0.64 0.41 1.08 3.28 10.80
10 0.99 0.98 0.92 0.64 0.38 1.05 3.18 11.63
25 0.99 0.98 0.92 0.63 0.37 1.08 3.27 12.28
50 0.99 0.98 0.92 0.62 0.42 1.17 3.45 12.79
75 0.99 0.98 0.91 0.61 0.47 1.31 3.60 13.10
90 0.99 0.97 0.91 0.60 0.61 1.54 3.85 13.75

Table 5.2: PSNR and SSIM for the reconstruction of the eight test images in Fig. 5.2. The
results are obtained by the proposed, two-stage (2-stage) adaptive algorithm [119]| and total
variation L1 (TV-L1) [120,121] method.

PSNR SSIM

Test image Proposed 2-stage TV-L1 Proposed 2-stage TV-L1
Pout 45.87 39.59 39.46 0.98 0.63 0.92
Lifting body 43.92 35.90 40.15 0.99 0.73 0.94
Peppers 42.74 39.84 38.58 0.99 0.62 0.95
Lena 41.22 35.87 35.94 0.98 0.75 0.91
Boat 39.33 34.15 34.41 0.97 0.73 0.85
Butterfly 39.22 36.20 35.04 0.98 0.81 0.88
Camera 36.54 36.36 33.01 0.94 0.81 0.79
Tissue 32.44 30.92 29.35 0.91 0.86 0.73

The peak-to-noise ratio (PSNR) and the SSIM index will be used for the comparison
of the algorithm with the state-of-the-art algorithms based on a set of eight images from
MATLAB software. The PSNR for an 8-bit image is

mean(mean(|x, — x,|)?)

2552

The eight test images are shown in Fig. 5.2, including the image peppers, analyzed
earlier. The comparison among the reconstruction algorithms for eight test images
corrupted by 50% of combined noise, is given in Table 5.2. This table shows the
robustness of the proposed algorithm in comparison with the other two methods for
image reconstruction.
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Lena Lifting Body Boat Butterfly

Camera
Peppers

Figure 5.2: The eight test images used for the comparison between the proposed algorithm
and two state-of-the-art algorithms.

5.3 Error calculation in nonsparse images

In the previous subsection, the images are considered as being sparsified according
to the quality factor and the corresponding quantization matrix, since a significant
amount of the energy is concentrated within a small number of 2D-DCT components.
However, the remaining nonzero coefficients make that the original images are only
approximately sparse or nonsparse. Since, in CS theory, sparsity should be assumed,
the reconstruction algorithms will not be able to recover small valued coefficients of
nonsparse signals. The exact formulation of the expected squared reconstruction error
in the case of nonsparse images is given in the form of a theorem [123].

Theorem: Assume an image, which is nonsparse in the 2D-DCT domain, with
the largest amplitudes in this domain A,., r = 1,2,..., K. Assume that only N4 out of
total NM samples are available, where 1 < Ny < NM. Also assume that the image
15 reconstructed under the assumption that it is K-sparse. The energy of error in the
K reconstructed coefficients | Xx—Xgl is related to the energy of unreconstructed
components || X xo—X||5 coefficients as follows:

K(NM — Ny)
NAo(NM —1)

X=Xl = X x0—X][3, (5.16)
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where
K(NM NA o
IX—=Xlly = T >, AL (5.17)
r=K+1
and
NM
IXo—X[3= > A% (5.18)

r=K+1

The proof is based on the initial estimate of the image

Xo(k,1) = Z z(n, m)en(n, k)ey(m, 1) (5.19)

(n,m)ENy
where £k =0,1,....,.n—1, 1 =0,1,..., M — 1. In a matrix form we can write

Xo=ATy. (5.20)

The coefficients in (5.19) act as random variables, with different statistical prop-
erties at positions of the image components, (k,l) = (k,,l,.), and positions not corre-
sponding to image components, (k,[) # (k., ().

