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Abstract
Image denoising is a vital image processing phase aiming to improve the quality of images
and to make them more informative. In this paper, we propose a blind denoising approach
for removing the outliers (impulsive disturbances) from digital images, by combining the
random sample consensus (RANSAC) and compressive sensing (CS) principles. The pro-
posed approach exploits the fact that images are highly concentrated in the domain of
two-dimensional discrete cosine transform (2D-DCT). The sparsity (high concentration)
in the transform domain is used in both detection and reconstruction of pixels affected
by high disturbances. The image pixels not affected by the noise are found using the
RANSAC-based methodology and they are further used as available measurements in the
CS reconstruction. The affected pixels are considered unavailable and they are recovered by
the CS procedure. The presented approach does not require any disturbance-related assump-
tions regarding the statistical behavior of the noise or about the range of its values. The
theory is verified on examples with 55 images. The comparative analysis against several
state-of-the-art methods, done with full-reference and no-reference quality metrics, suggests
that the proposed method can be used as an efficient tool for image denoising.
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1 Introduction

Within the emerging area of compressive sensing (CS), it is well established that sparse sig-
nals can be reconstructed from a reduced number of measurements [3, 5, 6, 9–11, 17, 18,
22, 23, 25, 27, 37, 39, 48, 50, 51, 54]. The CS reconstruction is supported by a rigorous
mathematical framework which characterizes the reconstruction process and the quality of
the obtained solution, as well as the performance of the reconstruction approaches; it pre-
dicts the reconstruction outcome and demystifies the effects caused by unavailable samples
(pixels). Digital images can be represented by a small number of nonzero coefficients (or
coefficients with significant values, when compared with the remaining coefficients) in the
two-dimensional discrete cosine transform (2D-DCT) domain. Therefore, digital images
can be considered as sparse (or approximately sparse [8, 42]) in this domain.

The number of samples (pixels) required to reconstruct the signal (image) is related to
the number of nonzero coefficients in the sparse domain [9, 22]. Missing observations could
arise as a consequence of physical unavailability, restrictions posed by physical phenomena
and sensing devices, or could be a part of the sampling strategy (which aims at minimiz-
ing the resources - time, energy, memory, required for the data acquisition, transmission
and storage, or to minimize the exposure of subjects to a possibly dangerous radiation or
chemicals related to the acquisition process). If some signal samples or image pixels are a
subject of a high level degradation caused by a strong disturbance, they can be intentionally
omitted, considered as unavailable, and recovered using the CS procedures, under the same
conditions as otherwise unavailable samples.

Noise represents unwanted content in an image, caused by different sources, such as low
light, slow shutter, sensor issues, etc. Sudden, sharp disturbance, known as impulsive noise,
is particularly challenging to deal with [40]. This type of noise commonly appears in form
of scattered black and white pixels. Primarily, various filters, most commonly median fil-
ters, are used as main denoising tools for impulsive disturbance. It is, however, well known
that filters only produce approximations, whereas ambiguities in noise characteristics (dis-
tribution, unknown positions of affected pixels etc.) cause errors in resulting images [40].
Moreover, affected pixels can appear either in a regular or irregular shape, where regular
shapes can be generated due to the defect in the sensor while the irregular shape could pos-
sibly be a true feature of the image. These issues serve as a main motivation to develop
advanced, non-filtering denoising techniques, based on sophisticated detection and recon-
struction of affected pixels. One class of such techniques is based on recent CS paradigm
[7, 45, 49].

1.1 Related research

Various methods have been developed in the reconstruction of images affected with ran-
dom noise, which employ sparsity as the main property driving the denoising process. One
of the algorithms based on the sparsity is the Weighted Encoding with Sparse Nonlocal
Regularization (WESNR) method from [29]. The algorithm is based on soft impulse pixel
detection via weighted encoding used to deal with the noise, while the sparsity prior and
non-local self-similarity prior are integrated into a regularization term and introduced into
the variational encoding framework.
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Two combinations of approaches with the well-known block-matching 3D (BM3D) algo-
rithm [16, 30] are considered as advanced image denoising techniques. The BM3D method
is divided into two main steps. After the grouping of similar blocks is performed, a col-
laborative filtering by shrinkage in the transform domain is done. The blocks are then
combined back into a two-dimensional signal. This approach has been combined with the
adaptive Kuwahara filter from [4] and a two-stage adaptive filter from [38], which are used
for processing of the strong impulsive noise pixels. The adaptive Kuwahara filter [4] is a
modification of the Kuwahara filter developed to reduce artefacts in images. The two-stage
adaptive method [38] is based on an efficient average filtering algorithm to remove those
noisy pixels from the image. The combinations are published in [19, 44].

Another well-known method for denoising images is the total-variation (TV) L1 method-
ology [12, 35]. The denoising is based on solving a representative minimization problem,
assuming that that the image has a high total variation. The main advantage of the TV
approach is the preserving details of the images such as the edges. Many forms of the TV
denoising approach are the result of a of a research spread over several years [15, 26, 56].