5.3.1 Noise-only coefficients

Let assume first the case when K = 1 at (kq,[;). Assuming the amplitude to be A; = 1,
the initial estimate can be written as

Xo(k, 1) = Y on(n,kkons (m, b)en (n, k) (m, 1). (5.21)
(n,m)eNy
The variable
Loyl (na m, ka l) = QON(T% kl)SDM(m7 ll)@N(n’ k)SDM (mv l) (5'22)

is random for random set of values of (n,m) where the image is available. Its initial
estimate is

Xo(k, D)= > ap(n,m k1), (5.23)

(n,m)€eNy

When (k,1) # (ki1,11), the 2D-DCT coefficients correspond to position where the
image component is not present. In this case, the initial estimate behaves as a random
Gaussian variable [53|. Following the orthogonality of the basis function and the fact
that values of x,, (n,m,k,l) are equally distributed, the mean value of the initial
estimate is

HXo(kl) = E{Xo(k7l)} =0, (kwl) # (klvll)' (524)
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In the case of a coefficient corresponding to the image component, using the same or-
thogonality property and the assumption of equal distribution of values zy,;, (n, m, k, 1),
it follows that

N

For the zero-mean random variable, the variance is

Ug(o(k,l) - E{ Z xi1l1 <n7m7k7l)+

(n,m)ENy

, (k1) = (K1, ). (5.25)

Z Z Ty, (nymy by D gy, (4, 4, k, l)} (5.26)

(n,m)eNy  (i,j)€Ny
(4.3)#(n,m)

As in the case when (k,1) # (kq,11) is observed, it can be concluded that

N-1M-1

Z Z Ty, (nymy k1) = 0. (5.27)

n=0 m=0
Multiplying the left and the right side of (5.27) by i, (4,4, k, 1), and taking the
expectation of both sides we get

N—-1M-1

E{ SN @ (nom kD, . b, 1)} —0, (5.28)

n=0 m=0

with (4,7) € N. Values zy,;, (n,m, k,l) are equally distributed. Therefore, the terms
E{xy, (n,m, k, Dag, (4,4, k, 1)} for (n,m) # (i, j) are the same and equal to a constant
D. The total number of these terms is NM — 1. Furthermore, based on (5.28) we get

(NM =1)D + E {z},, (n,m,k, 1)} =0. (5.29)
The initial variance definition can be written as
Oxotkny = NaB{x},;, (n,m, k, 1)} + (N3 — Na)D, (5.30)

as there are exactly N4 expectations with quadratic terms in the first summation
and N4(N4 — 1) terms in the second variance summation equal to D. In order to
determine the unknown term E {le , (n,m, k, l)}, several special cases should be taken
into account.

Consider the general case when k # ki, k# N — ki, l # 1y, | # M —[,. Then

1
E{aiy, (nym, b, D)} = Efen (n, ke (m, 1)} x E{e(n, k)i (m, D)} = 1775
(5.31)
holds. Incorporating this result into (5.29) we get that
1 1
D=— : (5.32)

N2M?2NM —1
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Next, based on (5.30), the variance can be written as

NA(NM — Ny)

2 _
UXo(k,l) = N2M2<NM _ 1) (533)

This result also holds when (k1,{;) = (0,0). The special cases of the 2D-DCT indices
are considered in [123]. Note that, when A; # 1, the result is multiplied by A%. As
NM > 1, an accurate approximation, when all special cases are included, for the
average variance of noise-only coefficients follows

5 Na(NM — Ny)
YN2M2(NM — 1)’

o, = A (5.34)

In the realistic case of several components in the 2D-DCT domain, the observed
random variable becomes

Xo(k, D)= > ZAWN n, k) onr(m, 1) X on(n, kYo (m, ). (5.35)

(n,m)eEN, r=1

In this case, the coefficients at noise-only positions (k,l) # (k,,l.) are random
variables formed as the summation of independent zero-mean Gaussian variables over
r. The unavailable pixels in each component add to the noise. The noise from each
component is proportional to the squared amplitude of that component, following (5.34)
with A,, r =1, ..., K. Therefore, the mean value of the K 2D-DCT coefficients is

(o (k1) = ZA 6(k — Kyl —1,). (5.36)

The average variance of noise-only coefficients in this case easily follows as

K
NA(NM — Ny)
2 _ A A
% =2 "NZMZ(NM — 1)

r=1

(5.37)

5.3.2 Nonsparse images reconstruction error

The image is reconstructed under the K-sparsity constraint. The conditions for a unique
reconstruction are assumed to be met. According to (5.37), one nonreconstructed
element behaves as a noise with variance

NAiA(NM — N
O_XO A2 A( A)

"NZMA(NM — 1) (5.38)

which leads that the variance of all components which are not reconstructed will be

NA(NM — Ny)
o2 = q2 Nal A 5.39
or T;I "N2M2(NM — 1) (5:39)
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The total noise energy from the nonreconstructed coefficients in the K reconstructed
components is

NM

N2M? Kmef Au
A =K+1

Note that the noise of the nonreconstructed coefficients can be related to their energy,

NM
IX—X[5= ) A2 (5.41)

r=K+1
From the previous analysis it follows that

K(NM — Ny)
Na(NM —1)

X —Xgll5 = IXee—X]5- (5.42)

This completes the proof of the theorem.

5.3.3 Numerical results

An image set with standard MATLAB images is used for the numerical examination of
the theorem. The set is presented in Fig. 5.3. Each image is split into B x B = 16 x 16
blocks. The reconstruction is performed under the sparsity assumption K = 16 per
block, with 60% of pixels available. The reconstruction is performed using the OMP
algorithm. The errors are calculated for each block separately and then the results are
averaged over all blocks in the image. The statistical PSNR, for an 8-bit image, is

2552
PSN Rtatistics = 101og (W) (5.43)
K =™ 4ZR||2

and the theoretical PSNR, according to the thereom, is

K 25451 X —

2552
PSNRmmwzlobg< ZXW)' (5.44)
2

The results are presented in Table 5.3, confirming a high agreement between the results.

Table 5.3: Statistical and theoretical calculations of the PSNR for 8 test images in Fig. 5.3.

Test image Lifting body Boat Pout Autumn Pirate Pears Peppers Football

Statistics 82.97 81.97 80.35 90.81 70.97 78.77 79.16 68.69
Theory 83.11 82.13 80.42 90.92 71.10 78.86 79.23 68.63
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Pout
Pirate Lifting Body

P Football
Autumn Pbere

Figure 5.3: The eight test images used for the error analysis.






Conclusions

The compressive sensing theory can be used to develop a successful sampling technique
in different fields and various signals. The idea of using a small number of measurements
for the signal acquisition improves the efficiency of storage, memory requirements,
and transmission of signals. Accurate recovery of signals sampled in such a way is
the primary goal of compressive sensing and sparse signal processing. Since many
signals in nature can be represented as sparse in some transformation domain, the
technique showed huge potential in real-world problems. However, the idea is not
yet fully developed and applied in the underwater acoustics field. The non-stationary
nature of such signals makes it suitable for the analysis using time-frequency tools
under the signal processing approach. In the compressive sensing sense, non-stationary
signals are only approximately sparse or nonsparse in the corresponding transformation
domain.

In this thesis, three major points are considered, with the aim to find a success-
ful solution for applying compressive sensing methods to the underwater acoustics. It
is important to notice the nonsparse characteristic of the signals received in disper-
sive channels. The nonsparsity, in general, will produce errors in the reconstruction of
signals considered as sparse in their nature. The exact error generated in the recon-
struction of time-varying signals was derived in this thesis. The uniform and random
sampling were considered, together with a generalization of the error depending on the
sampling method. For a more realistic case, the effect of quantization, as a crucial step
for the hardware implementation, is analyzed. In the end, the noise folding effect is
considered as well.

In addition to the dispersive underwater channel analysis, wideband sonar images
are considered as an important topic in the underwater acoustics. In the literature, only
basic forms of signals were used for the transmission. The usage of various sequences
showed interesting results in the reconstruction of sonar signals. The implementation
of compressive sensing techniques on those signals was considered. We showed that
the reconstruction of sonar signals could be significantly improved in detecting and lo-
calizing sparse targets. Dispersive channels introduce multi-component non-stationary
signals as an additional challenge to this field. Combining the previously studied re-
construction, together with the principles of the polynomial Fourier transform and
mode decomposition, the time-varying components of the sonar signals are successfully
detected, decomposed, and analyzed.