Besides the four algorithms used for comparison in this paper, there are also other
techniques developed for the problem at hand. One group of algorithms is based on the
hyperspectral denoising [1, 2, 57], such as using the spatio-spectral total variation [1] or
using the sparse hyperspetral image representation based on its low-rank and self-similarity
characteristics [57]. Denoising algorithms based on deep learning and convolutional neural
networks are more frequently engaged recently [31, 55]. Other approaches are based on the
variants of the traditional mean and median filters [34, 40], and various other ideas [13, 14,
32, 33, 45].

1.2 The proposedmethod – relations with previous work andmain contributions

In our previous work, we have shown that the CS reconstruction can be characterized by an
explicit reconstruction error energy, relating the image sparsity, number of available pixels
and total image size [8, 42]. The idea to engage the CS principles and image sparsity in
image denoising has been previously presented in [7, 45]. In this paper, we present a more
advanced noise detection procedure, based on the random sampling consensus (RANSAC),
a widely exploited tool in computer vision, image processing, and other frameworks requir-
ing robust estimation in the presence of a large number of outliers. Pixels disturbed by the
impulsive noise can be considered as outliers [20, 21, 43]. Other pixels, potentially dis-
turbed by a weak additive noise, are known as inliers, and are selected by RANSAC as a
consensus set. Furthermore, the subset of pixels chosen by the RANSAC acts as the set of
available measurements and is exploited as a basis for the CS reconstruction.

Denoising techniques which combine the CS principles and robust estimation, rely on
the fact that the disturbance positions (indices of pixels affected by the disturbance) are
known. Unlike such techniques, the proposed methodology operates blindly, without any
assumptions regarding the positions of affected pixels, distribution or other characteristics
of the noise. We only assume that the image blocks are highly concentrated (i.e. sparse) in
the 2D-DCT domain. This assumption is proved to be valid in the CS-based image recovery
[8, 42].

The proposed technique is characterized by its ability to detect the pixels affected by
the disturbance even in the challenging case when the corruption is within the pixel value
range. This is achieved through RANSAC-based selection of suitable pixels, driven by spar-
sity (concentration) measures and inspired by the compressive sensing framework. These
suitable pixels are inliers. In general, they can be affected only by a low noise. The other,
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highly corrupted pixels represent outliers. A disturbance in a pixel will affect all correspond-
ing 2D-DCT coefficients, by degrading the transform sparsity (concentration). Detection of
such event is carefully integrated within the RANSAC adaptation presented in this paper.
Starting from a random set of measurements, for each image block, a set of successive CS
reconstructions is performed until an outlier-free consensus set with a sufficient number of
elements is found. This means that for the observed image block, a set of inliers is selected,
and further used in a CS procedure as a set of available measurements. The other, thrown
away pixels (labeled by RANSAC approach as outliers and therefore as unavailable) are
recovered by the CS algorithm. The proposed approach can provide an exact reconstruction
if the selected inliers are noise-free, rather than producing a filtered approximation of the
original image. The method presented in this paper is an extension of the one-dimensional
approach recently proposed in [43] to the image processing and the 2D-DCT.

The paper is organized as follows. After short Introduction, in Section 2 we present basic
theoretical background regarding the sparse image representation in the 2D-DCT domain,
including the basic CS principles. In Section 3, the proposed RANSAC-based denoising
procedure is presented, which exploits the CS reconstruction on pixels affected by the dis-
turbance. The theory is validated on numerical examples in Section 4. Concluding remarks
are given at the end of the paper.

2 Basic definitions

2.1 Sparse image representation

Two-dimensional discrete cosine transform (2D-DCT) is typically exploited in various dig-
ital image processing algorithms. For an image x(n,m) of size N × M , the 2D-DCT is
defined as

X(k, l) = T {x(n,m)} =
N−1∑

n=0

M−1∑

m=0

x(n,m)ϕ(n,m, k, l), (1)

with basis functions, ϕ(n,m, k, l), of the form

ϕ(n,m, k, l) = ckcl cos
(

π(2N + 1)k
2N

)
cos

(
π(2M + 1)l

2M

)
, (2)

where constants ck and cl are given by

ck =
{
1/

√
N, for k = 0√

2/N, for k ̸= 0
cl =

{
1/

√
M, for l = 0√

2/M, for l ̸= 0.
(3)

Strong involvement in digital image processing and related applications 2D-DCT mainly
owes to its ability to represent entire images (or blocks within those images) with a small
number of nonzero coefficients or coefficients with significant values, with the remaining
coefficients being zero-valued, or at least being close to zero.