The dispersive media was discussed through two different approaches: the decompo-
sition of signals received at a misaligned sensor, and a signal received from a dispersive
isovelocity shallow water environment. Three different methods were considered: high-
resolution local polynomial case, the dual extension of the polynomial Fourier domain,
and a model-function based technique. It is concluded that the model-based method
gives the best results in terms of error, which is expected due to its specific nature to
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find the appropriately adjusted forms and the values of corresponding parameters. The
method is not sensitive to the noise until the threshold for the detections is reached.
Also, a more general approach, based on the polynomial Fourier transform, is intro-
duced. Although the mode forms do not fully coincide with the polynomial forms, it was
seen that a reasonable error rate is achieved, with a quite general model. The method
is further improved by using a sparse decomposition and reconstruction of components
using the iterative algorithm.

The presented theory and methods can be extended in various directions. In the
decomposition of the dispersive media, the high-resolution techniques showed promising
results combined with the polynomial Fourier transform. Another interesting course is
in the error calculation, which was developed for the time-varying part of the signals
received in the dispersive media. The derivation can be further extended in the direction
of the dual polynomial Fourier transformation domain, as the sparsity domain. The last
approach is based on the combination of the appropriate sequence form selection in the
transmission part of the setup. The combination of the suitable sequences, combined
with the dual extension as the sparsity domain and the appropriate error calculation,
could result in a robust solution for further analysis of signals transmitted underwater.

Finally, some of the results and developed methods are applied to the general image
denoising problem, showing that the presented results and methods are not strictly
limited to the underwater acoustic signal analysis.
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APPENDIX A

Reconstruction algorithms

This Appendix presents some of the most commonly used algorithms in the compres-
sive sensing theory. This, however, does not exclude the vast number of techniques
developed during the years. It simply illustrates some procedures which were success-
fully implemented in many areas. Additionally, Algorithm 7 presents the algorithm
proposed in Chapter 5 of this thesis.

Orthogonal matching pursuit algorithm

Algorithm 1 One-step OMP reconstruction

Input:
e Measurement vector y

e Measurement matrix A
e Number of selected coefficients in each iteration r, by default r =1

e Required precision ¢

1 K+ 0
2: ey
3: while |le||, > ¢ do
positions of r highest
* (ks kzy o Br) values in Afle
5: K(—KU{kl,kQ,...,kr}
6: A < columns of matrix A selected by set K
7 Xk < pinv(Ak)y
8: Vi ¢ A Xk
9: e+ y—YVK

10: end while

{0 for positions not in K
11: X «

Xk for positions in K

Output:
e Reconstructed signal coefficients X
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Algorithm 2 Iterative OMP reconstruction

Input: Vector y, matrix A, assumed sparsity K

L K«0 e+y

2: fori=1do K

3: k < position of the highest value in AHe
4 K+ KUk

5 A < columns of matrix A selected by set K
6 Xk < pinv(Ag)y

7: Vi ¢ AgXg

8: e+ y—Vkx

9: end for

Output: Reconstructed Xz = Xg and positions K.

Iterative hard thresholding algorithm

Algorithm 3 Iterative Hard Thresholding (IHT) Reconstruction Algorithm

Input: Vector y, Matrix A, Assumed sparsity K,
Number of iterations I;, and parameter 7.

1: Xg« 0

2: for i =1do I;

32 Y+« Xo+7AH(y — AXp)

4: K < sort(|Y]), indices of K largest |Y|

5: Xo « 0, Xy < Y for k € K, Hard Thresholding
6: end for

Output: Reconstructed X = Xy, the set of positions K.
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LASSO — ISTA reconstruction algorithm

Algorithm 4 LASSO - ISTA reconstruction

Input:
e Measurement vector y

e Measurement matrix A

e Regularization parameter «

Sparsity promotion parameter A

1: X+ Opnxq
2: repeat

3 s« éAT(y— AX) +X
4: for k< 1to N do
s(k) + A for s(k) < —A
X(k) <0 for |s(k)| < A
s(k) — A for s(k) > A

a

6: end for
7: until stopping criterion is satisfied

Output:
e Reconstructed signal coefficients X
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Bayesian-based reconstruction algrotihm

Algorithm 5 Bayesian-based reconstruction

Input: Vector y, Matrix A

1oy 1 >Fori=1,2,...,N

2: 02«1 > Initial estimate

3: Tp, = 102 > Threshold

4 p=[12,...,N]T

5: repeat

6: D <+ diagonal matrix with d; values

7. X+ (ATA/o?2 +D)!

8: V « ZATy/o?

9: ¥ — 1 —d; ¥y > For each ¢
10: d; < v /V; > For each %
e Iy av

M — Zl Yi
12: R« {i:|di| > Th}
13: Remove columns from matrix A selected by R
14: Remove elements from array d; selected by R
15: Remove elements from vector p selected by R

16: until stopping criterion is satisfied
17: Reconstructed vector X nonzero coefficients are in vector V with corresponding positions
in vector p, X, =V;

Output:
e Reconstructed signal vector Xz =V, the set of positions K = p.
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Gradient-based reconstruction algorithm

Algorithm 6 Gradient-based image reconstruction

Input:
e Set of the uncorrupted pixel positions N4

e Corrupted image x
Output:
e Reconstructed image xpr

1: function GRADREC(x,N4)

f
N x,(zo)(m, n) {x(m, n) for (m,n) € Ny

0 for (m,n) ¢ Ny

A  maxp, |z (m, n)|

3:
4: p+0
5: repeat
6: repeat
- NEENE
8: for all (m;,n;) ¢ N4 do
9: xF «—x
10: zr(my,n;) <z (mi,n;) + A, XF « DCT2{x}}
11: X, — Xg
12: z, (mg,ni) <z, (my,n;) — A, X, + DCT2{x, }
13: 9(mi,ns) + X3 1 = 1XZ [
14: :c,(lpﬂ)(mi, n;) < :c((lp) (m4,ni) — pg(mi,m;)
15: end for
16: p+p+1
17: until stopping criterion is satisfied
18: A+ A/3
19: until required precision is achieved
20: xp — xP)
21: return xp

22: end function
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Proposed method in Chapter 5

Algorithm 7 Proposed method in Chapter 5

Input:
e Image x of size N x M with possibly corrupted pixels

e Number of pixels to be selected in each iteration r
Output:
e Reconstructed image x

e Set of the uncorrupted pixels N4

1: A < maxp,p [z(m,n)|
2: Ny« {(m,n):m=1,2,...,.M, n=1,2,...,N}

3: Ny« 0

4: repeat

5 for all (n,m) € Ny do

6: xT +x

7: zt(m,n) « zt(m,n) + A
8 X+t + DCT2{x"}

9: X X

10: = (m,n) <z~ (m,n) — A
11: X~ + DCT2{x"}

2 glmm) e X — X

13: end for

14: Select r pixels (m,n) € Ny with highest |g(m,n)|

15: Add selected pixels to set N,

16: Remove selected pixels from set N4

17: x < GRADREC(x,Ny ) > Algorithm 6
18: until the sparsity is not significantly changed

19: Optionally, perform sparsification of the reconstructed image

20: return x, Ny




KRATKA BIOGRAFIJA AUTORA

Isidora Stankovi¢ rodena je 02.04.1993. godine u Podgorici, Republika Crna Gora.
Osnovnu gkolu ,Maksim Gorki” u Podgorici zavrsila je 2007. godine kao dobitnica
diplome ,Luc¢a®“. Opsti smjer podgoricke gimnazije ,,Slobodan Skerovi¢* zavrsila je 2011.
godine.

U septembru 2011. godine upisuje Vestminster Univerzitet (University of Westmin-
ster), London, Ujedinjeno Kraljevstvo, na smjeru Elektronika. Tema njenog diplomskog
rada bila je ,Rijetki (sparse) signali: analiza i rekonstrukcija”. Tokom studija, bila je
na Dekanovoj listi najboljih studenata. Kao jedan od najboljih studenata Fakulteta za
nauku i tehnologiju, dobitnik je nagrade za dostignuée, a dobitnik je i bronzane medalje
za inzenjerstvo kao jedan od najboljih studenata zavrsne godine.