The original image, x(n,m), is obtained from its 2D-DCT coefficients, X(k, l), based
on the inverse 2D-DCT defined as follows

x(n,m) = T −1{X(k, l)} =
N−1∑

k=0

M−1∑

l=0

X(k, l)ψ(n,m, k, l). (4)

This inverse transform has the same basis functions, ψ(n,m, k, l) = ϕ(n,m, k, l), as the
corresponding direct transform. Formulations (1) and (4) can be compactly rewritten using
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matrix equations,
X = $x and x = $X, (5)

where matrix $ of sizeMN × MN is obtained as

$ = $1D
N×N ⊗ $1D

M×M, (6)

with ⊗ used to denote the Kronecker product of one dimensional DCT matrices $1D
N×N and

$1D
M×M .
The direct and inverse 2D-DCT are commonly rearranged from the four-dimensional to a

two-dimensional space using the stacked vector forms of the image and its DCT transform,

x(n,m) = xv(n+N(m − 1)) = xv(p)

X(k, l) = Xv(k +N(l − 1)) = Xv(q), (7)

which results in the transformation matrix elements of the form

a(p, q) = a(n+N(m − 1), k +N(l − 1)) = ϕ(n,m, k, l), (8)

where p = n+N(m − 1) and q = k +N(l − 1).
Notice that instead of considering the whole N × M image, the image is commonly

divided into non-overlapping blocks, xb(n,m), of size B×B. Then all the previous relations
hold for individual blocks xb(n,m) with summation limits from 0 to B − 1.

An image block xb(n,m) can be represented with only K of nonzero 2D-DCT transfor-
mation elements, K ≪ B2. This K-sparse block can be expressed as

xb(n,m) =
K∑

i=1

Xb(ki, li )ϕ(n,m, ki, li ) =
K∑

i=1

Aiϕ(n,m, ki, li ), (9)

with i = 1, 2, . . . , K , where Ai are nonzero transform coefficients Xb(k, l) at (k, l) =
(ki, li ) ∈ K = {(k1, l1), (k2, l2) . . . (kK, lK)}. In other words, the whole information from
the b-th block is contained within only K nonzero 2D-DCT coefficients.

2.2 Compressive sensing reconstruction of sparse images

In the light of the compressive sensing theory, sparse image blocks, xb(n,m), can be recon-
structed from a reduced set of pixels at positions (nj ,mj ) ∈ NA, j = 1, 2, . . . , NA,
where

NA ⊆ N = {(n,m) | 0 ≤ n ≤ N − 1, 0 ≤ m ≤ M − 1}. (10)

The reduced set of pixels can be considered as a set of NA measurements. Each measure-
ment is a linear combination of nonzero 2D-DCT coefficients, that is

xb(nj ,mj ) =
B−1∑

k=0

B−1∑

l=0

Xb(k, l)ϕ(k, l, ni, mi). (11)

This can be further rewritten more compactly, in a stacked vector form, by taking into
account notation in (7), as

xb(nj ,mj ) = yb(j) =
B2−1∑

q=0

Xvb(q)a(pj , q), (12)

with j = 1, 2, . . . , NA, or in terms of matrix equations, as

yb = AXb, (13)
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with measurement vector, yb, of size NA × 1,

yb = [yb(1), yb(2), . . . , yb(NA)]T (14)

= [xb(n1,m1), xb(n2,m2), . . . , xb(nNA,mNA)]T . (15)

The measurement matrix, A, in (13) consists of elements a(pj , q), with indices pj

corresponding to the available pixels, pj = nj + N(mj − 1), j = 1, 2, . . . , NA, and
q = k+N(l−1), as given by (7) and (8). The 2D-DCT coefficient vector,Xb, corresponding
to the stacked vector form in (7) is given by

Xb = [Xvb(0),Xvb(1), . . . , Xvb(B
2 − 1)]T . (16)

Compressive sensing reconstruction can be performed on each B × B image block sep-
arately. CS reconstruction procedures aim to determine the unknown coefficient vector, Xb

which satisfies the under-determined system of measurement equations, yb = AXb, and is,
at the same time, the sparsest possible solution (among infinitely many possible solutions)
of this system. More formally, this problem can be formulated as a minimization of the
following form [3, 9, 22]

min ∥Xb∥0 subject to yb = AXb, (17)

where ∥Xb∥0 denotes the ℓ0 (pseudo)-norm of the vector Xb, being in fact the number
of nonzero elements in Xb (cardinality). A reconstruction method which solves (17) and
belongs to the orthogonal matching pursuit (OMP) class of the algorithms will be presented
as an integral part of the proposed denoising procedure.

Previous problem formulation is crucial for the considered denoising framework. As it
will be shown next, if we are able to (blindly) detect the unknown positions of disturbed
image pixels, then these pixels can be simply eliminated and considered as unavailable,
whereas the compressive sensing reconstruction procedures could be engaged to provide
adequate replacements, with the remaining pixels considered as available measurements.
This is discussed in detail in Section 3.2.

3 Reconstruction of sparse images with outliers

Although the original CS formulation in image processing deals with the reconstruction of
the image from a reduced set of available pixels, the compressive sensing approach can
be used in image denoising problems, when all pixels are available. Specifically, in the
scenario when some of the image pixels are heavily affected by a high noise, these pixels
can be declared as unavailable and reconstructed based on the remaining pixels acting as
the compressive sensing measurements [49].