Nakon osnovih studija, upisuje Master studije na Imperijal KoledZzu u Londonu,
jednom od najboljih svjetskih univerziteta u oblasti elektrotehnike. Tamo upisuje smjer
za Komunikacije i obradu signala. Master tezu, pod mentorstvom profesora Wei-a Dai-
a, odbranila je u septembru 2015. godine na temu: Pracenje globalne Ozonske gustine
sa nedostajué¢im podacima’.

Nakon zavrsenih Master studija, upisala je doktorske studije na Univerzitetu Crne
Gore. Takode upisuje doktorske studije na Univerzitetu u Grenoblu (University of
Grenoble Alpes), i zvani¢no postaje student programa duple diplome (double-degree
program) ova dva univerziteta.

Isidora Stankovié¢ je, izmedu ostalog, bila angazovana kao konsultant na projektu
"New ICT Compressive sensing based trends applied to: multimedia, biomedicine and
communications - CS-ICT", na Elektrotehnickom fakultetu Univerziteta Crne Gore.

Od pocetka rada na doktoratu, kao autor ili ko-autor, objavila je 10 radova (pub-
likovanih ili prihvacenih za publikovanje) u renomiranim ¢asopisima indeksiranim na
SCI listi, medu kojima su IEEE Geoscience and Remote Sensing Letters (impact fac-
tor 3.534), Signal Processing, Elsevier (impact factor 4.086), Multimedia Tools and
Applications, Springer, (impact factor 2.101), IEEE Transactions on Aerospace and
Electronic Systems (impact factor 2.063) i IEEE Access (impact factor 4.098). Do-
datno, kao autor ili ko-autor, objavila je i prezentovala 30 radova na medunarodnim
konferencijama. Objavila je i dva rada u ¢asopisima od nacionalnog znacaja, kao i
jedno poglavlje u knjizi renomiranog izdavaca CRC. Recenzirala je radove u nekoliko
Casopisa i konferencija.



IZJAVA O AUTORSTVU

Potpisani/a: Isidora Stankovi¢
Broj indeksa: 4/2015
Izjavljujem

da je doktorska disertacija pod naslovom:

Analiza nestacionarnih signala: doprinos kompresivnog odabiranja u sman-
jenju interferencija u disperzivnim kanalima

— rezultat sopstvenog istrazivackog rada;

— da predlozena disertacija ni u cjelini ni u djelovima nije bila predloZzena za do-
bijanje bilo koje diplome prema studijskim programima drugih ustanova visokog
obrazovanja;

— da su rezultati korektno navedeni, i

— da nijesam povrijedio autorska i druga prava intelektualne svojine koja pripadaju
tre¢im licima.

Podgorica, Potpis doktoranda:
jul 2020. godine




IZJAVA O ISTOVJETNOSTI STAMPANE I ELEKTRONSKE VERZIJE
DOKTORSKOG RADA

Ime i prezime autora: Isidora Stankovié¢

Broj indeksa/upisa: 4/2015

Studijski program: Doktorske studije elektrotehnike
Naslov rada: Analiza nestacionarnih signala:

doprinos kompresivnog odabiranja u
smanjenju interferencija u
disperzivnim kanalima

Mentor: Prof. dr Milos Dakovié

Potpisani: Isidora Stankovié¢

[zjavljujem da je Stampana verzija mog doktorskog rada istovjetna elektronskoj verziji
koju sam predala za objavljivanje u Digitalni arhiv Univerziteta Crne Gore.

Istovremeno izjavljujem da dozvoljavam objavljivanje mojih licnih podataka u vezi sa
dobijanjem akademskog naziva doktora nauka, odnosno zvanja doktora umjetnosti, kao
Sto su ime i prezime, godina i mjesto rodenja, naziv disertacije i datum odbrane rada.

Podgorica, Potpis doktoranda:
jul 2020. godine




IZJAVA O KORISCENJU

Ovlaséujem Univerzitetsku biblioteku da u Digitalni arhiv Univerziteta Crne Gore
pohrani moju doktorsku disertaciju pod naslovom:

Analiza nestacionarnih signala: doprinos kompresivnog odabiranja u sman-
jenju interferencija u disperzivnim kanalima

koja je moje autorsko djelo.

Disertaciju sa svim prilozima predala sam u elektronskom formatu pogodnom za trajno
arhiviranje.

Moju doktorsku disertaciju pohranjenu u Digitalni arhiv Univerziteta Crne Gore mogu
da koriste svi koji postuju odredbe sadrzane u odabranom tipu licence Kreativne za-
jednice (Creative Commons) za koju sam se odlucila.

1. Autorstvo

2. Autorstvo — nekomercijalno

3. Autorstvo — nekomercijalno — bez prerade

4. Autorstvo — nekomercijalno — dijeliti pod istim uslovima
5. Autorstvo — bez prerade

6. Autorstvo — dijeliti pod istim uslovima

Podgorica, Potpis doktoranda:
jul 2020. godine




. Autorstvo. Licenca sa najsSirim obimom prava koris¢enja. Dozvoljavaju se
prerade, umnozavanje, distribucija i javno saopStavanje djela, pod uslovom da
se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence
odredio). Djelo se moze koristiti i u komercijalne svrhe.

. Autorstvo — nekomercijalno. Dozvoljavaju se prerade, umnozavanje, distribu-
cija i javno saopstavanje djela, pod uslovom da se navede ime izvornog autora
(onako kako je izvorni autor ili davalac licence odredio). Komercijalna upotreba
djela nije dozvoljena.

. Autorstvo — nekomercijalno — bez prerade. Licenca kojom se u najvecoj
mjeri ogranicavaju prava korisé¢enja djela. Dozvoljava se umnozavanje, distribu-
cija i javno saopstavanje djela, pod uslovom da se navede ime izvornog autora
(onako kako je izvorni autor ili davalac licence odredio). Djelo se ne moZze mijen-
jati, preoblikovati ili koristiti u drugom djelu. Komercijalna upotreba djela nije
dozvoljena.

. Autorstvo — nekomercijalno — dijeliti pod istim uslovima. Dozvoljava se
umnozavanje, distribucija, javno saopstavanje i prerada djela, pod uslovom da
se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence
odredio). Ukoliko se djelo mijenja, preoblikuje ili koristi u drugom djelu, prerada
se mora distribuirati pod istom ili slicnom licencom. Djelo i prerade se ne mogu
koristiti u komercijalne svrhe.

. Autorstvo — bez prerade. Dozvoljava se umnozavanje, distribucija i javno
saopsStavanje djela, pod uslovom da se navede ime izvornog autora (onako kako je
izvorni autor ili davalac licence odredio). Djelo se ne moze mijenjati, preoblikovati
ili koristiti u drugom djelu. Licenca dozvoljava komercijalnu upotrebu djela.

. Autorstvo — dijeliti pod istim uslovima. Dozvoljava se umnozavanje, dis-
tribucija i javno saopstavanje djela, pod uslovom da se navede ime izvornog autora
(onako kako je izvorni autor ili davalac licence odredio). Ukoliko se djelo mijenja,
preoblikuje ili koristi u drugom djelu, prerade se moraju distribuirati pod istom ili
slicnom licencom. Ova licenca dozvoljava komercijalnu upotrebu djela i prerada.
Slicna je softverskim licencama, odnosno licencama otvorenog koda.



	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	Introduction
	Background theory
	Signal representation
	Compressive sensing and sparse signal processing
	Problem solutions

	Reconstruction error of non-stationary signals
	Initial estimate analysis for uniform sampling
	Initial estimate analysis for random sampling
	Error in time-frequency signal reconstruction
	Sampling generalization
	Quantization error in compressive sensing
	Noise folding

	Wideband sonar signal reconstruction
	General sonar signal modelling
	Sequence selection
	Real-data reconstruction
	Time-varying cross-range detection
	High-resolution decomposition

	Decomposition in dispersive channels
	Shallow water theory and dispersive channels - background
	Problem formulation - signal processing approach
	Polynomial Fourier transform (PFT)
	Dual form of PFT (DPFT)
	Model-based decomposition
	Comparison

	Compressive sensing in image denoising
	Problem formulation
	Gradient-based reconstruction algorithm
	Error calculation in nonsparse images

	Conclusions
	Bibliography
	List of publications
	Reconstruction algorithms