The strategy of engaging the CS in image denoising consists of two crucial steps: (i)
detection of pixels affected by the noise, which are thrown away from further analysis (con-
sidered as unavailable) and (ii) reconstruction of these unavailable pixels using only the
set of remaining pixels (not affected by the noise). Therefore, it is crucial to develop a
methodology which can automatically and blindly determine positions of pixels affected by
the noise. In early papers on compressive sensing denoising, the salt and pepper noise was
assumed when the noisy pixels were detected by simple thresholding. Extremely high and
low pixels intensities were declared as noisy and removed before the reconstruction [45, 49].
However, these approaches were not able to deal with noise in the pixels within the range
of other pixel intensities. For detection of such pixels a sparsity measure approach was pro-
posed [45]. This method, in combination with the sparsity measure gradient estimation and
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image blocks overlapping, produced good detection results, followed by accurate recovery
of disturbed pixels. However, a quite high calculation burden is the main drawback of this
approach.

In this Section, we will present a RANSAC-based approach for the selection of the pixels
for the image reconstruction. It provides a blind detection of disturbed pixels, which are
removed and recovered by engaging a compressed sensing reconstruction procedure. This
method will produce an efficient recovery of disturbed pixels, and is characterized by a
reduced calculation complexity.

3.1 Noisy imagemodel

Consider a digital image x(n,m), 0 ≤ n ≤ N − 1, 0 ≤ m ≤ M − 1. The image can
be divided into B × B-sized non-overlapping blocks of pixels. Without loss of generality,
we may assume that N = NBB and M = MBB, where NB and MB are integers. As it is
commonly done [24, 46], it is reasonable to assume that the set of 2D-DCT coefficients of
considered B × B-sized pixel blocks is sparse, for each considered block.

Next, assume that the image is corrupted by two kinds of noise:

– A small noise ε(n,m). The pixels with this kind of noise can be considered acceptable
for signal reconstruction (inliers). This kind of noise will result in a small reconstruction
error in the resulting image.

– An impulsive, high, noise ν(n,m) in some of the image pixels. The number of pixels
with impulsive noise in the block is denoted by I and this number is significantly lower
than B2. These disturbances are located at unknown positions (n,m) ∈ NI ⊆ N.

Commonly, impulsive noise, ν(n,m), is modelled assuming that

– ν(n,m) = 0 for (n,m) /∈ NI ;
– ν(n,m) takes arbitrary high values for n ∈ NI .

These pixels are outliers and should be removed before the image is reconstructed
using the compressive sensing methods.

The original image can be fully recovered if a sufficient number of inlier pixels exists.
The sufficient number of inliers is directly related to the full recovery conditions studied in
the CS theory [9, 22, 37]. A rough estimation of the smallest number of samples that should
be used in the reconstruction of K sparse signal can be made based on the statistical results
presented in [9].

The selection of appropriate samples for the compressive sensing reconstruction will be
based on the RANSAC.

3.2 RANSAC in image denoising

The considered noisy image model is given by

x(n,m) = s(n, n)+ ε(n,m)+ ν(n,m) (18)

where s(n,m) is the original noise-free image, with pixel blocks of size B ×B being sparse
in the 2D-DCT domain, ε(n,m) is a Gaussian noise with a small variance σε (inliers), while
ν(n,m) is a high impulsive noise (outliers). Next, we present a procedure for blind detection
of outliers, outlined in Algorithm 1.
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1. The considered image block xb(n,m) is K-sparse. Select a small subset S with S ran-
domly positioned pixels x(n,m) at (n,m) ∈ S, such that the reconstruction for a
K-sparse image block is possible.

2. The pixels from S are used to reconstruct the whole image block, xRb(n,m), at all pixel
positions (n,m), n = 0, 1, 2, . . . , B − 1,m = 0, 1, 2, . . . , B − 1. The reconstruction
is done based on the compressive sensing principles. Based on the set of measurement
equations

xb(nj ,mj ) = yb(j) =
K∑

i=1

X̂vb(qi)a(pj , qi), (19)

j = 1, 2, . . . , NA, CS reconstruction procedure aims at finding the set of elements
X̂vb(qi) satisfying the given equations, and being the sparsest possible solution at the
same time. This corresponds to the minimization in (17). One approach to solve this
problem is a two-step strategy, defined as follows:

Step 1: Detect the positions of nonzero elements,
Step 2: Apply an algorithm for reconstruction with known positions of nonzero
elements as in the standard RANSAC.

The linear nature of the relation between the randomly selected samples, x(nj ,mj ),
for the given 2D-DCT elements, indicates that a back-projection of the measurement
vector, yb, to the measurement matrix,A, can be used as the tool for the nonzero element
position estimation, that is

Xb0 = AH yb. (20)

In an ideal case, the matrix AHA ensures that the initial estimate, Xb0, contains
exactly K elements at positions {q1, q2, . . . , qK } for which the magnitudes are larger
than the largest magnitudes at the remaining positions. By taking the positions of
these largest magnitude elements in Xb0 as the set {q1, q2, . . . , qK }, the signal can be
reconstructed based on the pseudo-inversion

XbK = (AH
KAK)

−1AH
Kyb = pinv(AK)yb, (21)

with AK obtained from the measurement matrix A, by keeping columns with indices
{q1, q2, . . . , qK }. The reconstructed image in the block b is then

xb(n,m) =
K∑

i=1

X̂b(ki, li )ϕ(n,m, ki, li ) (22)

where X̂(k, l) are zero-valued at all (k, l), 0 ≤ k ≤ B − 1, 0 ≤ l ≤ B − 1, except for

(k, l) ∈ {(k1, l1), (k2, l2), . . . , (kK, lK)},
where X̂b(ki, li ) = XbK(qi).

The procedure can be iteratively implemented, in the form of Matching Pursuit [47].
The implementation is presented in the Algorithm 2.

3. After the image block is reconstructed, for every pixel xb(n,m), n,m = 0, 1, . . . , B−1,
the corresponding distance dnm, from the estimated signal xRb(n,m) is calculated,

dnm = |xRb(n,m) − xb(n,m)|. (23)

4. If a sufficient number of pixels is such that their distance from the reconstructed model
is lower than the assumed threshold, for example, d = 2.5σε, then all these pixels are
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included in a new set of available pixels

D =
{
xb(n,m)| dn,m ≤ d

}
, (24)

and the final reconstruction of the image block is calculated with all data from D. Note
that the robust estimation of the standard deviation can be done using median absolute
deviation (MAD), defined by

MADx = median
n,m=0,1,...,B−1

{∣∣∣xb(n,m) − median
n,m=0,1,...,B−1

{xb(n,m)}
∣∣∣
}
. (25)

The MAD value is related to the sample standard deviation asMADx = 0.6745σx (for
the Gaussian random variable).

5. If there is no sufficient number of pixel values within the distance d , that is, card{D} <
T = B2/2, a new random small set of pixels, i ∈ S, is taken and the procedure is
repeated from point 2.

6. The procedure is stopped when the desired number of data points within D is achieved,
card{D} ≥ T = B2/2 or the maximum number of trials Nmax is reached.

The previously described denoising approach is summarized in Algorithm 1, which will
be used and compared in the numerical examples presented in this paper. It exploits a
matching pursuit CS reconstruction procedure, CSREC·, summarized in Algorithm 2. The
flowchart of approach is presented in Fig. 1 for a single image block denoising.

Fig. 1 The flowchart of the RANSAC-based denoising algorithm, presented for a single B ×B image block



Multimedia Tools and Applications

The presented RANSAC-based denoising algorithm will produce the same results if
other CS reconstruction methodologies are used instead of the OMP, such as, for instance,
the Bayesian CS reconstruction or the iterative hard thresholding (IHT). An overview of
these procedures can be found in [41, 47].
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Fig. 2 Denoising of image
“Goldhill” with 15% of outliers:
original image (top), noisy image
(middle), reconstructed using a
combination of RANSAC and
OMP (bottom)
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Fig. 3 The dataset of 55 test
images used in the comparative
analysis in Example 2
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4 Results

Example 1: Reconstruction results The reconstruction will be performed using the image
“Goldhill” of size N × M = 512 × 512. The image is presented in Fig. 2 (top). The image
assumes that 15% of the pixels are affected by impulsive disturbance, which means that in
average I = 9.6 pixels per block are highly affected (but not necessarily salt and pepper
noise). This case is illustrated in Fig. 2 (middle).

The RANSAC-based detection algorithm starts from the subset S of 40% randomly
selected pixels, which can be either affected or not affected by the disturbance. These sam-
ples are used as the CS measurements. Upon performing the reconstruction, the RANSAC
determines how much does the obtained solution, representing the linear model for the mea-
surements, fits the pixels from the observed image block, and determines the consensus
set D. If card{D} < T = B2/2, the procedure is repeated for the next random subset of
measurements, until the outlier-free subset is found. The noisy image is shown in Fig. 2
(middle). The final recovery result is shown in Fig. 2 (bottom).

Example 2: Statistics on test image set The proposed algorithm is compared with com-
petitive methods on a set of 55 test images. The considered set of images consists of 49
images from the database found at [28] and additional six standard MATLAB test images.
The dataset is 49 images of size 512 × 512. Additionally, image 50 is of size 291 × 240,
image 51 is 205×345, the image 52 is of size 256×320, the image 53 is of size 384×512,
image 54 is of size 486 × 732 and image 55 is of size 512 × 512.

The images are shown in Fig. 3. We assume that the images are affected by 10% of
random valued impulsive noise. The noisy dataset is shown in Fig. 4. Images are denoised
using the proposed algorithm. The resulting set of images is shown in Fig. 5.

The comparison has been performed using two full-reference quality measures, the peak-
to-noise ratio (PSNR) and the multi-scale structural similarity index (MS-SSIM). Based on
the original image s(n,m) and reconstructed image, xR(n,m), the PSNR is calculated as

PSNR = 10 log10

(
2552

1
NM

∑N−1
n=0

∑M−1
m=0 |s(n,m) − xR(n,m)|2

)

. (26)

The MS–SSIM from [53] is a more robust version of the well-known structural similarity
(SSIM) index, which is calculated as [52]

SSIM = (2µsµxR + c1)(2σsxR + c2)

(µ2
s + µ2

xR
+ c1)(σ 2

s + σ 2
xR

+ c2)
, (27)

with µs , µxR , c1, σ
2
s , c1 and c2 being statistical parameters defined in [52]. The value of the

MS–SSIM parameter is between 0 (no similarity) and 1 (full similarity).
Moreover, a no-reference quality measure, the Naturalness Image Quality Evaluator

(NIQE), introduced in [36], was used for the evaluation of the performance. For the analysis
of this parameter, the smaller value, the more natural the image looks.

We compare the results of the proposed method with four other algorithms: the WESNR
algorithm from [29], a combination of an adaptive Kuwahara [4] and BM3D [16, 30], pre-
sented in [19], a combination of a two-stage adaptive filter [38] with BM3D, presented in
[44], and with the total variation L1 algorithm from [12, 35, 56]. The results are shown in
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Fig. 4 The noisy dataset of 55
test images used in the
comparative analysis in Example
2
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Fig. 5 The reconstructed dataset
of 55 test images used in the
comparative analysis in Example
2
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Table 1 PSNR for the dataset of test images

Test image Proposed TV-L1 Kuwahara-BM3D Zayed-BM3D WESNR

1 41.57 22.81 26.54 23.35 28.27

2 32.12 26.11 21.88 23.69 26.66

3 28.77 26.96 27.71 24.21 24.45

4 40.54 19.22 20.07 17.35 22.13

5 47.06 27.49 26.95 22.70 28.71

6 26.39 23.53 23.14 21.26 23.34

7 33.08 19.51 20.40 18.21 21.24

8 12.96 26.51 25.24 25.84 26.03

9 20.22 24.03 18.13 23.54 25.61

10 28.78 25.44 20.41 23.79 28.04

11 19.87 19.41 19.02 17.54 19.18

12 33.16 21.57 22.60 17.51 23.56

13 16.45 24.82 23.01 24.14 28.41

14 48.64 20.02 22.89 20.25 23.06

15 39.88 21.22 22.79 19.64 21.51

16 48.71 21.78 22.01 21.27 23.81

17 15.55 22.03 19.25 20.45 25.72

18 25.96 19.67 21.84 19.51 20.69

19 14.26 23.32 23.79 21.90 25.58

20 34.75 21.96 23.08 21.64 25.67

21 19.67 26.28 27.44 21.54 29.43

22 47.52 23.21 24.26 23.40 24.48

23 14.34 28.26 27.33 22.28 31.47

24 28.88 27.06 27.58 27.62 30.23

25 20.26 10.02 23.79 11.79 21.27

26 44.53 26.69 26.58 27.86 29.16

27 17.98 29.36 17.97 23.80 25.49

28 34.76 23.46 26.45 26.48 27.63

29 43.69 20.07 20.52 16.14 21.60

30 43.55 24.87 25.30 23.91 28.13

31 46.09 18.98 21.55 15.52 21.46

32 15.30 23.71 15.25 21.05 24.63

33 29.48 25.91 25.89 23.25 29.02

34 46.17 23.74 24.28 24.29 26.98

35 32.35 25.21 24.58 25.33 27.99

36 13.70 22.50 25.90 20.02 26.58

37 48.88 24.34 25.08 25.06 23.40

38 21.66 21.62 23.30 24.23 25.58

39 18.69 26.63 26.02 23.32 15.97

40 47.41 26.53 26.37 29.16 26.22

41 35.59 26.51 28.23 25.24 31.59
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Table 1 (continued)

Test image Proposed TV-L1 Kuwahara-BM3D Zayed-BM3D WESNR

42 52.75 24.46 25.20 21.73 24.77
43 19.33 26.15 17.33 23.96 24.82
44 41.42 15.61 18.26 13.48 18.44
45 30.18 25.79 24.10 25.64 29.13
46 27.91 23.79 23.60 23.02 26.63
47 35.76 18.94 23.40 20.27 23.13
48 32.89 25.63 26.05 26.73 29.03
49 17.87 17.54 8.397 16.86 15.37
50 18.04 28.50 25.74 24.51 29.73
51 38.26 24.19 21.53 23.34 27.16
52 49.53 26.47 26.00 27.76 28.02
53 46.93 32.32 29.37 30.64 34.92
54 45.92 30.61 24.68 30.80 30.20
55 43.59 33.58 29.40 28.84 35.61

The results are obtained by the proposed, two-stage (2-stage) adaptive [38] and BM3D [16], presented in
[44], Kuwahara-BM3D from [19], the total variation L1 [12, 35, 56], and WESNR from [29] methods. The
noise assumed to be in 10% of the pixels affected by random valued impulsive noise

Bold values indicate the method with the best performance for the respective quality measure

Tables 1, 2, and 3, with three different objective quality measures acting as the comparative
criteria.

As it can be seen from the tables, the proposed denoising technique shows better results
in most of the images tested. In cases where it showed more favorable results, the proposed

Table 2 MS–SSIM for the dataset of test images

Test image Proposed Kuwahara-BM3D Zayed-BM3D TV-L1 WESNR

1 0.99 0.92 0.95 0.92 0.98

2 0.97 0.91 0.90 0.94 0.96

3 0.98 0.92 0.92 0.91 0.97

4 0.99 0.90 0.91 0.93 0.95

5 0.99 0.93 0.93 0.96 0.97

6 0.97 0.91 0.90 0.92 0.96

7 0.99 0.85 0.91 0.81 0.93

8 0.92 0.91 0.87 0.93 0.91

9 0.92 0.92 0.87 0.91 0.96

10 0.98 0.94 0.83 0.98 0.94

11 0.94 0.86 0.87 0.81 0.91

12 0.98 0.92 0.89 0.94 0.96

13 0.91 0.92 0.88 0.95 0.96

14 0.99 0.80 0.90 0.83 0.93

15 0.99 0.84 0.89 0.84 0.94

16 0.99 0.83 0.84 0.81 0.91

17 0.95 0.90 0.83 0.91 0.96
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Table 2 (continued)

Test image Proposed Kuwahara-BM3D Zayed-BM3D TV-L1 WESNR

18 0.97 0.83 0.90 0.82 0.91

19 0.93 0.92 0.92 0.92 0.96

20 0.99 0.86 0.89 0.88 0.95

21 0.98 0.90 0.91 0.91 0.95

22 0.99 0.89 0.92 0.90 0.94

23 0.94 0.95 0.92 0.95 0.97

24 0.96 0.93 0.93 0.94 0.96

25 0.98 0.87 0.92 0.92 0.96

26 0.99 0.91 0.90 0.94 0.96

27 0.89 0.96 0.89 0.95 0.96

28 0.99 0.93 0.93 0.94 0.96

29 0.99 0.86 0.86 0.87 0.94

30 0.99 0.88 0.89 0.89 0.94

31 0.99 0.86 0.90 0.86 0.93

32 0.95 0.91 0.78 0.92 0.95

33 0.98 0.90 0.90 0.91 0.96

34 0.99 0.90 0.91 0.92 0.96

35 0.99 0.94 0.94 0.95 0.97

36 0.93 0.90 0.93 0.91 0.96

37 0.99 0.83 0.84 0.87 0.93

38 0.96 0.92 0.91 0.93 0.96

39 0.94 0.93 0.90 0.94 0.93

40 0.99 0.91 0.89 0.96 0.96

41 0.99 0.93 0.94 0.95 0.98

42 0.99 0.92 0.93 0.95 0.96

43 0.92 0.94 0.90 0.95 0.97

44 0.99 0.77 0.84 0.72 0.89

45 0.98 0.93 0.90 0.96 0.96

46 0.99 0.89 0.91 0.90 0.96

47 0.98 0.84 0.91 0.86 0.95

48 0.99 0.94 0.92 0.96 0.97

49 0.97 0.87 0.61 0.83 0.81

50 0.97 0.95 0.90 0.98 0.97

51 0.99 0.92 0.87 0.93 0.95

52 0.99 0.91 0.91 0.93 0.95

53 0.99 0.97 0.95 0.99 0.98

54 0.99 0.94 0.91 0.97 0.96

55 0.99 0.97 0.93 0.98 0.98

The results are obtained by the proposed, two-stage (2-stage) adaptive [38] and BM3D [16], presented in
[44], Kuwahara-BM3D from [19], the total variation L1 [12, 35, 56], and WESNR from [29] methods. The
noise assumed to be in 10% of the pixels affected by random valued impulsive noise

Bold values indicate the method with the best performance for the respective quality measure
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Table 3 NIQE for the dataset of test images

Test image Proposed Kuwahara-BM3D Zayed-BM3D TV-L1 WESNR

1 6.14 17.42 14.71 13.73 9.59

2 7.91 19.39 16.99 9.21 9.70

3 6.73 17.88 15.87 11.15 9.78

4 7.79 16.95 15.44 12.50 9.02

5 8.71 15.66 17.18 13.65 11.56

6 7.88 17.53 12.17 8.74 8.27

7 8.97 18.36 14.01 11.19 7.81

8 5.77 17.36 19.05 11.22 8.95

9 6.16 13.79 13.81 10.10 10.06

10 7.09 13.19 15.92 13.80 10.95

11 7.97 14.72 15.06 10.43 9.30

12 6.98 14.79 15.38 10.46 9.30

13 7.19 12.65 12.83 12.33 8.47

14 8.47 18.57 14.78 7.59 7.03

15 6.58 17.29 15.51 8.99 10.30

16 14.68 19.18 11.54 9.47 10.35

17 6.43 15.97 14.73 9.74 8.04

18 6.50 18.78 14.85 8.10 6.66

19 7.18 21.05 13.84 12.11 9.51

20 6.51 18.28 17.56 8.81 8.52

21 5.87 14.86 14.78 8.98 7.86

22 9.47 14.86 17.70 12.91 7.72

23 7.23 16.24 17.70 12.83 11.34

24 6.48 19.20 16.15 11.49 8.26

25 8.44 19.18 12.58 12.69 9.28

26 8.18 21.51 17.33 14.19 12.39

27 7.65 14.64 17.14 10.59 11.04

28 8.72 17.88 14.80 11.06 9.79

29 13.36 18.61 14.90 10.04 9.62

30 6.79 18.75 15.99 9.78 9.28

31 10.49 17.15 16.61 8.79 9.47

32 6.10 16.73 14.27 7.11 8.65

33 7.80 16.68 15.40 9.96 8.74

34 8.78 19.15 17.54 11.61 10.64

35 7.89 15.00 13.97 11.69 10.89

36 6.64 14.17 13.93 8.79 8.08

37 8.04 18.65 16.58 11.18 8.97

38 7.27 14.90 14.29 10.23 8.93

39 6.19 16.24 18.19 10.13 8.80

40 7.45 31.92 20.19 16.62 12.96

41 10.33 19.05 14.00 9.67 7.09

42 10.57 20.08 16.46 12.56 10.94

43 6.49 17.13 17.80 11.89 10.82
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Table 3 (continued)

Test image Proposed Kuwahara-BM3D Zayed-BM3D TV-L1 WESNR

44 16.26 30.58 12.34 12.53 14.78
45 7.51 16.58 16.12 14.01 9.84
46 9.38 19.91 14.47 8.99 8.80
47 9.53 23.37 13.27 7.70 8.05
48 10.67 12.62 15.28 13.65 10.43
49 10.33 15.86 11.75 12.13 10.60
50 11.13 26.09 27.23 27.99 24.26
51 7.97 24.73 29.57 26.94 23.74
52 7.82 40.88 24.55 31.41 15.03
53 7.09 16.96 20.80 22.03 19.84
54 5.77 19.11 28.95 22.73 12.36
55 9.35 16.97 18.39 17.30 14.99

The results are obtained by the proposed, two-stage (2-stage) adaptive [38] and BM3D [16], presented in
[44], Kuwahara-BM3D from [19], the total variation L1 [12, 35, 56], and WESNR from [29] methods. The
noise assumed to be in 10% of the pixels affected by random valued impulsive noise

Bold values indicate the method with the best performance for the respective quality measure

method increased PSNR by up to 100% in some cases, when compared to the four com-
petitive methods for the tested images. In some images, such as images 5,14,22,44,54, the
PSNR is significantly higher in comparison with other methods. In terms of the SSIM, the
proposed algorithm combining RANSAC and CS outperforms the competitive methods in
many cases. It is interesting to note that, in most cases, the MS–SSIM index is above 0.97
for the proposed method. Additionally, comparing the values of the no-reference measure
NIQE, we can see that the proposed method gives the most natural image in most of the
cases.

From the given analysis, it is clear that the proposed RANSAC and CS based denoising
method can outperform the other competitive approaches in most cases.

5 Conclusion

In this paper, we propose an image denoising approach based on RANSAC in conjunction
with CS reconstruction. The CS reconstruction exploits the sparsity which each block of an
image exhibit in the 2D-DCT domain. The RANSAC-based methodology combined with
successive CS reconstructions is used to determine the set of pixels which can be considered
as unaffected by the noise. Those pixels are used in the final CS reconstruction, to recover
the remaining pixels, affected by the disturbance. Since the approach exploits signal spar-
sity, its efficiency is not affected by noise characteristics, such as distribution of the noise
or its range of values. Moreover, even in cases when the noise corruption falls within the
range of pixel values, the proposed approach is able to detect the impulsive noise. Numeri-
cal results on a relatively large set of images prove the efficiency of the proposed method. In
particular, it outperforms several advanced state-of-the-art algorithms for image denoising.
The quality is verified based on several objective metrics, and the results clearly support
the presented theory. Our future work will be oriented towards main directions. In the first
line of our future research, our goal is to develop a parallel, numerically highly efficient
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implementation of the proposed algorithm. The second line of our research will be oriented
towards the development of an efficient combination of the presented RANSAC-CS denois-
ing procedure and dictionary learning strategies, aiming to incorporate an alternative basis
where image blocks exhibit improved sparsity. It is expected that such combination would
lead to even further increased denoising capabilities of the presented approach.

Declarations The authors have no relevant financial or non-financial interests to disclose.
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reconstruction error in images. Sig Image Video Process 14(8):1545–1553
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